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a b s t r a c t
This study describes the application of TiO2, Fe/TiO2 and Ni/TiO2 (2 and 5% wt) using the sol-gel 
method for the reactive dyes discoloration under artificial and solar light. Adsorption of nitrogen, 
scanning electron microscopy with energy-dispersive X-ray, temperature-programmed reduction, 
and X-ray diffraction characterization techniques were used in this work. Fe and Ni addition, as 
well as the different temperatures employed for calcination, have exercised influence over dyers 
photodiscoloration, which has come to 97% under artificial irradiation during a reaction time of 7 h 
and 75% with solar light during a reaction time of one hour. An artificial neural network (ANN) 
model known as radial basis function (RBF) has been proposed for the prediction of the photodis-
coloration for reactive dye solutions. This paper also examines the comparison between the pro-
posed model and two other different ANN models for the same task. The input parameters to the 
algorithm were dye reactive, light source, dopant metal, metallic charge, calcination temperature 
and reaction time, and the output was dye discoloration. The proposed RBF-ANN model efficiently 
predicted the discoloration. Its result in terms of root mean squared error was 92.0767%, which gave 
satisfactory results with the experimental data overcoming the other two models.
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1. Introduction

Prediction of the output water quality from an indus-
trial wastewater treatment plant is a very hard task since 
the input water quality changes continuously, and this vari-
ation depends on many factors. One important advantage 
of the artificial neural network (ANN) model over classical 
techniques is that it does not require the complex nature 
of the underlying process. Based on experimental data, an 
ANN model, called radial basis function (RBF) was devel-
oped in this experiment. The RBF-ANN is a computational 
intelligence model inspired by the human brain. This model 
can be used for prior estimation of dye discoloration using 
an experimental dataset. The model was first trained using a 
partition of experimental data, and then, in order to validate 
the model, it was compared with the remaining partition of 
the dataset, in a 10-fold cross-validation way. Computational 
intelligence models have been applied successfully in vari-
ous industrial wastewater treatment problems [1–4]. More 
recently, ANN regression models have been applied to these 
problems due to their pattern recognition capability cor-
relating input and output variables. Jiang et al. [5] devel-
oped an ANN model for adsorption and photocatalysis of 
reactive dye on TiO2 surface. They compared five different 
backpropagation functions using the correlation coefficient 
(R) as evaluation criterion, and obtained good results. Lenzi 
et al. [6] also applied an MLP model to photocatalytic degra-
dation of textile reactive dye. Their evaluation criterion was 
the determination coefficient (R2), and their results were 
good as well. On the other hand, Colpini et al. [7] proposed 
the application of a support vector regression (SVR) model 
to predict the capability of photodiscoloration of textile 
reactive dye, and also obtained good results in terms of root 
mean squared error (RMSE). In this paper, we propose the 
application of an RBF model in order to predict the textile 
reactive dye photodiscoloration, comparing the proposed 
model with MLP and SVR models under the same evalu-
ation criterion: the RMSE. Works such as those by Ritter 
and Muñoz-Carpena [8] and Moriasi et al. [9], adopted by 
us as a theoretical reference in our work, use the RMSE as 
a criterion for determining the best model. Thereby, the 
three different models have been trained using the exper-
imental data and tested to find the most suitable and reli-
able ANN model (although SVR is not exactly an ANN, 
it can be considered as such, because it is inspired by it 
(Vapnik) [10]. The ANN parameters (e.g., spreads, num-
ber of hidden layers, number of neurons in each hidden 
layer) for all models were found by trial and error method.

2. Materials and methods

2.1. Preparation of photocatalysts

The TiO2, Fe/TiO2, and Ni/TiO2 catalysts were pre-
pared by the sol-gel method using the molar ratio nwater: 
nalkoxide:nacid  =  2.4:1:0.08 according to [11,12]. Titanium (IV) 
isopropoxide (≥97%, Sigma-Aldrich), Iron (III) nitrate 
nonahydrate (≥98%, Vetec) and Nickel nitrate hexahydrate 
(97%, Vetec) were used as metallic precursors.

In TiO2 synthesis, two solutions were prepared under 
nitrogen atmosphere. Solution A was constituted by 15.00 mL 
of titanium (IV) isopropoxide and 22.80  mL of ethanol 

(≥95%, Cromate); Solution B was dissolved in 0.30  mL of 
nitric acid (≥70%, Vetec), 2.20 mL of doubly distilled water 
(resistivity ~13  MΩ  cm) and 22.50  mL of ethanol. The two 
solutions were homogenized separately and stirred vig-
orously for 5  min. Solution B was added to Solution A by 
an addition funnel. The gel was formed up to 15  s, aged 
overnight and washed three times a day for 4  d with an 
acetone:water mixture (1:1). For Fe and Ni-doped TiO2 syn-
thesis, the Fe and Ni precursors were incorporated in Solution 
A in nominal loadings to obtain 2 and 5%  wt, but these 
catalysts were not washed with an acetone:water mixture.

All the photocatalysts were dried in a rotating evap-
orator at 40°C–90°C for 1  h and later under a high vac-
uum (~10−3 atm) at 80°C for 8 h. Finally, the materials were 
calcined in a muffle at 250°C, 300°C and 400°C for 5 h.

2.2. Characterization of photocatalyst

The determination of the specific surface area (BET) of 
photocatalysts was performed through the physisorption of 
the N2 method, using a Quantachrome Corporation (Nova 
1200) equipment. Before the analysis, the samples were 
treated at 150°C for 2 h. The surface areas were based on a 
multipoint BET analysis.

An electronic scanning microscope (SEM), FEI Quanta 
440 with microsound (EDS), was used in the analysis of 
the morphology of materials.

The TPR analysis was carried out on a homemade 
apparatus at 30 mL min–1 flow of 1.75% H2 in Ar, a heating 
rate of 10°C min–1 to a final temperature of 1,000°C.

The X-ray diffraction patterns were measured through 
a Rigaku Geingerflex Diffractometer with Cu Kα radiation 
(λ  =  0,154  nm), accelerating voltage of 45  kV and applied 
current of 25 mA.

2.3. Photocatalytic tests

The catalysts were applied on photodiscoloration of 
Orange-122, Blue-19 and Yellow-145 reactive dyes solutions 
(10  mg  L–1). All of these were purchased from Chemical 
Texpal Ltda (Valinhos, Brazil). The experiments were 
carried out by addicting 50 mg of catalyst in 150 mL of dye 
solution disposed on a 300 mL glass cylindrical photochem-
ical reactor with magnetic stirring under both solar and 
artificial light (300  W tungsten UV lamp (Osram E27/ES, 
Ultra-Vitalux)). 

After reaction time (1  h to solar light and 0.5–7.0  h to 
artificial light), the solids were separated from solutions by 
centrifugation (30  min at 3,400  rpm) and vacuum filtration 
with cellulose ester membranes (0.45  µm porosity). The 
discolorations rates were measured by external standard-
ization on the highest absorption wavelength for each dye, 
and expressed as a percentage of discoloration. The aver-
age insolation of the solar irradiation (W/m2) measured by 
an UV irradiance meter at the range of 390–1,100 nm (model 
LI-200, from SIMEPAR/Brazil) were 543–768, 755–781 and 
656–755 to Yellow-145, Blue-19 and Orange-122, respectively.

2.4. ANN model development

Artificial neural network (ANN) is a machine learning 
technique inspired by the human brain. The idea of ANN 
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as computational machines was introduced by McCulloch 
and Pitts (1943). According to Haykin [13], an ANN is a 
massively parallel distributed processor that has a natural 
propensity for storing experiential knowledge and making 
it available for use. It resembles the brain in two respects: 
(1) knowledge is acquired by the network through a learn-
ing process; and (2) interneuron connection strengths known 
as synaptic weights are used to store knowledge. ANN has 
a wide application field in several areas, like time series 
forecasting [14], medical diagnosis [15], computer vision 
[16], recommender system [17], systems identification [18], 
among others. ANN has been also used successfully for 
water treatment model development [5–7].

In this experiment, we applied RBF-ANN in order to 
predict the photodiscoloration of dyes reactive using the 
dataset generated by the experiments of photocatalytic 
tests. In this context, a RBF is an ANN that can be seen as 
a functions universal approximator, the basic idea is to find 
a function that best approaches the training data, mini-
mizing prediction error. The RBF-ANN model, which had 
Powell [19] as pioneer researcher, is illustrated in Fig. 1, 
where x is the input layer composed by m dimensions, φi(x) 
is the hidden layer, w are the weights associated with the 
output layer, and b is the bias. 

A generalized RBF-ANN model is applied in the pres-
ent study. In this case, the learning problem can be simpli-
fied to determine the spreads of the radial basis functions 
(Gaussians) in the hidden layer. The larger the spread is, 
the smoother the function approximation. In other words, 
a larger spread means a lot of neurons are required to fit a 
fast-changing function, and a smaller spread means many 
neurons are required to fit a smooth function, and the net-
work might not generalize well. In the present study, we 
tested different spreads in order to find the best value, 
varying this parameter between 10–4 and 102 by trial-and-
error method, and the best results were for spreads close 
to 100. The output layer has a pure linear transfer func-
tion, and both, hidden and output layers, have biases. The 
linear weights associated with the output layer, and the 
positions of the centers of radial-basis functions and the 

norm weighting matrix associated with the hidden layer 
have to be learned. The generalized RBF-ANN involves 
searching for suboptimal solution in a lower-dimensional 
space that approximates the regularized solution in Eq. (1).
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where {ϕi(x) | i = 1,2,...,m1 ≤ N} is a new set of linearly inde-
pendent basis functions and the wi constitute a new set of 
weights.

Initially, the hidden layer had no neurons. The follow-
ing steps are repeated until the network’s mean squared 
error (MSE) falls below goal:

•	 The network is simulated;
•	 The input vector with the greatest error is found;
•	 A radial basis function neuron is added with weights 

equal to that vector; and
•	 The output layer weights are redesigned to minimize error.

After set up of the RBF-ANN, its results were com-
pared with SVR and MLP-NN (using similar parameters 
of the applications in the above cited water waste treat-
ment field papers) on the experimental data generated 
by the reactive dye photocatalysis process shown in this 
paper. MATLAB R2010a [20] was used to develop all mod-
els. More technical details of the ANN and RBF-ANN are 
described in [13,14]. 

The experimental dataset has 234 instances and 6 attri-
butes (input variables). The input and output variables 
and the possible values for each variable (or ranges of val-
ues in case of continuous numerical variables) are given in 
Table 1. Data were normalized in such a way that the mean 
value of each feature is 0 and the standard deviation is 1.

The error rate adopted in this work is the RMSE), a fre-
quently used measure of the difference between values pre-
dicted by a model and the values actually observed from 
the environment that is being modeled. These individual 
differences are also called residuals, and RMSE serves to 
aggregate them into a single measure of predictive power. 
The RMSE of a model prediction is an error rate with 
respect to the estimated variable ŷiŷi, and it is defined as 
the square root of the MSE, according to Eq. (2):

RMSE
ŷ y

n

i i
i

n 2

1 	 (2)

where yiyi is observed values and ŷiŷi is predicted values at 
the ith term.

In order to be more intuitive, we adopted as evaluation 
criteria 1 – RMSE, which is the difference between a perfect 
prediction and the prediction error. One of the most com-
mon ways of predicting the error rate of a learning technique 
given a single, fixed sample of data is to use stratified 10-fold 
cross-validation, where “10-fold” means 10 partitions of the 
data and “stratified” means that stratification is adopted 
in the cross-validation. The data are divided randomly 
into 10 parts in which the class is represented in approxi-
mately the same proportion as in the full dataset. Each part 

 
Fig. 1. RBF-ANN model.
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is held out in turn, and the learning scheme trained on the 
remaining 90%; then its error rate is calculated on the hold-
out set. Thus the learning procedure is executed a total of 
10 times on different training sets (each of which have a lot 
in common). Finally, the 10 error estimates are averaged to 
yield an overall error estimate [21]. This whole validation 
process was applied for 100 iterations for each algorithm 
(RBF, MLP and SVR) in order to obtain the statistical results.

3. Results and discussion

3.1. Characterization

3.1.1. N2 adsorption measurements

Fig. 2 presents the isotherms obtained by N2 physisorp-
tion for calcined samples at the highest temperature, 400°C. 

The structure observed was the same for the remaining 
temperatures.

The observed isotherms were classified as type IV 
according to IUPAC, which is typical of mesoporous mate-
rials (20–500 Å) [22–24]. This is confirmed in Table 2, which 
presents the specific area for all materials.

Table 2 presents the results obtained for the specific 
surface area; with the raise in calcination temperature, it is 
perceivable that the specific area obtained was decreasing. 
Wu et al. [25], working with Ni/TiO2 nanocomposites, ascribes 
the specific area decrease to TiO2 matrix condensation and 
to pore collapse, claiming that such a decrease was more 
accentuated for TiO2 without Ni, because the nanometric 
particles of the metal prevented pore collapse, offering sup-
port to TiO2 walls. It was also observed that the raise in Ni 
and Fe metallic charge has caused a higher specific area [26].
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Fig. 2. N2 adsoption/desorption for the following materials: (a) 2% Fe/TiO2 – 400°C, (b) 5% Fe/TiO2 – 400°C, (c) 2% Ni/TiO2 – 400°C 
and (d) 5% Ni/TiO2 – 400°C.

Table 1
Input and output variables and possible values

Variable Type Domain

Dye reactive Input Yellow–145, Orange-122, Blue-19
Light source Input Solar, Artificial
Dopant metal Input Fe, Ni, none
Metallic charge (%) Input 0–5
Calcination temperature (°C) Input 250–400
Reaction time (h) Input 0.5–7
Dye discoloration (%) Output 0–100



L.M.S. Colpini et al. / Desalination and Water Treatment 229 (2021) 362–371366

3.1.2. Scanning electron microscopy with 
energy-dispersive X-ray

Fig. 3 shows scanning electron micrographs obtained 
for Fe/TiO2 and Ni/TiO2, both calcined at 400°C.

It is observable in the SEM micrographs that the mate-
rials have extremely rough, porous, sponge-like surfaces, 
which texture has fundamentally influenced the high spe-
cific areas obtained. However, a part of the surface of the 
particles with spongy aspect is smooth and multifaceted, 
especially on the Ni/TiO2 samples.

It is observable in Fig. 4b that Fe is uniformly distributed 
in the material, just as observed in Fig. 4d with Ni.

3.1.3. H2 temperature-programmed reduction

Fig. 5 shows temperature-programmed reduction (TPR) 
patterns to the materials obtained.

It is observable for TiO2 a reduction peak approxi-
mating 578°C, probably related to phase change from 
anatase-amorphous to more crystalline forms [27]. For Ni/
TiO2, two reduction peaks are observable in approximately 
400°C and 576°C, related to Ni2+ to Ni0 reduction [28,29]. 
It is likewise observable that there are two reduction 
peaks for the Fe/TiO2 samples in approximately 380°C and 
520°C related to Fe3+ to Fe0 reduction [29,30]. The increase 
in massic proportion of Fe and Ni lead to an increase in 
H2 consumption, which is to be expected, since there is 
more metal to be reduced.

 

 

  (a)           (c)               (e)                                (g)  

  (b)           (d)              (f)                                (h)  
Fig. 3. Scanning electron micrographs for the following materials: (a) 2% Fe/TiO2, amplification: 200x, (b) 2% Fe/TiO2, amplification: 
2,000x, (c) 5% Fe/TiO2, amplification: 200x, (d) 5% Fe/TiO2, amplification: 2,000x, (e) 2% Ni/TiO2, amplification: 200x, (f) 2% Ni/TiO2, 
amplification: 2,000x, (g) 5% Ni/TiO2, amplification: 200x and (h) 5% Ni/TiO2, amplification: 1,000x.

Table 2
So values of the synthesized catalysts

Catalyst

So (m²/g)Fe and Ni (%wt) Temperature calcination

2% Fe/TiO2

non-calcined 215.42
250°C 214.17
300°C 135.15
400°C 63.06

5% Fe/TiO2

non-calcined 225.14
250°C 257.96
300°C 174.47
400°C 67.83

2% Ni/TiO2

non-calcined 295.42
250°C 262.98
300°C 227.76
400°C 66.21

5% Ni/TiO2

non-calcined 312.63
250°C 300.95
300°C 297.48
400°C 84.41

TiO2

non-calcined 329.40
250°C 183.58
300°C 145.25
400°C 81.60
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3.1.4. X-ray diffraction

As observed in Fig. 6a and b, non-calcined materials 
do not present crystallization peaks, regardless of massic 
proportion and of the metal used, being classified as amor-
phous. All materials, except non-calcined Fe/TiO2 and Ni/
TiO2, and including TiO2 materials presented in Fig. 7, 

present peaks related to the presence of a crystalline TiO2 
phase in anatase form, and do not show peaks related to 
other TiO2 crystalline phases, such as rutile and brookite. 
This fact is probably related to low calcination temperature 
and to a rise in TiO2 stability when in anatase form, provided 
by Ni incorporation [26,31,32]. On the other hand, the rel-
evant literature shows that Fe incorporation would lower 
the transformation temperature from anatase to rutile, that 
was not observed [33,34].

For both Fe and Ni, corresponding crystalline phases 
where observed, due to their high dispersion. On the other 
hand, Fe3+ ions have a ratio approximate to the ratio of Ti4+ 
(0.64 and 0.68 Å, respectively), infiltrating into the TiO2 struc-
ture by cation substitution [33–36]. Besides, Fe3+ ions may 
lodge in the interstices of the TiO2 network, and in defects 
caused by the difference in the introduced Fe3+ ratio [33,37]. 
Likewise, studies show that Ni2+ ions may also infiltrate 
into the TiO2 structure, and thus become non-detectable 
by diphratograms [26,31].

3.2. Photocatalytic essays

Table 3 shows discoloration results for the following 
dyes solutions: Yellow-145, Blue-19 and Orange-122, when 
assisted by solar time for the reaction time of one hour.

It is observable that, in most cases, the 400°C calcina-
tion temperature has become more efficient in discoloration, 
with the exception of TiO2. As for the catalysts calcined at 
400°C, it is evident that the increase in Fe and Ni massic 
proportion from 2% to 5% entailed an increase in discolor-
ation, with the exception of Fe/TiO2 when applied to dye 
Orange-122. However, synthetized materials Fe/TiO2 and 
Ni/TiO2 did not present discoloration rates more efficient  
than TiO2.

Fig. 8 and Table 4 present discoloration obtained when 
reactions were assisted by artificial light.

As observed in the essays under solar light, catalysts 
Fe/TiO2 and Ni/TiO2, calcined at 400°C, show more effi-
ciency; the same is observable under artificial light, reach-
ing approximately 97% discoloration and using 5% Ni/
TiO2 for Yellow-145 and 2% Ni/TiO2 for Orange-122. On the 
other hand, the same was not observed when TiO2 was used 
(Table 4), with calcination at 250°C being most favorable 
for Blue-19 and Orange-122 and 300°C for Yellow-145.

Even with smaller reaction times, better discoloration 
rates were observed when TiO2 was used, reaching 100% 

 
  (a)           (b)              (c)                                (d)  

Fig. 4. Mapping in (b) of 5% Fe/TiO2 exposed to (a) (amplification: 2,000x) and mapping in (d) of 5% Ni/TiO2 exposed to (c) (amplifi-
cation: 2,000x).
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Fig. 5. TPR patterns for the following materials: (a) 2% Fe/TiO2, 
5% Fe/TiO2 and TiO2 and (b) 2% Ni/TiO2, 5% Ni/TiO2 and TiO2, 
all calcined at 400°C.
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discoloration in 2  h, when calcined at 250°C with dye 
Orange-122.

Contrary to what occurred in the solar light essays, the 
2% mass percentage of metal incorporation was observed 

to be more efficient in Orange-122, this was not observed 
for Yellow-145 and Blue-19; it showed efficiency with these 
sometimes at 2%, sometimes at 5%. This is possibly due 
to the difference in the structure of the dyes. However, 
calcination temperature exerts great influence in dyes  
discoloration.

3.3. Artificial neural network model

The best RMSE of RBF on the dataset was 92.0767%, this 
is a very good result with the experimental data, against 
66.9838% of MLP and 88.5187% of SVR. Table 5 shows the 
results (comparison) for the photocatalytic discoloration 
models. Actually, RBF defeats MLP and SVR in all statis-
tics of RMSE (best, worst, average and standard deviation), 
especially against MLP. Another advantage of RBF is its com-
putational performance (in minutes and seconds). It had a 
better performance than both other models in terms of com-
putational processing cost, overcoming significantly even 
(and notably) the SVR, the model that presented the closest 
performance of the RBF in terms of RMSE statistics.

Figs. 9, 10 and 11 illustrate these results for RBF, MLP 
and SVR models, respectively, for an example test fold of 
one full cross-validation iteration for each model. Each 
graph represents one of the ten test folds, where the x-axis 
shows the numbers of each test instance for the fold and the 

20 30 40 50 60 70 80 90

 

 

In
te

ns
ity

2� (degree)

 2% Fe/TiO2 - not calcinated
 5% Fe/TiO2 - not calcinated

20 30 40 50 60 70 80 90

 

In
te

ns
ity

2� (degree)

 2% Ni/TiO2 - not calcinated
 5% Ni/TiO2 - not calcinated

20 30 40 50 60 70 80 90

 
 

In
te

ns
ity

2� (degree)

 2% Fe/TiO2 - 400 °C
 5% Fe/TiO2 - 400 °C

20 30 40 50 60 70 80 90

 

In
te

ns
ity

2��(degree)

 2% Ni/TiO2 - 400 °C
 5% Ni/TiO2 - 400 °C

(a) (b)

(c) (d)

Fig. 6. Diphratograms obtained for the following materials: (a) Fe/TiO2 and (b) Ni/TiO2, both non-calcined, (c) Fe/TiO2 and (d) Ni/TiO2, 
calcined at 400°C.
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Fig. 7. Diphratograms obtained for TiO2, non-calcined and 
calcined at 400°C.
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y-axis presents the dye discoloration in %. The blue points 
are the observed discoloration, the red points are the pre-
dicted discoloration by the respective model and the black 
line is the mean of observed discoloration. The proximity 
between predicted and observed points explains the good 
results for RMSE.

Table 3
Dyes solutions discoloration under solar light (reaction time: 1 h)

Catalyst Discoloration (%)

Yellow-145 Blue-19 Orange-122

2% Fe/TiO2 - 250°C 13.10 1.66 2.02
2% Fe/TiO2 - 300°C 4.40 12.54 9.33
2% Fe/TiO2 - 400°C 27.60 15.88 56.97
5% Fe/TiO2 - 250°C 0.00 1.66 3.55
5% Fe/TiO2 - 300°C 3.55 4.18 2.45
5% Fe/TiO2 - 400°C 46.30 25.92 54.03
2% Ni/TiO2 - 250°C 10.49 4.92 10.72
2% Ni/TiO2 - 300°C 0.00 0.00 1.47
2% Ni/TiO2 - 400°C 19.19 16.72 33.40
5% Ni/TiO2 - 250°C 6.14 6.55 3.55
5% Ni/TiO2 - 300°C 0.92 1.67 0.00
5% Ni/TiO2 - 400°C 33.83 44.31 75.15
TiO2 - 250°C 78.34 65.26 70.65
TiO2 - 300°C 86.17 65.22 100.00
TiO2 - 400°C 85.30 51.84 100.00
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Fig. 8. Discoloration as a function of time for the following materials: Fe/TiO2 for dye Yellow-145 in (a), Blue-19 in (c) and Orange-122 
in (e), Ni/TiO2 for dye Yellow-145 in (b), Blue-19 in (d) and Orange-122 in (f).

Table 4
Dyes solutions discoloration (%) with TiO2 (reaction time: 2 h)

Dye Catalyst Discoloration (%)

Yellow-145
TiO2 - 250°C 78.83
TiO2 - 300°C 96.26
TiO2 - 400°C 94.6

Blue-19
TiO2 - 250°C 90.09
TiO2 - 300°C 52.42
TiO2 - 400°C 47.51

Orange-122
TiO2 - 250°C 100.00
TiO2 - 300°C 96.24
TiO2 - 400°C 91.69
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4. Conclusions

Given the results obtained in the photocatalytic essays 
conducted, it was observed that the addition of Fe and Ni 
to titania, as well as the calcination the temperatures used, 
exert influence on photodiscoloration of dyes solutions 
Yellow-145, Blue-19 and Orange-122. Generally, calcination 

temperature at 400°C has shown more efficiency when 
materials Fe/TiO2 and Ni/TiO2 were used.

The rigorous comparative study of ANN models for 
photocatalysis shows that the finding of a reliable net-
work model is a vital job. The proposed generalized RBF-
ANN model performs a proper previous checking before 
applying to any real photocatalytic degradation process. 
The effectiveness of this model to deal with the machine 
learning task in a simple and fast way makes it an extremely 
useful tool for prediction of the reactive dye discoloration. 
Its simplicity is related to its capacity to deal with the 
variation in the experimental dataset without any other 
information about the complex nature of the discoloration 
process, and just tuning of a single ANN parameter: the 
spread of radial basis functions. In a future work, we intend 
to apply an optimization algorithm for tuning the spread 
parameter to solve the same problem.
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