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a b s t r a c t
One of the challenging tasks in desalination plants is to manage and optimize their real-time per-
formance. In this direction, soft computing techniques have demonstrated superior efficiency com-
pared to conventional techniques in overcoming this problem and predict optimal process condi-
tions. In this paper, artificial neural network (ANN), particle swarm optimization assisted ANN 
(PSO-ANN), fuzzy inference system (FIS), and adaptive neuro-fuzzy inference system (ANFIS) 
models have been developed to predict the membrane performance of the seawater reverse osmosis 
(SWRO) desalination plants. All developed models consisted of four input parameters: feed tem-
perature (5°C–30°C), feed pressure (45–65 kgf/cm2), feed flow rate (~30 L/min), and feed total dis-
solved solids (TDS) (~32,000 ppm) with two output parameters: permeate flow rate (2.8–8.8 L/min) 
and permeate TDS (45–121.6 ppm). The models so obtained and trained produced a fairly good 
agreement between the experimental and predicted dataset. Amongst all models simulated, the 
PSO-ANN model provides superior performance for permeate flow rate and TDS (R2 = 0.998, 0.997) 
with minimum errors (MSE = 0.007, 1.783) compared to other models (ANN, FIS, and ANFIS). Future 
results suggested that models may serve as perfect diagnostic tools for designing SWRO desalina-
tion plants to reduce the Capex, Opex, time, and energy.

Keywords:  Artificial neural network; Fuzzy inference system; Particle swarm optimization assisted 
ANN; Seawater reverse osmosis; Adaptive neuro-fuzzy inference system

1. Introduction

1.1. Importance of water and desalination

Water and desalination share a close relationship with 
each other, and the latter playing an important role in 
human life by offering a continuous supply of pure drink-
ing water. In the present scenario, due to population growth 
worldwide, conventional freshwater sources (i.e., rivers, 

streams, ponds, lakes, reservoirs, and ground waters) have 
either been completely destroyed or are limited in their 
supply of drinking water at a specific location. This has 
increased water scarcity, which inversely affects the agri-
culture, industry, animal, and human development [1–5]. 
However, optimal exploitation of seawater is one of the 
most emerging alternative resources to solve water crises. 
With ~97% source of water of earth, seawater can be uti-
lized to generate freshwater through various desalination 
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techniques such as multi-effect distillation (MED), reverse 
osmosis (RO), and multi-stage flash (MSF). Among them, 
RO is the most versatile, influential, and widely used 
(>63%) technique worldwide [1,6–8]. It has demonstrated 
a remarkable potential for a cost-effective operation, main-
tenance free, and controlled desalination process over the 
last 60 y [9]. This has prompted several researchers and 
scientists across the globe to focus and contribute to this 
emerging field.

1.2. Literature survey using soft computing techniques

Currently, the demand for designing and running sea-
water desalination plants has increased worldwide and 
this has prompted immense interest in the soft comput-
ing modeling approach to represent and simulate accu-
rate plant performance [10]. Until now, such advanced 
techniques have helped the development of several 
deterministic and stochastic models, such as a porous 
model, irreversible thermodynamic model, the membrane 
resistance model, and solution diffusion model [11,12]. 
Some of such techniques face some challenges such as 
high computational time, standard rules, and formula-
tion of meaningful input/output datasets for process anal-
ysis. However, much advanced soft computing models 
developed recently involve intelligent computation to 
reduce simulation time and ability to deal with difficult 
situations [13].

Chau [14] has developed a particle swarm optimi-
zation-assisted ANN (PSO-ANN) model for an accu-
rate water stage forecast of Shing Mun River, Hong 
Kong. The model predicted improved results (R2 = 0.99) 
than the BP-ANN model (R2 = 0.96) for 1 d datasets. 
Buyukyildiz et al. [15] have presented five approaches, 
including PSO-ANN, multi-layer ANN, support vec-
tor regression, radial basis neural network, and adaptive 
neuro-fuzzy inference system (ANFIS), to estimate water 
level (monthly) change in Lake Beysehir, Turkey. Alizamir 
and Sobhanardakani [16] developed an PSO-ANN and 
ANN-bayesian regulation (BR) models to predict heavy 
metals (Zn, Pb, As, and Cu) contamination in ground-
water of Toyserkan Plain, Hamedan Province, Iran. They 
observed that the PSO-ANN model was more precise and 
accurate than the ANN-BR model to predict heavy metals 
in the groundwater. Sulugodu and Deka [17] evaluated 
streamflow forecasting performance using soft-computing 
methods such as ANFIS and PSO-ANN. Three decades of 
rainfall datasets (CHIRPS satellite provided rainfall data) 
from 1983 to 2012 over the Nethravathi Basin, Karnataka, 
India, were used for analysis. The investigation was car-
ried out from June to September (monsoon season), out 
of which 70% datasets were considered for training and 
the remaining 30% for testing. Such machine learning 
influenced models have been reported earlier to intelli-
gently enable learning from experiments for understand-
ing system behavior accurately and help in the smoother 
running of processes [9,10,18–22]. Literature suggests 
that the modeling parameters (i.e., number of swarm 
size, number of the hidden layer, hidden layer nodes, the 
weight of inertia, acceleration factors, etc.) play a major 
role in designing soft computing models. Also, selecting 

these parameters varies according to the dataset size, 
pattern, and proper format. Thus, this work attempts to 
iteratively find the best parameters by the hit and trial 
error methods. Moreover, based on past efforts, the lit-
erature [16,17] has also suggested initial robust and 
useful parameters for such modeling studies.

1.3. Objectives and contributions

The purpose of this research is to develop compu-
tationally fast and accurate models using neural net-
work and fuzzy-based soft computing techniques (ANN, 
PSO-ANN, FIS, and ANFIS) for analyzing the mem-
brane performance of the seawater desalination plant in 
several working conditions. The ANN and PSO-ANN 
models are based on programming and learning algo-
rithms. ANN has been adapted to learn by backpropa-
gation (BP), while PSO-ANN supports learning by PSO. 
Besides, FIS and ANFIS are rule-based models that have 
been formed upon the conversion of available inputs into 
crisp fuzzy inputs. The resulting models can quickly and 
intelligently learn the key information from the exper-
imental datasets and possess the capabilities to predict 
outputs accurately. Furthermore, the study explores opti-
mum system parameters using the developed models 
and suggests a smart/optimized desalination plant with 
reduced Capex, Opex, process time, and energy.

In general, Fig. 1. illustrates a typical breakdown of 
the clean water production costs of the seawater reverse 
osmosis (SWRO) plant [23]. It has been compiled based 
on a comparative review of over 50 desalination plants 
around the world (mainly in the USA, Australia, Europe, 
the Middle East, and the Caribbean) [23]. Although, the 
cost component varies according to the size and the loca-
tion of the plant. The largest expenditure (30%–40%) usually 
the direct Capex (i.e., construction cost), while the indirect 
Capex (10%–20%) includes for project engineering, finance, 
and development. Besides, 20%–35% cost involves in the 
energy requirements. The operational and other mainte-
nance costs (Opex) apply around 15%–30% for the water 
production [6,23].

30 - 40%

10 - 20% 15 - 30%

 Direct capital costs (Capex)
 Indirect capital costs (Capex)
 Power/Energy costs
 Operation and maintenance costs (Opex)

20 - 35%

Seawater Reverse Osmosis Plant, Cost of water breakdown

Fig. 1. Typical cost of water breakdown for the SWRO desalina-
tion plant [6,23].
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2. Data description

Lee et al. [10] have studied the SWRO desalination 
pilot plant to investigate and interpret membrane perfor-
mance with varying seawater parameters. They used the 
commercial spiral-wound RO membranes (6.9 m2 trans-
fer area) for the experiments. The operating range of input 
feed parameters consisting of temperature, pressure, flow 
rate and TDS, and outputs of permeate flow rate and TDS 
have been expressed in Table 1. The salt concentration and 
permeate flow rate were measured using the conductivity 
and flow meters, respectively.

3. Model development

3.1. ANN modeling

An ANN is a self-learning computing system designed 
to simulate the accurate prediction of permeate flow rate 
and TDS of the seawater desalination plant. It is the sub-
stance of artificial intelligence (AI), which solves the 
problems that would be difficult/impossible by human 
or statical standards. Fig. 2. presents the graphical dia-
gram of a three-layer feedforward neural network model. 
Here, all previous layer nodes have been linked to all 
nodes of the next layers implemented using MATLAB’s 

Neural Network Toolbox. The input layer with four nodes 
consists of feed temperature, feed pressure, feed flow rate, 
and feed TDS of the system, while an output layer consists 
of two nodes (permeate flow rate and TDS) and one hid-
den layer with variable (n) nodes. The entire dataset of the 
system has been divided into three parts: training (70%), 
validation (15%), and remaining for testing (15%), and the 
training datasets have been referred to as a set of patterns [9].

The developed neural network model’s output of the 
hidden layer nodes, Hp

j and the system’s final outputs, ŷp
k 

can be calculated by Eqs. (1) and (2), respectively [24]:
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where xp
i are the network inputs, wh

ij are the weights 
between the input and hidden layers, w0

jk are the weights 
between the hidden and output layers, w0j and w0k are the 
bias, p prefers to the pattern, and i, j, and k are the num-
ber of the input, hidden, and output nodes, respectively.

The hidden layer nodes’ output has been calculated 
using a sigmoid transfer function, f(x) used as an approxi-
mation function. It is calculated from its personal deriv-
ative at any point and produces outputs between 0 and 1  
as the input goes from negative to positive infinity, as 
shown in Eq. (3).
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Then the outputs of the hidden nodes are afterward 
inserted into Eq. (2), and the sigmoid function again 
computes the output. Lastly, the neural network’s final 

Table 1
Description of parameters involved in the SWRO desalination 
plant [10]

Parameter Number Range

Feed

Temperature, Tf, °C 30 5–30
Pressure, Pf, kgf/cm2 30 45–65
Flow rate, Ff, L/min 30 29.6–30.2
TDS, Cf, ppm 30 31,300–32,100

Permeate
Flow rate, Fp, L/min 30 2.8–8.8
TDS, Cp, ppm 30 45.0–121.6

 
Fig. 2. Graphical illustration of an artificial neural network model.
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output, ŷp
k has been used to calculate the mean square error 

(MSE) with the real output, yp
k based on Eq. (4) [24]:
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where N is the number of patterns, and M is the number 
of output nodes.

As a learning algorithm, we have employed the 
Levenberg–Marquardt backpropagation (LM-BP) algorithm 
[24] first to calculate the network’s MSE gradient and then 
find the weights that minimize MSE. In the LM-BP algorithm’s 
training process, the network weights are adjusted to sys-
tematically reduce the errors, causing a good promise 
between the input values and desired output estimates.

3.2. PSO-ANN modeling

In this PSO-assisted modeling, the ANN model has 
been optimized by the PSO algorithm for predicting 
the permeate flow rate and permeate TDS of the seawa-
ter desalination plant. Kennedy and Eberhart in 1995 
have proposed a computational method (stochastic pop-
ulation-based (swarm/bird/fish/particle) search tech-
nique) that optimizes the problems iteratively called 
PSO [25]. It has been inspired by the social/collective 
behavior of bird flocking or fish schooling. PSO has ini-
tialized by a group of random particles and searches 
optima nearby in a multidimensional space by updating 
generations. In every iteration, each particle has updated 
two best values. The first one is the individual best fit-
ness value obtained by the individual particle called per-
sonal best (pbest) position and another best value obtained 
by the neighbor particle called global best (gbest) [26,27]. 
Afterward, finding the two best values (pbest and gbest), 
every particle updates its velocity and positions with 
Eqs. (5) and (6) [28,29]:
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where vn
i, vi

n+1 are the velocity of ith particle at nth and 
n + 1th iteration, respectively; xn

i, xi
n+1 are the position of ith 

particle at nth and n + 1th iteration; c1, c2 are the accelera-
tion factors; rn

1, rn
2 are the random numbers; ω is the weight 

of inertia assumed in range of 0–1; xn
g is the global best 

(gbest); xn
i,p is the individual best (pbest); n is the total number 

of iterations.
Our next step for optimizing modeling is setting up the 

PSO algorithm’s optimum parameters (swarm size, ω, c1, c2, 
and n) before the ANN model. Finally, determine the excel-
lent performance in terms of R2 and MSE. The same num-
ber of input, hidden, and output layer nodes applied as the 
ANN modeling.

3.3. FIS modeling

FIS modeling is vital to efficiently manage the SWRO 
desalination system by optimizing the permeate flow rate 

and TDS. Herein, the designing of the FIS modeling has 
been accomplished in two steps. In the first step, we have 
assumed two inputs (feed temperature 5°C–30°C), and 
pressure 45–65 kgf/cm2, and a single output (permeate flow 
rate 2.8–8.8 L/min) (case-1). In another case (case–2), per-
meate TDS (45–121.6 ppm) has been taken as an output. 
Feed flow rate ~30 L/min and feed TDS ~32,000 ppm have 
been considered constant. The designing architecture is 
based on a Mamdani fuzzy inference system (FIS), which 
uses the “Centroid” process for defuzzification, giving a 
crisp output of the system [30]. Here, we have used triangu-
lar membership functions (trimf) of the inputs and outputs 
are illustrated in Fig. 3a–d. It is the most straightforward 
shape function, defined three parameters for three points: 
two for the feet and one for the curve’s tip.

The FIS model has been planned as follows: The first 
fuzzy input, feed temperature, has been divided accord-
ing to the operative temperature range of the plant into 
five fuzzy subsets presented by five membership functions 
(MFs) as follows: very small temperature (VST), small 
temperature (ST), medium temperature (MT), large tem-
perature (LT), and very large temperature (VLT) with the 
range of values varying from 5°C to 30°C. The second fuzzy 
input, feed pressure, has been divided into five fuzzy sub-
sets indicated as follows: very small pressure (VSP), small 
pressure (SP), medium pressure (MP), large pressure (LP), 
and very large pressure (VLP) with the range of values 
varying from 45 to 65 kgf/cm2. The first fuzzy output per-
meates flow rate has been divided into five fuzzy subsets 
indicated as follows: very small permeate flow rate (VSF), 
small permeate flow rate (SF), medium permeate flow 
rate (MF), large permeate flow rate (LF), and very large 
permeate flow rate (VLF) lying in 2.8–8.8 L/min range. 
The second fuzzy output, permeate TDS, has been divided 
into five fuzzy subsets indicated as follows: very small 
TDS (VSD), small TDS (SD), medium TDS (MD), large 
TDS (LD), and very large TDS (VLD) with values lying 
within the 45–121.6 ppm range.

In FIS assisted modeling, it uses the “IF-THEN” log-
ical operating rules with “AND” or “OR” connectors for 
the essential decision rules. Thus, step 2 involves defining 
some fuzzy rules for the predefined input/output parame-
ters and creating appropriate decision matrices. For exam-
ple, based on an earlier understanding of the considered 
system, a set of 25 rules have been created for each output 
and concise by a decision matrix illustrated in Fig. 3e and f. 
It has been noted that the designing of the FIS modeling con-
sists of the fuzzy IF-THEN rules, choice of MFs, decision 
matrix, fuzzification, and the defuzzification interface 
units [30–32]. The defuzzification method helps obtain the 
best single value from the fuzzy set.

3.4. ANFIS modeling

ANFIS modeling, first proposed by Jang and Sun 
[33,34], exemplifies a robust soft computing technique 
that may find great use for the prediction of permeate 
flow rate and TDS of the seawater desalination plant. 
The architecture of an ANFIS model involves a five-layered 
feedforward neural network, illustrated in Fig. 4. The first 
input layer consists of four input nodes (feed temperature 
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Fig. 3. Degree of membership functions of: (a) feed temperature 5°C–30°C, (b) feed pressure 45–65 kgf/cm2, (c) permeate flow rate 
2.8–8.8 L/min, (d) permeate TDS 45–121.6 ppm, (e) fuzzy decision matrix of permeate flow rate, and (f) fuzzy decision matrix of per-
meate TDS.
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5°C–30°C, feed pressure 45–65 kgf/cm2, feed flow rate 
~30 L/min, and feed TDS ~32,000 ppm) and the last out-
put layer consists of two output nodes (permeate flow rate 
2.8–8.8 L/min and permeate TDS 45–121.6 ppm) of the struc-
ture. Here, we have used 70% of the total data for training, 
15% for validation, and the remaining 15% for testing of 
the system. Hidden layers involve triangular membership 
functions (trimf), used to determine the system’s initial 
premise parameters. Although the number of MFs assigned 
to each input variable by trial and error methods. It gen-
erates 81 logical operations rules, each for two outputs as 
per given MFs in the present case. Additionally, Mamdani 
FIS has been used to achieve the tuning process of the 
structures. Lastly, the last layer summarized the operation 
rules and calculated outputs of the plant.

4. Results and discussion

All models (ANN, PSO-ANN, FIS, and ANFIS) have 
been developed and simulated using MATLAB R2019a 
software to design the SWRO desalination plant and 
optimize its performance. The system used had the fol-
lowing configuration: Intel (R) Core (TM) i5-8250U 
CPU@1.60 GHz, 4 Core(s), 1,801 MHz, 8 Logical processors, 
and 8.00 GB RAM.

4.1. Models simulation and optimization

4.1.1. ANN model optimization

For the ANN model optimization and analysis, we 
have performed various simulations. It was found that the 
ANN model’s performance depends upon the number of 
hidden layer nodes (n). Fig. 5a and b illustrate the experi-
mental datasets for testing the ANN model for permeate 

flow rate and TDS of the seawater RO desalination plant 
with variable hidden layer nodes. It has been observed 
that the number of nodes between 4 and 6 generated rel-
atively very low errors (MSE) and high regression (R2) for 
the case of analysis of permeate flow rate. However, the 
estimates did not show any trend for TDS analysis but 
were favorable for n = 7. Thus, the simulation indicates that 
5 and 7 number of hidden layer nodes are most suitable 
for predicting permeate flow rate and TDS from the ANN  
models.

4.1.2. PSO-ANN model optimization

PSO-ANN models, in general, depend upon the choice 
of swarm size, acceleration factors (c1 and c2), the weight of 
inertia (ω), and also the number of nodes (n) in the hidden 
layer. Fig. 6a and b illustrate the performance results of the 
permeate flow rate and TDS of the seawater RO desalina-
tion plant with variable swarm sizes 10–70. It is apparent 
that an optimal swarm size of 40 predicts the best results 
for both outputs, permeate flow rate, and TDS than oth-
ers captured in terms of R2 and MSE. Thus, the minimal 
swarm sizes will not recognize the problem correctly, while 
a larger swarm-sized model will tend to confuse and predict 
maximum errors.

Another critical parameter is ω, which performs an 
essential role in the optimization of PSO-ANN model-
ing. In the literature, a large variation in the values of 
ω has been observed for various applications [15,35,36]. 
Fig. 7a and b show the permeate flow rate and TDS per-
formance results with a variable ω using PSO-ANN mod-
els. A choice of ω = 0.25 displayed the best performance 
(R2 = 0.998, MSE = 0.007) for the output permeate flow 
rate, and (ω = 0.1 + rand × 0.4) exhibited the best perfor-
mance (R2 = 0.997, MSE = 1.783) for the output permeate 

 

Fig. 4. Structure of the ANFIS with four input nodes constructed 81 fuzzy rules, each for two output nodes: permeate flow rate 
and TDS.
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TDS. The simulation results indicate that the performance 
of PSO-ANN models shows little variation before the 
optimum points and more deviation after that for both 
outputs of the desalination plant.

Armaghani et al. [37] developed a PSO-ANN model to 
predict tunnel boring machine performance. The authors 
defined the effects of c1 and c2 used in the PSO-ANN 
models. Table 2 describes the permeate flow rate and 
TDS performance results with variation in c1 and c2 using 
PSO-ANN models.

A choice of c1 = 1.5 and c2 = 2.5 gave the best perfor-
mance for both the outputs permeate flow rate and per-
meate TDS, while a choice of c1 = 2.5 and c2 = 2.5 gave the 
poorest model fitting.

Fig. 8a and b show the variation in performance 
parameters (R2 and MSE) as a function of the number of 
nodes chosen for the hidden layer. The simulation results 
showed a relatively different trend than observed for 
ANN modeling. A choice of n = 10 demonstrated the best 
model performance for predicting both the permeate flow 
rate and TDS. The PSO-ANN parameters that yield opti-
mum modeling of SWRO desalination plants for both 
outputs are summarized in Table 3.

4.1.3. FIS model simulation

FIS model performance was validated by a comparison 
between simulation and experimental estimates. Initially, 
some input data were fed to the FIS model to verify the data-
sets. For example, we fed the input temperature of 15°C and 
50 kgf/cm2 pressure to get a 4.1 L/min to permeate flow rate 
output. In this, a minimum variation was observed between 
the predicted (4.1) and the experimental results (4.0). Next, 
we fed the input temperature of 25°C and 60 kgf/cm2 pres-
sure to get a 68.8 ppm to permeate TDS output. Here, 
we have also detected the lowest variation between the 
predicted (68.8) and the experimental results (70.9). Finally, 
the surface view of all simulation results of FIS models for 
the permeate flow rate and TDS, as shown in Figs. 9d and 
10d indicates that both outputs’ obtained errors are accept-
able and performing well. However, a little variation with 
the temperature 20°C and pressured 60 kgf/cm2 for the per-
meate flow rate was noticed and permeate TDS have shown 
more dissimilarity between experimental and predicted 
datasets.

4.1.4. ANFIS model simulation

Similar to FIS models, the ANFIS models have been 
simulated, and results compared with experimental 
(Figs. 9e and 10e). For example, an input temperature of 
15°C, and 50 kgf/cm2 pressure resulted in a 4.0 L/min per-
meate flow rate, which is in proximity to the experimen-
tal value. Likewise, an input temperature of 25°C, and 

Table 2
Comparison of the performance results in terms of the permeate 
flow rate and TDS for different acceleration factors (c1 and c2) 
using PSO-ANN models [swarm size = 40, ω = 0.25/0.1 + rand × 
0.4, n = 10]

Acceleration 
factors

Permeate flow rate Permeate TDS

c1 c2 R2 MSE R2 MSE

0.8 3.2 0.990 0.041 0.996 2.283
1 1 0.949 0.222 0.935 39.055
1.25 1.25 0.953 0.205 0.922 46.173
1.333 2.667 0.995 0.018 0.989 6.727
1.5 1.5 0.934 0.295 0.973 16.175
1.5 2.5 0.998 0.007 0.997 1.783
1.714 2.286 0.989 0.048 0.994 3.643
1.75 1.75 0.973 0.119 0.966 20.632
2 2 0.996 0.015 0.994 3.540
2.286 1.714 0.995 0.020 0.983 10.002
2.667 1.333 0.987 0.058 0.991 5.323
3.2 0.8 0.939 0.271 0.983 10.269
2.5 2.5 0.787 2.159 0.836 191.683
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Fig. 8. Illustration of the dependence of simulation errors (MSE) and regression quality (R2) on the number of nodes (n) in the hidden 
layer for the case of estimation of: (a) permeate flow rate and (b) TDS using PSO-ANN.



25R. Mahadeva et al. / Desalination and Water Treatment 229 (2021) 17–30

60 kgf/cm2 pressure resulted in 70.8 ppm TDS output, 
which is very close to the experimental value (70.9). It has 
been observed from simulations that the feed temperature 
between 10°C and 15°C shows marginally more deviations 
between the experimental and simulation estimates of 
the permeate flow rate while a minimal error was noticed 
for the rest of the inputs. Conclusively, the performance 
of ANFIS models was found to be acceptable across the 
entire range of operating temperatures and pressure.

4.2. Model performance

In this paper, we have proposed, optimized, and sim-
ulated four empirical models (ANN, PSO-ANN, FIS, and 
ANFIS) to predict the SWRO desalination plant’s mem-
brane performance. Apparently, every model has dis-
played good agreement between the outputs of experi-
mental and predicted datasets. Figs. 9a and 10a show the 
overall performance (3D surface view) of the permeate 
flow rate 2.8–8.8 L/min and TDS 45.0–121.6 ppm using 
experimental datasets. Feed temperature range from 5°C 
to 30°C, and feed pressure ranges from 45 to 65 kgf/cm2 
have been considered to analyze the membrane’s perfor-
mance. The ability of the membrane’s performance has 
been evaluated by a different combination of the varying 
temperatures and pressure. In this work, experimental 
result trends show that the permeate flow rate has been 
increased, and TDS has been decreased with an increased 
feed temperature and pressure. Figs. 9b and 10b illus-
trate the overall performance of the permeate flow rate 
(R2 = 0.969, MSE = 0.135) and TDS (R2 = 0.964, MSE = 21.547) 
using the ANN model, respectively. Here, the R2 of the 
permeate flow rate has been observed marginally higher 
with significantly smaller errors (MSE) than the per-
meate TDS. The optimum number of the hidden layer 
nodes has been found to be 10 for this model. Further, 
Figs. 9c and 10c show the performance of the PSO-ANN 
model for permeate flow rate (R2 = 0.998, MSE = 0.007) and 
TDS (R2 = 0.997, MSE = 1.783). PSO helps generate opti-
mum weights for ANN for the permeate flow rate and 
TDS of the membrane and evidently demonstrates the 
best results than all the other models. Moreover, Figs. 
9d and 10d illustrate the performance of the permeate 
flow rate (R2 = 0.952, MSE = 0.212) and TDS (R2 = 0.949, 
MSE = 30.573), respectively, using the FIS model. These 
optimum results depend upon the designed 25 rules 
and the membership functions each for permeate flow 
rate and TDS of the plant. Finally, Figs. 9e and 10e show 
the performance of the permeate flow rate (R2 = 0.926, 

MSE = 0.337) and TDS (R2 = 0.948, MSE = 39.337) using 
the ANFIS model. ANFIS model shows the most fitting 
errors than the other models employed in this work.

The results of the developed models have been sum-
marised and compared in Table 4 on the basis of two per-
formance metrics (R2 and MSE) with performance results of 
modeling attempted earlier in literature. It is apparent that 
the PSO-ANN model predicts experimented results more 
efficiently than the other models proposed in this work and 
literature with the highest R2 and minimum MSE.

The results show that the PSO-ANN model performed 
the best among all simulated models. Thus, using this model 
we have developed two mathematical nonlinear model 
equations (Eqs. (7) and (8)) to predict the SWRO desali-
nation plant performance using ANOVA analysis [39]. 
The optimal PSO-ANN model offers a more precise and 
accurate prediction of the membrane’s performance of the 
plant and diagnosis variations.

Permeate flow rate, Fpi:
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a T
pi fi fi fi fi fi fi fi

fi

� � � � � � � � � � � � �
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2
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fi fi fi
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2
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2

113 14
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1� � � � �F C a C Cfi fi fi

 (7)

Permeate TDS, Cpi:

F b T b P b F b C b T b T P

b T
pi fi fi fi fi fi

2
fi fi

fi
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 (8)

where Tfi, Pfi, Ffi, and Cfi are the feed temperature (°C), 
feed pressure (kgf/cm2), feed flow rate (L/min), and feed 
TDS (ppm), respectively. a1 to a14 and b1 to b14 are the coef-
ficients, C1 and C2 are the constants for model equations 
of the permeate flow rate and TDS. The estimates of 
these constants are presented in Table 5. ANOVA analy-
sis uses some important statistical parameters (multiple 
R, R2, adjusted-R2, and standard errors) to evaluate the 
goodness of fit and to verify the model equations, which 
are summarised in Table 6. While the fitting is evidently 
good, the multiple R, R2, and adjusted-R2 determined 
a relatively good fit for Cpi as compared to that for Fpi.

4.3. Model residuals/errors

It is important for the researchers to design a perfect 
model that offers minimum possible residuals or errors in 

Table 3
Summary of the optimum model parameters for the PSO-ANN model

Factors
Model parameters

Permeate flow rate Permeate TDS

Swarm size 40 40
Weight of inertia (ω) 0.25 0.1 + rand × 0.4
Acceleration factors (c1 and c2) 1.5, 2.5 1.5, 2.5
Number of hidden layer nodes (n) 10 10
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Fig. 9. Surface view comparison of permeate flow rate (L/min) for a SWRO desalination plant using (a) experimental, (b) ANN, 
(c) PSO-ANN, (d) FIS, and (e) ANFIS model.
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Fig. 10. Surface view comparison of permeate TDS (ppm) for a SWRO desalination plant using (a) experimental, (b) ANN, 
(c) PSO-ANN, (d) FIS, and (e) ANFIS model.
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predicting experimental results. This study presents four 
empirical models, such as ANN, PSO-ANN, FIS, and ANFIS, 
that have shown good agreements between experimental 

datasets and simulated values. However, the PSO-ANN 
model demonstrated the best performance with minimal 
residuals/errors for both outputs: permeate flow rate and 
TDS. A piece of such collected information for comparison 
among all models is presented in Fig. 11a and b. Results 
show that PSO-ANN is relatively more capable of gener-
ating accurate weights and bias as parameters for use in 
modeling to predict the best results. In general, simulation 
results indicate that all the remaining performed reason-
ably well with minimal residual errors in capturing the 
experimental permeate flow rate and TDS.

5. Conclusion

In this work, four empirical models based on neural 
network and fuzzy such as ANN, PSO-ANN, FIS, and 
ANFIS have been developed to predict the SWRO desali-
nation plant’s membrane performance. Developed models 
can be used in any type of desalination plant or related 
industry with a few parameter adjustments. All models 
consisted of four input parameters, such as feed tempera-
ture 5°C–30°C, feed pressure 45–65 kgf/cm2, feed flow rate 
~30 L/min and feed TDS ~32,000 ppm, and two output 
parameters as permeate flow rate 2.8–8.8 L/min and TDS 
45–121.6 ppm. The trained models produced a good agree-
ment between the experimentally reported and the pre-
dicted datasets. This work demonstrates that such models 
can predict accurate output with the minimal available 
experimental data and can be efficiently and profession-
ally applied to investigate the membrane’s performance at 
other operating environments and suggest suitable water 
production operations. Amongst all simulated models, 
the PSO-ANN model provides the best performance for 
the permeate flow rate and TDS (R2 = 0.998, 0.997) with 
a minimum (MSE = 0.007, 1.783), respectively, than other 
models. PSO-ANN model has also demonstrated minimum 
residuals of almost close to zero for every set of experimen-
tal data. The modeling results show that the devel-
oped PSO-ANN model with estimated parameters may 

Table 4
Comparative analysis of performances of the developed models’ (ANN, PSO-ANN, FIS, and ANFIS) and their performances with 
those from literature

Models Permeate flow rate Permeate TDS Rank

R2 MSE R2 MSE

Proposed work

ANN 0.969 0.135 0.964 21.547 2
PSO-ANN 0.998 0.007 0.997 1.783 1
FIS 0.952 0.212 0.949 30.573 3
ANFIS 0.926 0.399 0.948 39.337 4

Literature

Lee et al. [9] ANN 0.750 0.006 0.960 –

Mahadeva et al. [38]

NaCl rejection Na2SO4 rejection

LM-BP-ANN 0.801 6.430 0.787 1.976
From Memb-ISCG-BP-ANN 0.807 6.417 0.821 1.660

PSO-ANN 0.821 5.854 0.828 1.588

Remark: Salt (NaCl/Na2SO4) separation from water. Developed two poly(piperizinamide) thin-film composite membranes (Memb-I 
and Memb-II) in the Membrane Science and Separation Technology Division Laboratory, CSMCRI, Bhavnagar, Gujarat, India [38]

Table 5
Coefficients of the model equations of Fpi and Cpi

Parameters Fpi (L/min) Cpi (ppm)

Coefficients Coefficients

Constants C1 = –54,795.60015 C2 = –600,258.5469
Tfi a1 = 17.59314643 b1 = 362.2315155
Pfi a2 = 31.23359191 b2 = 385.55521
Ffi a3 = 2,748.930425 b3 = 36,160.5254
Cfi a4 = 0.792210965 b4 = 2.851534641
T2

fi a5 = –0.021044839 b5 = –0.072919484
Tfi × Pfi a6 = –0.007857212 b6 = –0.172762675
Tfi × Ffi a7 = –1.553452114 b7 = –15.45661611
Tfi × Cfi a8 = 0.000946387 b8 = 0.003552279
P2

fi a9 = –0.00232823 b9 = 0.022331176
Pfi × Ffi a10 = –0.771423466 b10 = –12.22888387
Pfi × Cfi a11 = –0.00023716 b11 = –0.000651901
F2

fi a12 = –43.30933099 b12 = –565.9530309
Ffi × Cfi a13 = –0.002709674 b13 = –0.042385476
C2

fi a14 = –1.11988E-05 b14 = –2.5069E-05

Table 6
Goodness of the model equations adjustment for Fpi and Cpi

Estimator (statistical) Condition for a good fit Fpi Cpi

Multiple R Close to 1 0.983 0.995
R2 Close to 1 0.968 0.991
Adjusted-R2 In agreement with R2 0.937 0.982
Standard error Observed 0.381 2.385
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serve as a perfect diagnostic tool for designing SWRO 
desalination plants to reduce time, energy, and cost.
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Fig. 11. Variation of model residuals: (a) predicted permeate flow rate and (b) predicted permeate TDS of the membrane using ANN, 
PSO-ANN, FIS, and ANFIS models.
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