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a b s t r a c t
In this work, Algerian natural bentonite was used in the preparation of a new adsorbent by impreg-
nation with polyethylene glycol (PEG) for the removal of toluene from an aqueous solution. 
These interactions have been monitored by thermal method (thermogravimetric analysis) as well as 
by Fourier-transform infrared spectroscopy. The adsorption efficiency of natural and PEG-bentonite 
was examined for toluene removal by batch adsorption experiments under different operating 
conditions. Therefore, a multilayer perceptron (MLP) neural network was then used to predict the 
adsorption capacity of toluene. Different training algorithms were compared to determine the most 
suitable training algorithm. A single hidden with six neurons using a tangent sigmoid function trans-
fer with the Levenberg–Marquardt backpropagation algorithm has been found the best predictive 
performance. The high value of coefficient determination (0.999) and low value of root mean square 
error (0.00074) proved that the MLP model can predict the adsorption capacity of toluene with rea-
sonable accuracy. Furthermore, the sensitivity analysis based on the MLP model indicated that the 
contact time and the initial concentration of adsorbate with the same relative importance a round of 
39% appeared to be the most influential parameter in the adsorption capacity of toluene, followed 
by adsorbent dose (20.99%).
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1. Introduction

Hazardous aromatic hydrocarbons such as toluene are 
the major water-soluble constituents of gasoline that con-
taminate water and soil [1]. Toluene is a colorless, mobile 
liquid with an aromatic odor. It is practically insoluble in 
water (0.535 g L–1 at 25°C), miscible with many organic 

solvents (acetone, diethyl ether, chloroform, ethanol,...), 
soluble in glacial acetic acid. It is an excellent solvent for a 
large number of natural or synthetic substances (oil, greases 
and resins) [2–4].

The removal of the presence of toluene in drinking 
and other processed water is of significant importance and 
interest. Among processes employed in water treatment, 
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adsorption is an important method with high removal effi-
ciency and no harmful by-products. Numerous studies on 
toluene adsorption were published in the literature and 
various aspects of the adsorption mechanism were stud-
ied [5–7]. Recently, researchers have focused on using new 
efficient and recyclable adsorbents such as clays [8–11]. 
In recent years, organo-bentonite, an alternative adsorbent, 
has become the subject of study by many researchers [12–16].

Minerals can interact with substrates through a variety 
of mechanisms including intercalation. The guest molecule 
substrates enter between the mineral layers to expand the 
spacing between the mineral networks. Once these bond-
ing networks have been expanded, the guest molecule is 
substituted further by polymeric materials.

Polyethylene glycol (PEG) is a widely available poly-
mer with unique properties such as thermal stability, com-
mercial availability, non-volatility, immiscibility with water 
and several organic solvents, and recyclability [17]. PEG 
is polar, miscible in water and compatible with aqueous 
clay mineral suspensions, and interacts at the molecular 
level. The intercalation of PEG in clay minerals involves 
an ion exchange reaction resulting in the occupation of an 
interlayer space of the clay structure [18].

The mechanism of the adsorption process is complex 
due to the interaction of many variables, and thus, the 
resulting relationships are highly nonlinear [19]. Therefore, 
conventional mathematical modeling cannot be used to 
fully model and simulate the adsorption data. To over-
come this problem arising in the adsorption process, we 
explore the applicability of artificial neural networks 
(ANN), which are capable of approximating any contin-
uous nonlinear functions to arbitrary accuracy, to predict 
the adsorption capacity of toluene from aqueous solution. 
One of the characteristics of modeling based on ANNs is 
that it does not require a mathematical description of the 
phenomena involved in the process [20]. Recently, ANNs 
have been widely applied in many engineering disciplines 
including the adsorption process [21–25].

The ANN is a computer-based technology that 
simulates a biological neuronal system with similar char-
acteristics in terms of structural architecture and functional 
proprieties. The ANN model consists of many neurons that 
are interconnected and arranged in layers. The optimum 
ANNs structure is developed by training the model using 
experimental data from which it learns correlation patterns 
between the inputs and outputs data sets [26]. The per-
formance of ANNs models is evaluated and compared in 
terms of nonlinear error functions which are statistically 
significant and measure the error distribution [27].

Given the above, this study aims to test the ability of 
modified and natural Algerian bentonite clays to adsorb 
toluene from water. The Algerian bentonite was modified 
with polyethylene glycol (PEG) for removing toluene as 
a toxic organic pollutant from aqueous solutions by the 
adsorption process. The effects of some parameters on the 
adsorption process, such as initial toluene concentration, 
adsorbent dose, and contact time, were examined. In addi-
tion, the capability of the ANN model was investigated to 
predict the adsorption capacity of toluene on modified 
bentonite. The artificial neural network model was also 
developed to study the adsorption process and the accuracy 

of the model was tested using correlation coefficient (R2) 
and root mean squared error (RMSE).

2. Materials and methods

2.1. Preparation of adsorbate

Toluene, also known as methylbenzene or phenylmeth-
ane is an aromatic hydrocarbon having a molecular struc-
ture as C7H8 (with a molecular weight of 92.14 g mol–1) 
was used in this work. The stock toluene solution was pre-
pared by dissolving accurately weighed toluene of ana-
lytical grade in the deionized water to the concentration of 
5 mmol L–1 and subsequently, the experimental solutions of 
various initial concentrations (C0) were prepared by diluting 
the stock solution to the desired concentrations.

2.2. Preparation of PEG-bentonite

In this study, the used Algerian natural bentonite was 
from Hammam Boughrara (West of Algeria). The chemical 
properties of bentonite were well studied and published 
in the literature [1,28–30]. The chemical composition was 
as follows: SiO2 – 69.4%, Al2O3 – 14.7%, Fe2O3 – 1.2%, MgO 
– 1.1%, CaO – 0.3%, Na2O – 0.5%, K2O – 0.8%, TiO2 – 0.2%, 
As – 0.05%, and loss of ignition was 11% [31]. The polymer 
used is polyethylene glycol (PEG-3000). The bentonite was 
intercalated with PEG-3000 according to the same experi-
mental procedure described for the intercalation of kaolinite 
with PEG [32]: 20 g of bentonite was stirred with 200 g of 
melted polyethylene glycol, a highly hydrophilic polymer. 
The temperature was held at 150°C for a total of 216 h (9 d).

2.3. Characterization of the adsorbent

The characteristics of the PEG-bentonite clay were 
analyzed using thermogravimetric analysis (TGA) and 
Fourier-transform infrared spectroscopy (FTIR). The thermal 
decomposition of PEG-bentonite was studied using thermal 
balance 2050 TGA V5.4 A from TA Instruments. The chem-
ical modification of PEG-bentonite was confirmed by the 
FTIR spectra obtained by a spectrophotometer (Spectrum 
One FTIR spectrometer of PerkinElmer, USA) in the 
wavenumber range of 4,000–650 cm–1.

2.4. Batch adsorption experiments

In the present study, the rates of adsorption of toluene 
were determined with bentonite and PEG-bentonite. 80 mg 
of the natural bentonite or PEG-bentonite at 25°C was 
added to 100 mL of the aqueous solution of toluene.

Solutions were stirred at 250 rpm during selected laps 
of time. Then, the solution was centrifuged to removing 
the clay dispersion and the residual toluene concentrations 
analyzed using the UV-Vis spectrometry at 206 nm wave-
length. The solution concentration allowed to calculating 
the quantity qt (mmol g–1) of the toluene adsorbed by 1 g of 
bentonite or PEG-bentonite. All experiments were carried 
out in duplicate at neutral initial pH of solution (pH = 7) 
and the average value of the concentration was used for 
further calculation.
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The solution concentration allowed us to calculate the 
quantities qt (mmol g–1), qe (mmol g–1) and, R (%) [33–35].

q C C V
mt t� �� ��0  (1)

q C C V
me e� �� ��0  (2)
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C C
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e%� � � �� �
�0

0

100  (3)

where qt and qe are the adsorption capacities of the toluene 
at the selected time t and at the equilibrium, respectively. 
R (%) is the percentage removal of toluene. C0 and Ct 
(mmol L–1) are the initial concentration and the concen-
tration at the selected time t, respectively, of the toluene in 
the solution. V (L) is the volume of the toluene solution and 
m (g) is the mass of the used bentonite or PEG-bentonite.

2.5. Artificial neural network

ANN is a mathematical model similar to the structure 
of brain synaptic connections for information process-
ing. It has become the focus of much attention, largely 
because of its wide applicability and ease with which can 
treat complicated problems [36]. In this research, an ANN 
model, feed-forward neural network namely multilayer 
perceptron (MLP) was used to predict the adsorption 
capacity of toluene on modified bentonite. Fig. 1 shows the 
arrangement of feed-forward multilayer perceptron net-
work in the prediction of adsorption capacity of toluene 
on modified bentonite.

The simple architecture of MLP consists of an input 
layer, one or more hidden layer(s), and output layers. 
These hidden layers are composed of several neurons. 
The neurons of input and output layers are the same as 
the number of input and output parameters of the model. 
Universal approximation theory suggests that a network 
with one hidden layer with a sufficiently large number of 
neurons can be interpreted any input-output structure [15].

In this set of networks, information moves forward in 
merely one direction from the input layer toward the hid-
den layer and finally to the output. Running a neural net-
work is normally carried out in two stages, namely learning 
or training and testing.

Among the various kinds of ANN approaches that exit, 
the backpropagation (BP) learning algorithm, which has 
become the most popular in engineering applications. This 
algorithm uses the supervised training technique where the 
network weights and biases are initialized randomly at the 
beginning of the training phase. The structure of the MLP 
model consists of three neurons in the input layer corre-
sponding to the three operating variables (time, adsorbent 
dose, and the initial concentration of adsorbate), the output 
layer has one neuron corresponding to adsorption capacity 
(qe). The number of hidden neurons is determined during 
the training process. Different training backpropagation 
algorithms were evaluated and trained, using the exper-
imental data, to choose the best topology of the multilayer 
feedforward network and comment on their performance.

The dataset was classified into training and test sets 
which contained 80% and 20% of data experimental respec-
tively. The complete data has been normalized in the 
range of (–1, 1) using Eq. (4):
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where xnorm is the normalized value of xi, with xmin and 
xmin being the minimum and maximum values of a certain 
variable, respectively.

The statistical indicators RMSE and R2 are given by:
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Fig. 1. Arrangement of the multilayer perceptron (MLP) artificial neural network.
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where yi0 is the target output value, yi is the neural network 
output and n is the total number of data patterns used.

3. Results and discussion

3.1. Characterization of the adsorbent

3.1.1. Thermogravimetric analyses

The results of the Thermal decomposition are illus-
trated in Fig. 2. The TGA records of the bentonite are 
shown in Fig. 2a, the mass loss of 8.689% corresponding 
to the dehydration of these clays was observed at 80.66°C. 
The TGA thermal curve that corresponds to PEG-bentonite 
(Fig. 2b), comprises two stages of the mass loss process. 
The first weight loss is about 0.708% caused by the release 

of the adsorbed water at 72.07°C. The second one corre-
sponding to the PEG decomposition at 370.58°C with mass 
losses of 27.04%.

3.1.2. FTIR analysis

The FTIR spectra of natural bentonite and PEG-bentonite 
were taken in the range of 4,000–650 cm−1. FTIR spectros-
copy is very sensitive to modification of the clay structure 
upon PEG treatment as illustrated in Fig. 3.

Fig. 3a displays a typical spectrum of bentonite with 
the intense band at 982.79 cm–1 from stretching vibration 
of SiO, the other bands corresponding to the water sorbed 
by the bentonite: the υ2 H–O–H bending vibration spectral 
range at 1,630–1,740 cm–1; υ1 H-bonding to Si–O–Al is located 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. TGA/DTG analysis of bentonite (a) and PEG-bentonite (b).
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at 3,390–3,620 cm–1 and the hydrogen bond to Si–O–Si linkage 
is located at 3,613 cm–1.

The interaction between PEG polymeric chain and ben-
tonite layer would cause changes in the corresponding 
region between 3,600 and 3,000 cm–1 (Fig. 3b). Additionally, 
the PEG add peak in the CH stretch region near 2,880 cm–1, 
with the PEG peak being extremely broad. Other CH2 
wagging and C–C stretching bands are seen in the 1,240–
1,360 cm–1 range for PEG-bentonite. This was possibly due to 
PEG-bentonite interaction [37].

3.2. Adsorption kinetics studies

Kinetic experiments were carried out in Erlenmeyer 
flasks including a 100 mL aqueous solution of toluene with 

a quantity of bentonite or PEG-bentonite at ambient tem-
perature. Solutions were stirred at 250 rpm during selected 
laps time. After that, the solution was centrifuged to remove 
the clay dispersion and analyzed by UV spectrometry.

Fig. 4 presents the kinetics adsorption obtained at 
room temperature with a toluene initial concentration of 
0.25 mmol L–1. The mass of bentonite or PEG-bentonite was 
80 mg within all experiments.

Fig. 4 shows the variation of the adsorbed toluene 
amount as a function of time on bentonite and PEG-
bentonite. It can be seen from Fig. 4 that the adsorption 
capacity for both bentonite and PEG-bentonite gradually 
increases with time until equilibrium was reached. The 
results indicate that the contact time to reach the adsorption 
equilibrium is approximately 180 min for both adsorbents. 

PEG-bentonite (b)

Bentonite (a)

PEG-bentonite (b)

Fig. 3. Infrared spectra of bentonite (a) and PEG-bentonite (b).
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The experimental adsorption capacity at the equilibrium 
of toluene onto PEG-bentonite (0.2165 mmol g–1) is almost 
higher than the adsorption of bentonite (0.1786 mmol g–1).

Kinetic studies are important to estimate the adsorp-
tion efficiency of toluene and the mechanism of the sorption 
process onto PEG-bentonite and bentonite. Constants from 
kinetic models, pseudo-first-order (PFO), pseudo- second-
order (PSO), and intraparticle diffusion model were fit for 
experimental data to examine the adsorption of toluene by 
bentonite and PEG-bentonite. The first one was the linear 
form of the pseudo-first-order model of Lagergren [38,39], 
generally expressed as follows:

log log
.

q q q
K

te t e−( ) = ( ) −






1

2 303
 (7)

where qe and qt are the amounts of toluene adsorbed at equi-
librium and after time t respectively. The rate constant of 
adsorption was noted as K1 (min–1). If the plot of log(qe – qt) 
vs. time is linear, then the value of K1 may be directly 
obtained from the slope.

The PSO model [40,41] can be written as follows:

dq
dt

K q qt
e t� �� �2
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where K2 is the equilibrium rate constant of the PSO model 
(g mmol–1 min–1). Separating the variables in Eq. (8) and 
integrating for the boundary conditions qt = 0 to qt = qt and 

t = 0 to t = t yields an expression that may be rearranged 
into the following linear form:
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The slope and the intercept allow establishing qe and K2 
respectively.

The PFO and PSO models were used to fit, by linear 
regression, the experimental data of toluene adsorption 
onto bentonite and PEG-bentonite (figures not shown). 
The PFO and PSO rate constants K1 and K2 and the values 
of the predicted qe (qe,cal.) were calculated, and are given 
in Table 1.

The values of the coefficient of determination R2 and 
the standard deviation (SD) Δqe (%) for both models are 
also calculated and grouped in Table 1. The standard devi-
ation (SD) Δqe (%) is calculated between the experimental 
qe (qe,exp.) and the predicted qe (qe,cal.). The validity of PFO 
or PSO models can be determined by the calculation of 
the standard deviation (SD) Dq (%) and the coefficient 
of determination R2 [42]. As can be seen from Table 1, in 
the case of bentonite the R2 value for the PFO model was 
equal to the R2 of the PSO model (0.99). On the contrary, 
in the case of PEG-bentonite, the R2 of the PSO model was 
(0.98) higher than that for the PFO model (0.93). On the 
other hand, and for both bentonite and PEG-bentonite, 
the predicted qe (qe,cal.) obtained by the PFO model are 
closer to the experimental data than the predicted qe 
values obtained by the PSO model. This observation is 
confirmed by the values of the standard deviation (SD) 
Δqe (%) in Table 1. Based on the above noted, the PFO 
kinetic model is more accurate to describe the adsorption 
process of toluene onto both bentonite and PEG-bentonite.

To have a deeper insight into the mechanism of adsorp-
tion, the kinetic data was treated with an intraparticle dif-
fusion model (IPD) proposed by Weber and Morris [43,44]. 
The IPD model is based on the expression obtained by 
solving second Fick’s equation for an adsorbent particle 
suspended in solution:

q K t Ct i� � �di
1 2/  (10)

where Kdi is the intraparticle diffusion rate constant 
(mmol g–1 min–1/2) and Ci (mmol g–1) is a constant that 
indicates the thickness of the boundary layer, that is, the 
higher the value of Ci, the greater the boundary layer effect.

If the plot of qt vs. t1/2 gives a straight line, this means 
that the adsorption of toluene is only controlled by the 

Table 1
PFO and PSO kinetics models parameters for toluene adsorption

Adsorbent qe,exp.

PFO model PSO model

K1 qe,cal. Δqe (%) R2 K2 qe,cal. Δqe (%) R2

Bentonite 0.179 0.016 ± 0.001 0.151 ± 0.003 15.64 0.99 0.094 ± 0.008 0.220 ± 0.009 22.90 0.99
PEG-bentonite 0.216 0.021 ± 0.002 0.224 ± 0.023 3.70 0.93 0.089 ± 0.013 0.264 ± 0.016 22.22 0.98
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Fig. 4. Kinetics of adsorption the toluene on bentonite and 
PEG-bentonite.
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intraparticle diffusion mechanism. However, if the plot 
exhibit multi-lines, this means that two or more mechanism 
influence the toluene adsorption process [15–45].

Fig. 5 plots the number of moles of toluene adsorbed 
per unit mass of both bentonite (a) and PEG-bentonite (b) 
vs. t0.5. Two straight lines were expected, which shows that 
intraparticle diffusion is not the only mechanism limiting 
the adsorption kinetics of toluene.

The intraparticle diffusion constants can be calculated 
using Eq. (10). Table 2 shows the intraparticle diffusion 
constants (Kdi and Ci) for the two stages of the adsorption 
and the correlation coefficient (R2). From Table 2, it can be 
seen that the order of the adsorption rate of toluene onto 
bentonite was higher in the first stage (Kd1) than in the sec-
ond stage (Kd2). On the contrary, the order of the adsorption 

rate of toluene onto PEG-bentonite was higher in the sec-
ond stage (Kd2) than in the first stage (Kd1) for which there 
was a significant change in the slope. Thus, the changes 
in Kd1 and Kd2 confirm that the adsorption mechanism of 
toluene on PEG-bentonite is different from that of the 
adsorption on natural bentonite.

3.3. Effect of adsorbent dose

The effect of adsorbent dose on the removal efficiency 
of toluene by bentonite or PEG-bentonite was investigated 
at toluene initial concentration of 0.25 mmol L–1, and contact 
time of 180 min. The results are shown in Fig. 6.

According to the results in Fig. 6, by increasing adsor-
bent dose from 20 to 150 mg/100 mL, the toluene removal 

Table 2
Intraparticle diffusion model constants for toluene adsorption

Adsorbent First stage Second stage

Kd1 (mmol g–1 min–1) C1 R1
2 Kd2 (mmol g–1 min–1) C2 R2

2

Bentonite 0.016 ± 0.002 –0.003 ± 0.014 0.958 0.009 ± 3.27E-4 0.054 ± 0.003 0.996
PEG-bentonite 0.007 ± 5.9E-4 0.067 ± 0.003 0.994 0.014 ± 0.001 0.032 ± 0.013 0.966

Fig. 5. Intraparticle diffusion model for toluene adsorption onto bentonite (a) and PEG-bentonite (b).

Fig. 6. Effect of the adsorbent dose of bentonite (a) and PEG-bentonite (b).
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efficiency increased from 18.64% to 57.16% for benton-
ite and 34.44% to 69.28% for PEG-bentonite, whereas the 
adsorption capacity decreases from 0.233 to 0.071 mmol g–1 
for bentonite and from 0.430 to 0.086 mmol g–1 for PEG-
bentonite. Above 80 mg/100 mL of adsorbent dose, there 
was no significant increase in the removal rate of tolu-
ene R%, but the adsorption capacity qe decreased rapidly. 
Considering qe and R%, an adsorbent dose of 80 mg/100 mL 
was found to be the optimum bentonite and PEG-bentonite 
dose and was used for all other experiments. In fact, the 
percentage removal of toluene increases by increasing the 
adsorbent dosage, due to the increasing number of avail-
able surface-active sites of adsorbent. However, after a 
certain dosage, the percentage removal of toluene remains 
constant. This result is usually due to the presence of a 
large number of available surface-active sites compared to 
the constant adsorbate concentration [41].

3.4. Adsorption isotherms

An adsorption isotherm describes the mechanism of 
retention of the toluene to bentonite or PEG-bentonite at a 
constant temperature and pH. Adsorption equilibrium is 
established when the ratio between the adsorbed amount 
with the remaining in the solution becomes constant. The 
graphical representation of adsorption isotherms pro-
vides an insight into the adsorption mechanism, as well 
as the affinity of the adsorbate/adsorbent couple. Usually, 
the mathematical correlation of adsorption isotherm 
parameters yields an important tool for the analysis of the 
adsorption mechanism. Equilibrium isotherms for toluene 
adsorption onto bentonite or PEG-bentonite were obtained 
experimentally at neutral solution initial pH (pH = 7) for 
different initial concentrations of toluene ranging from 
0.1 to 1 mmol L–1.

3.4.1. Langmuir isotherm model

The Langmuir model was tested to describe the adsorp-
tion equilibrium of toluene onto bentonite or PEG-bentonite. 
The Langmuir equation can be written as follows [46]:

q q
K C
K Ce m
L e

L e

�
�1

 (11)

where qm (mmol g–1) is the theoretical maximum monolayer 
adsorption capacity and KL (L mmol–1) is the Langmuir 
constant.

The dimensionless separation factor RL gives an idea of 
the favorability of the adsorption process. In fact, according 
to RL value, the shape of Langmuir isotherm is evaluated 
to be favorable (0 < RL < 1), unfavorable (RL > 1), irrevers-
ible (RL = 0) or linear adsorption (RL = 1) [47,48]. The smaller 
RL value indicates highly favorable adsorption. RL values 
are calculated using the following equation [49]:

R
K CL
L

�
�
1

1 0

 (12)

3.4.2. Freundlich isotherm model

The Freundlich model is expressed as follows [50]:

q K Ce F e
n� � 1/  (13)

where KF and n are Freundlich constants, with KF (L g–1) 
indicating the adsorption capacity and n (dimensionless) 
indicating the favorable nature of the adsorption process. 
In reality, the Freundlich exponent (1/n) explains the type 
of isotherm, when (1/n > 1) the adsorption is unfavorable, 
(1/n = 1) the adsorption is homogeneous and (0 < 1/n < 1) 
the adsorption is favorable [51–53].

3.4.3. Henry’s isotherm model

The Henry adsorption isotherm used to determine the 
equilibrium state of adsorption of secluded adsorbates at 
relatively low concentration with a linear expression [54,55]. 
Henry’s adsorption isotherm model is represented as [56]:

q K Ce H e� �  (14)

where KH is Henry’s adsorption binding constant of the 
adsorbate on the adsorbate surface;

The plots of qe vs. Ce according to the non-linear form 
of Langmuir and Freundlich models and linear form of 
Henry’s model were shown in Fig. 7a–c respectively.

The Langmuir and Freundlich parameters are calcu-
lated by non-linear regression analysis of the correspond-
ing isotherms. Henry’s parameter KH is calculated by linear 
regression method.

The parameters of the Langmuir isotherm model are 
presented in Table 3. From Table 3, the obtained correla-
tion coefficients (R2) for the Langmuir model are low (0.97 
for bentonite and 0.94 for PEG-bentonite) which indicates 
that the Langmuir model is not representative of the exper-
imental adsorption data of toluene on both bentonite and 
PEG-bentonite. The parameters of Freundlich and Henry’s 
isotherms are presented in Table 4. As shown in Table 4, R2 
values of Freundlich isotherm are very close to unity (0.999 
for bentonite and 0.995 for PEG-bentonite) and are higher 
than that of Henry’s isotherm (0.980 for bentonite and 
0.991 for PEG-bentonite). This showed that the Freundlich 
model was more suitable for the adsorption process of ben-
tonite and PEG-bentonite, indicating multilayer adsorption 
of toluene occurred on a heterogeneous bentonite surface 
with a non-uniform distribution of heat of adsorption [57]. 
In the Freundlich isotherm, the value of 1/n for the PEG-
bentonite was less than 1 (1/n = 0.909), indicating that the 
adsorption is favorable, but for the bentonite, 1/n was equal 
to 1.242, indicating that the adsorption is unfavorable.

3.5. Artificial neural network modeling

An MLP model was developed in this present work. 
This model consists of an input layer with three neurons 
(parameters operatories), a hidden layer, and an output layer 
with one neuron (adsorption capacity). The number of neu-
rons in the hidden layer was optimized by trial and error in 
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order that the error between experimental values and pre-
dicted values is minimized. Selecting the proper algorithm 
and the transfer function is a very important step for design-
ing an ANN model. Therefore, six backpropagation (BP) 

algorithms were applied to training an MLP network with a 
tangent sigmoid (tansig) transfer function at the hidden layer 
and a linear transfer function (purelin) at the output layer. 
The MLP model selected 16 (80%) of input data as training 

 

 

Fig. 7. Langmuir (a), Freundlich (b), and Henry’s (c) isotherms representations of toluene adsorption onto bentonite or PEG-bentonite.

Table 3
Langmuir adsorption isotherms constants

Adsorbents Langmuir isotherm

qm KL RL R2

Bentonite 1.035 ± 0.253 1.335 ± 0.092 0.882 – 0.428 0.97
PEG-bentonite 2.641 ± 0.817 1.350 ± 0.105 0.881 – 0.425 0.94

Table 4
Freundlich and Henry’s adsorption isotherms constants

Adsorbents Freundlich isotherm Henry isotherm

1/n KF R2 KH R2

Bentonite 1.242 ± 0.024 3.013 ± 0.155 0.999 2.193 ± 0.072 0.980
PEG-bentonite 0.909 ± 0.054 2.363 ± 0.156 0.995 2.685 ± 0.054 0.991
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and the remaining 4 (20%) as testing data sets. The structure 
of MLP was optimized based on RMSE and R2 values.

Table 5 shows that the Levenberg–Marquardt back-
propagation algorithm gives the most satisfactory results. 
As shown in Table 5, the smallest RMSE was obtained 
about 0.00075 for trainlm function. However, the other 
backpropagation algorithms also give satisfactory results 
but with greater RMSE than Levenberg–Marquardt algo-
rithm. In addition, the RMSE remains constant even if the 
number of neurons in the hidden layer increases as shows 
in Fig. 8. The loss of the optimality of the estimates/results 
produced by some BP training algorithms can be attributed 
to the combinatorial nature and nonlinear structure 
of experimental data [58].

To have a more precise investigation into the model, 
regression analysis between outputs and the desired target 
was performed as shown in Fig. 9. There is a high correla-
tion between the predicted value by the MLP model and 
the experimental data. The correlation coefficient was 0.999, 
in the analysis of the whole network, which implies that 
the model satisfactory in the adsorption capacity of toluene 
on modified bentonite.

In order to evaluate the relative importance of differ-
ent input variables, on the adsorption capacity of toluene, 
the sensitivity analysis was conducted based on the neural 
net weight matrix and Garson equation [59]. The relative 
importance is calculated as follows:
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where Ij is the relative importance of the jth input variable 
on the output variable, Ni and Nh are the numbers of input 
and hidden neurons, respectively. W is connection weights, 
the superscripts ‘i’, ‘h’ and ‘o’ refer to input, hidden and 
output layers, respectively, and subscripts ‘k’, ‘m’ and ‘n’ 
refer to input, hidden and output neurons, respectively.

Based on the results, the contact time and the initial 
concentration of adsorbate with the same relative importance 

a round of 39% appeared to be the most influential param-
eters in the adsorption process modified bentonite for tol-
uene removal (Fig. 10), followed by adsorbent dose (21%). 

Table 5
Summary of trial and error method used for adsorption capacity MLP model development

Backpropagation (BP) algorithms Function Number of neurons optimal in hidden layer RMSE R2

Bayesian regularization trainbr 2 0.00409 0.9998
Levenberg–Marquardt backpropagation trainlm 6 0.00075 0.9999
Fletcher–Reeves conjugate gradient backpropagation trainf 8 0.00939 0.9990
Polak–Ribière conjugate gradient backpropagation traincgp 7 0.01183 0.9983
Powell–Beale conjugate gradient backpropagation traingb 2 0.009698 0.9889
Batch gradient descent traingd 8 0.02608 0.9919

 
Fig. 8. Relation between RMSE and number neurons in hidden 
layer for trainlm algorithm.
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However, many researchers proved that the influential 
variable and effect of each variable depended upon the 
experimental ranges adopted in the fitting model [20].

4. Conclusion

The bentonite and modified PEG-bentonite were found 
to be efficient as a low-cost adsorbent for the removal of 
organic compounds such as toluene from aqueous solu-
tions. This experiment shows that PEG can be intercalated 
into minerals such as bentonite. These new materials were 
characterized using FTIR and TGA techniques. Modified 
clays as a PEG-bentonite were developed to improve their 
adsorption properties. According to the results, bentonite 
and PEG-bentonite are effective clay-sorbents for removal 
of toluene from aqueous solutions. Higher of toluene 
removal efficiency values were obtained with modified 
PEG-bentonite. The experimental quantity of adsorbed 
toluene ranged from 0.1786 mmol g–1 for bentonite to 
0.2165 mmol g–1 for PEG-bentonite, which means that the 
adsorption capacity of PEG-bentonite is greater than that of 
natural bentonite.

The adsorption data of toluene onto bentonite or PEG-
bentonite at equilibrium are fitted well with the Freundlich 
model. The kinetic study reveals that the mechanism of 
adsorption of toluene on PEG-bentonite is different from 
that of natural bentonite.

Moreover, the performance of the MLP model in the 
prediction of adsorption capacity was investigated using 
six learning backpropagation algorithms. By means of trial 
and error, the best topology of the MLP model was chosen 
as six neurons in the hidden layer with tangent sigmoid 
function transfer and Levenberg–Marquardt learning algo-
rithm. The proposed MLP model showed a precise and 
effective prediction of experimental data with a high value 
of the coefficient of determination (0.999) and a low value 
of root mean square error (0.00075), which can be applied 
successfully applied to modeling the adsorption of toluene 
on the modified bentonite. In addition, sensitivity analysis 
demonstrated that, the contact time and the initial concen-
tration of adsorbate with the same relative importance a 
round of 39%.
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