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a b s t r a c t
In this study, water-soluble graphitic carbon nitride nanosheets (WS-CNNS) were successfully 
prepared by using the KOH/NaOH melt, and the synthesized WS-CNNS could be applied to the 
environmental treatment. The photocatalytic degradation experimental results showed that the 
WS-CNNS has great photocatalytic activity for photocatalytic degradation of Methylene blue (MB). 
Moreover, the capture experiments shown that H2O2 played an important role in the photocatalytic 
degradation of MB. The superior photocatalytic performance of WS-CNNS was mainly ascribed 
to the characteristics of water solubility together with optical properties. This research provides 
a new perspective for the application of graphitic carbon nitride nanosheets in environmental  
remediation.
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1. Introduction

Environmental problems have become more and more 
serious, which has attracted extensive attention [1–3]. It is 
urgent to seek an effective technology for environmental 
remediation. As an advanced oxidation process, photocatal-
ysis is an environmentally friendly route for the treatment of 
organic pollutants [4–8].

Graphitic carbon nitride (GCN) is widely concerned 
as an attractive visible-light photocatalyst because of its 
positive features, including abundance, nontoxicity, sta-
bility and narrow bandgap [9–13]. However, GCN suffers 
from the low surface area and the limited light absorp-
tion, which greatly limited the photocatalytic performance 
[14–16]. For improving the photocatalytic activity of GCN, 
many modification methods have been proposed (such as 

morphology modification, doping and heterostructure con-
struction) [17–19]. Among them, fabricating the nanosheets 
has been confirmed to be an effective route to improve 
the photocatalytic activity of GCN [20,21]. However, the 
conventional methods for the time-consuming multi-step 
synthesis and low yields, which greatly limited practical 
applications [22,23]. Recently, Igor et al. [24] prepared water- 
soluble graphitic carbon nitride nanosheets (WS-CNNS) by 
using the KOH/NaOH melt, which exhibited high photocat-
alytic activity and selectivity. Unfortunately, to the best of 
our knowledge, there is few literature on the application 
of WS-CNNS in the field of environmental remediation.

Herein, we used the WS-CNNS for environmental 
treatment. The WS-CNNS showed improved photocata-
lytic efficiency for the degradation of Methylene blue (MB) 
compared with that of GCN. Moreover, H2O2 played an 
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important role in the photocatalytic degradation of MB. 
This research provides a new perspective for the application 
of GCN nanosheets in environmental remediation.

2. Experimental

2.1. Chemicals

Melamine was obtained from Sinopharm Chemical 
Reagent Co., Ltd., (China). Methylene blue (MB) was 
received from Aladdin Industrial Inc. Sodium hydroxide 
(NaOH) and potassium hydroxide (KOH) were purchased 
from Sigma-Aldrich Co. LLC. Sodium sulfate (Na2SO4) 
was purchased from Energy Chemical. All chemicals were 
analytical grade and used without further purification.

2.2. Synthesis of GCN and WS-CNNS

Bulk GCN was obtained by a one-step thermal polym-
erization of melamine. Specifically, a certain amount of 
melamine was placed in a covered porcelain crucible and 
heated to 550°C at a rate of 5°C/min and maintained at that 
temperature for 2 h. Finally, a light-yellow powder of bulk 
GCN was collected by centrifugation, washed with ultrapure 
water and ethanol, and dried in the oven at 60°C overnight.

For WS-CNNS, a mixture of KOH, NaOH and melamine 
was heated in a covered crucible at a rate of 5°C/min 
up to 360°C and maintained at that temperature for 2 h. 
The obtained solid was collected by centrifugation, washed 
with 1.0 M Na2SO4 aqueous solution until neutral, and 
dried in the oven at 60°C overnight.

2.3. Characterization

The morphology of the materials was inspected with 
a Quanta 250 FEG scanning electron microscope (SEM). 
The X-ray diffraction (XRD) patterns of the catalysts were 
obtained by a Bruker-AXS D8 Advance Instrument (Bruker, 
Germany). Fourier-transform infrared (FT-IR) spectros-
copy experiments were performed on a Nicolet iS10 
spectrometer. X-ray photoelectron spectrum (XPS) and 
valence band spectra of the materials were analyzed by an 
EscaLab250Xi spectrometer using a monochromatic Al Kα 
radiation X-ray source.

2.4. Photocatalytic activity tests

The photocatalytic degradation experiments were 
tested by degradation of MB (10 ppm) using a 500 W Xenon 
lamp acting as a light source. In a typical experiment, 
20 mg photocatalysts and 50 mL MB solution were put in 
a quartz tube reactor and thoroughly stirred uniformly to 
form a suspension. Then the mixture solution was stirring 
for 0.5 h in the dark to reach the adsorption–desorption 
equilibrium before turning on the xenon lamp. After 
turning on the light, 1 mL of suspension was collected at 
certain time intervals and the photocatalysts were sep-
arated by filtration with 0.22 mm. The concentration of 
MB was detected by the UV-Vis spectrophotometer at the 
wavelength of 664 nm. To test the stability of photocata-
lysts, the used photocatalysts were washed with a 1.0 M 
Na2SO4 aqueous solution, dried at 60°C and then recycled.

3. Results and discussion

3.1. Structure and morphology of WS-CNNS

A schematic representation of the synthesis procedure 
of the WS-CNNS is presented in Fig. 1. The WS-CNNS was 
obtained by using the KOH/NaOH melt, which reduced the 
temperature of melamine condensation to GCN structures 
from the usual range of 500°C–600°C down to 330°C [24].

XRD patterns were used to analyze the crystallization 
of WS-CNNS. As presented in Fig. 2a, the diffraction 
pattern of WS-CNNS exhibited the characteristic peaks 
of GCN at approximately 13.2° and 27.8°, which corre-
sponded with the (100) and (002) plane of GCN, respec-
tively (JCPDS#871526) [25]. The (100) peak corresponded 
to in-plane repeated units and the (002) peak corresponded 
to interlayer reflection of a graphitic-like structure [26].

The chemical structure of WS-CNNS was investigated 
by FT-IR spectrometry and the results is shown in Fig. 2b. 
Clearly, The WS-CNNS show characteristic peaks at 815 cm–1, 
1,000–1,800 cm–1 and 3,185–3,261 cm–1, which are attributed 
to the deformation vibrations of the tri-triazine ring, the 
typical stretching vibration of C–N heterocyclic ring units 
and the terminal –NH or –NH2 groups, respectively [27,28]. 
Similar features were observed in the spectra of GCN and 
WS-CNNS, indicating that the two samples had the same 
main chemical skeletons. This result was consistent with 
the results of XRD, suggesting that the original atomic 
structure of GCN was largely retained. Notably, some new 
peaks appeared in the WS-CNNS except for the characteris-
tic peaks of GCN. The peak at 3,450 cm–1 may be assigned 
to the stretching vibrations of OH– groups incorporated into 
the poly(heptazine imide) structure as a result of the alkali 
melt treatment. Additionally, the peaks appeared in the range 
2,150–2,175 cm–1 may be assigned to the υ(C≡N) vibrations [24].

The microstructure and morphology of as-prepared 
WS-CNNS were investigated by transmission electron 
microscopy (TEM). As shown in Fig. 3a, the WS-CNNS 
appears as a 2D sheet-like structure. Moreover, the 
high-magnification SEM image of the WS-CNNS also 
clearly exhibited the graphene-like layered structure 
(Fig. 3b), suggesting that the sheet-like structure of GCN 
was largely retained. Furthermore, the BET surface area of 
the WS-CNNS was 28.01 m2 g–1, which was 2.6 times as high 
as that of GCN (22.21 m2 g–1), supporting the results of TEM.

XPS was further used to analyze the elemental compo-
sition and chemical state of the obtained WS-CNNS pho-
tocatalysts. As shown in Fig. 4a, the survey XPS spectra 
verified that WS-CNNS photocatalysts were composed 
of K, Na, C, N and O [24,29]. The high-resolution spectra 
of K, C, N, Na and O level for WS-CNNS are shown in 

Fig. 1. Schematic illustration of the preparation of WS-CNNS.



H. Wang et al. / Desalination and Water Treatment 232 (2021) 114–120116

Fig. 4b–e. As shown in Fig. 4b, the high-resolution spec-
tra of the C 1s level for WS-CNNS was deconvoluted to 
three components including the aromatic carbon atoms 
(284.6 eV), the C–O– groups (286.3 eV) and the sp2-bonded 
carbon in N=C–N (286.8 eV) [30]. The N 1s high-resolu-
tion XPS spectra of WS-CNNS presents three peaks at 
about 397.1, 398.3 and 399.5 eV, which can be assigned to 
the C–N=C plus C≡N, the N–C3 plus triazine C–NHx and 
the heptazine C–NHx, respectively (Fig. 4c) [31]. Notably, 
the O1s spectrum exhibits a band at 531.0 eV, which can 
be tentatively assigned to CO2 chemisorbed by the alkali 
metal ions (Fig. 4e) [24,32]. Furthermore, the estimated 
molar ratios of C–N in WS-CNNS according to XPS analysis 
was 12.6, indicating that WS-CNNS was poor in nitrogen 
and rich in carbon.

3.2. Photochemical properties of WS-CNNS photocatalysts

The light absorption range and capability of the 
WS-CNNS photocatalysts were examined by ultraviolet- 
visible diffuse reflectance spectrum (UV-Vis DRS). In contrast 

to GCN, WS-CNNS shows slight blue shifts of the intrin-
sic absorption edge compared with that of GCN due to 
the quantum size effect (Fig. 5a). The WS-CNNS presented 
with a lighter yellow color than that of the GCN. Based on 
the Kubelka–Munk method, the corresponding bandgaps 
of GCN and WS-CNNS were determined to be 2.73 eV and 
2.03 eV, respectively (Fig. 5b and c) [33,34].

The effective separation of the photo-generated charge 
carriers is necessary for photocatalysis. The photo-gener-
ated charge carriers transfer behaviors were investigated 
by Photoluminescence (PL). As shown in Fig. 5d, the inten-
sity of PL in WS-CNNS decreased markedly compared with 
that of GCN, indicating the higher separation efficiency of 
photo-generated carriers and the narrower bandgap [35]. 
The narrowed bandgap was consistent with the results 
from UV-Vis. Transient photocurrent responses and elec-
trochemical impedance spectroscopy (EIS) measurements 
were further conducted to investigate the photo-gener-
ated charge carriers transfer behaviors. Fig. 6a displays the 
transient photocurrent response of GCN and WS-CNNS. 
Clearly, WS-CNNS shows the higher photocurrent response, 

Fig. 2. (a) XRD patterns and (b) FT-IR spectra of GCN and WS-CNNS.

Fig. 3. (a) TEM image and (b) SEM picture of WS-CNNS.
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indicating that the recombination efficiency of charge car-
riers was significantly inhibited. Moreover, an obvious 
decrease in the semicircular Nyquist plots for WS-CNNS 
over GCN (Fig. 6b), which was consistent with the results 
of transient photocurrent responses.

3.3. Photocatalytic activities of WS-CNNS photocatalysts

The photocatalytic degradation of MB was used as a 
model reaction to verify the photocatalytic performance 
of the resultant WS-CNNS as depicted in Fig. 7a. Clearly, 
the natural photolysis of MB is negligible in the absence of 

Fig. 4. (a) The survey XPS spectrum of WS-CNNS. C and K (b), N (c), Na (d) and O (e) XPS spectra of WS-CNNS.

Fig. 5. (a) UV-Vis diffuse reflectance spectroscopy for GCN and WS-CNNS. The bandgap energy (Eg) for GCN (b) and WS-CNNS (c). 
(d) PL spectra of GCN and WS-CNNS.
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photocatalysts, indicating the high stability of MB under vis-
ible light irradiation. Compared with GCN, the WS-CNNS 
demonstrated higher degradation efficiencies. Moreover, 
the photocatalytic activities were further compared by 
the degradation kinetics and the photo- degradation of 
MB on WS-CNNS could be well described by the first- 
order kinetic and the pseudo-first-order kinetics data 

for the photocatalytic degradation of MB is shown in 
Fig. 7b [36]. Apparently, the WS-CNNS demonstrated the 
higher rate constant compared with that of the GCN. This 
result is consistent with that of the degradation efficiencies.

To investigate the stability of the WS-CNNS, a repeated 
experiment with four cycles of photocatalytic MB degrada-
tion was performed. As displayed in Fig. 7c, the WS-CNNS 

Fig. 6. (a) Transient photocurrent response and (b) EIS Nyquist plots in the dark of the GCN and WS-CNNS.

Fig. 7. (a) MB degradation and (b) the pseudo-first-order kinetics data for the photocatalytic degradation of MB by GCN and WS-CNNS 
under visible light irradiation. (c) Cycling runs for the degradation over WS-CNNS. (d) TEM image of WS-CNNS before reaction and 
after the 4th recycling reaction.
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retained the superior photocatalytic MB degradation 
performance after four recycles experiments. Compared 
with the fresh WS-CNNS, the morphology of the WS-CNNS 
used did not change significantly (Fig. 7d), indicating 
the excellent reusability and photocatalytic stability [37].

3.4. Photocatalytic enhancement mechanism

The photocatalytic reaction responsible for the MB 
degradation might involve surface reactions and the pro-
duction of reactive species. Species trapping experiments 
were further performed to confirm active species during 
the photocatalytic degradation of MB over WS-CNNS. 
The scavenger of Fe(II)-EDTA were added to trap H2O2. 
The photocatalytic degradation rate of MB over WS-CNNS 
was significantly decreased to 63.4% when the Fe(II)-EDTA 
was added, suggesting that H2O2 played an important 
role in the photocatalytic degradation of MB. A probable 
mechanism for the improved photocatalytic activity of 
WS-CNNS for photocatalytic degradation MB is schemat-
ically illustrated in Fig. 8 and the possible photocatalytic 
reaction processes were listed as follows [38]:

WS-CNNS + light → e− + h+ (1)

e– + O2 → •O2
– (2)

O2
•– + 2H2O → 2H2O2 (3)

•O2
– + MB → degradation product (4)

H2O2 + MB → degradation product (5)

h+ + SMT → degradation product (6)

4. Conclusions

WS-CNNS was successfully prepared by using the 
KOH/NaOH melt, and the synthesized WS-CNNS could 
be applied to the photocatalytic degradation of MB.  

The photocatalytic degradation experimental results 
showed that the WS-CNNS has great photocatalytic activ-
ity for photocatalytic degradation of MB. Moreover, the 
capture experiments shown that H2O2 played an import-
ant role in the photocatalytic degradation of MB. This arti-
cle reveals that WS-CNNS had potential to be a promising 
material in the field of environmental remediation.
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