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a b s t r a c t
Influent quality indicators play a significant role in wastewater treatment plant performance due 
to their correlation with reactor operations and effluent quality. However, selecting a specific/best 
parameter indicator for predicting influent wastewater quality is one of the challenges in wastewa-
ter treatment. This study, therefore, focused on determining suitable variables as influent quality 
indicators. For this purpose, a logistic regression model involving different inflow parameters from 
two wastewater treatment plants in Poland was used to identify the best wastewater parameter as a 
suitable indicator for operational monitoring, process control and simulation purpose. The results 
showed that the model is flexible enough to simultaneously predict two or three effective waste-
water quality indicators. Furthermore, the sensitivity analysis results showed a strong nonlinear 
relationship between the complex values of total nitrogen, total phosphorus and suspended solids.
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1. Introduction

Quality of the influent wastewater is an essential factor 
affecting wastewater treatment plant (WWTP) performance, 
operation and control. The variability of selected wastewa-
ter quality over time determines the optimal selection of 
settings and operation of the bioreactors, which has a sig-
nificant impact on final effluent quality and thus allows 
decreasing the number of probes by reducing the energy 
to aeration [1–4]. Finding the relationships between inde-
pendent variables like influent or effluent can be helpful for 

technical and modeling purposes using machine learning 
methods [5–12] and statistical models [7,9,13–15]. In addi-
tion, few studies reported using a logistic regression model 
to predict pipe failures in the water supply network, with 
high accuracy [16–18]. Avila et al. [15] showed the possibil-
ity of using logistic regression to simulate the water quality 
in the Oreti River, South of New Zealand. These analyses 
also confirmed the calculations performed by Thoe et al. 
[19] based on the case study on the water quality of Santa 
Monica Beach. Similarly, Saha and Pal [20] studied the phys-
ical hazards of wetlands in the Atreyee Basin in India and 
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Bangladesh. In another study, logistic regression was used 
to determine the likelihood of groundwater pollution [11]. 
Twarakavi and Kaluarachchi [21] determined the probabil-
ity of heavy metals occurrence in groundwater using the 
case study of Sumas-Blaine Aquifer in Washington State. 
Lee et al. [11] developed a logistic regression model for fore-
casting the water quality in a housing well on the Lanyang 
Plain in Japan. The earlier analyses of this problem have 
already been undertaken by Yamijala et al. [16] based on 
the case study of a city in the state of Texas in the United 
States of America (USA). For instance, based on the models 
developed by Dogan et al. [22] for predicting biological oxy-
gen demand (BOD5), the effects of total suspended solids 
(TSS), total phosphorus (TP) and chemical oxygen demand 
(COD) on the calculation results cannot be easily deter-
mined. Additional simulation calculations are necessary. 
It is similar to the models developed by Szeląg et al. [23], 
who demonstrated the possibility of modeling and identi-
fying ranges of the variability of selected values of waste-
water quality indicators using cascade neural networks, 
and support vector machines based on flow rate.

To simulate the quality of wastewater, Verma et al. 
[24] used the artificial neural networks (ANN) method, 
based on the results of carbonaceous biochemical oxygen 
demand or the values of flow rate and total suspension. 
Mair and El-Kadi [25] found the logistic regression (LR) 
model is flexible enough for a vulnerability study and cre-
ating separate groups of wells and introducing some vari-
ables as a suitable indicator of groundwater contamination. 
Maniquiz et al. [26], using linear regression models, showed 
that the pollutant load could be raised due to heavy rain-
fall. Moreover, Thoe et al. [19] created and compared five 
models for predicting the water quality (enterococci and 
fecal coliform concentrations) based on workability and 
accuracy. They found that the classification tree, ANN and 
LR methods are the three best models. Another study con-
ducted by Avila et al. [15] evaluated the performance of 
various statistical models, including multinomial logistic 
regression for real-time water quality prediction.

In this study, a logistic regression model was developed 
to identify specific indicator values of wastewater quality 

in the inflow of WWTPs. The real data from two WWTPs 
located in the north and south of Poland were prepared. 
Total nitrogen (TN), TP, and TSS were selected as inde-
pendent variables and applied to the model based on the 
influent ammonium-nitrogen (NH4–N) values. Furthermore, 
a sensitivity analysis was carried out for assessing the 
impact of selected independent variables on the calculation 
of the results.

2. Methodology

2.1. Wastewater treatment plants

The measurement data of two Polish WWTPs located 
in the southern part of Poland (Rzeszow) and in the north-
ern part (Gdansk-Wschod), shown in Fig. 1, are included in 
this study.

The municipal WWTP in Rzeszow (50°06′ and 22°03′) 
is located on the right bank of the Wislok River and has 
been operating since 1988. It was designed for a flow of 
Q = 62,500 m3/d and 400,000 population equivalent (PE). 
The WWTP currently operates in a sanitary wastewater 
network with a total length of 785.6 km and 94 wastewa-
ter pumping stations. The difference in land ordinates 
within the city between the highest (384 m above sea level) 
and the lowest point (197 m above sea level) is 183 m. The 
area from which wastewater flows into the WWTP covers 
approximately 126.6 km2. The average annual temperature 
in the catchment area is 7.5°C, while the amount of precip-
itation is around 615 mm/y. The warmest month is July with 
an average temperature of 18.6°C, with the highest rainfall  
of 89 mm.

The municipal WWTP Gdansk-Wschod (54°23′ and 
18°28′) receive approximately 96,000 m3/d of wastewater 
flows. After the renovation in 2012, its capacity increased 
to 120,000 m3/d and 860,000 PE. Wastewater flows through 
a sewerage system, which works in a gravity-pumping sys-
tem. The wastewater from neighboring communes, that is, 
Kolbuda, Żukowo, Gmina Pruszcz Gdański and Miasto 
Sopot, also flows into the WWTP, which gives a catchment 
area of 300.71 km2. The difference between the highest 

 Fig. 1. Location of the Gdansk-Wschod and Rzeszow WWTPs on the map of Poland.
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(180.1 m above sea level) and the lowest point (3 m below 
sea level) within the city is 183 m. The area from which 
wastewater flows into the WWTP is serviced by a waste-
water network with a length of about 1,311 km. The treated 
wastewater is discharged via a 2.5 km pressure pipeline 
to Gdansk Bay. The average annual temperature in the 
catchment area is 6.7°C, while the precipitation is around 
541 mm/y. The warmest month is July, with an average tem-
perature of 16.2°C, with the highest rainfall of 70 mm.

Table 1 presents the statistical analysis of the measured 
indicators of raw data for both treatment plants.

In the period under consideration, the hydraulic 
load for the Gdansk-Wschod WWTP was on average at 
86,649 m3/d, while for Rzeszow it was 38,572 m3/d. The 

wastewater flowing into the WWTPs was characterized 
by heterogeneous qualitative composition.

2.2. New concept of the algorithm to identify the wastewater 
quality indicators of WWTPs influent

Based on the logit model described above, a new con-
cept was proposed for identifying the quality of waste-
water at the inflow to the treatment plant (Fig. 2). At the 
first stage of analysis, models are used to identify waste-
water quality indicators (TN, TP, TSS).

In the next stage, depending on the results of calcu-
lations (probability values of p), individual conditions 
were checked to determine the ranges of variability in the 
wastewater quality indicators, respectively. The algorithm 

Table 1
Data values measured at the influent of the Gdansk-Wschod and Rzeszow WWTPs

Indicators of pollution Min. Max. Average Median Standard deviation

Total nitrogen (g/m3)
Gdansk-Wschod 28.0 108.0 79.7 80.0 9.3
Rzeszow 21.3 99.0 69.7 71.0 11.6

Total phosphorus (g/m3)
Gdansk-Wschod 5.5 19.0 12.8 12.8 2.0
Rzeszow 3.4 37.5 12.4 12.3 3.3

Total suspension (g/m3)
Gdansk-Wschod 109.0 924.0 449.8 438.0 110.8
Rzeszow 80.0 1,140.0 430.1 430.0 106.3

Ammonium nitrogen (g/m3)
Gdansk-Wschod 22.1 82.9 56.4 56.5 6.7
Rzeszow 13.7 80.0 54.4 56.0 10.1

Fig. 2. Algorithm for identifying the influent wastewater quality using a logistic model.
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of the system shown in Fig. 2 has the ability to analytically 
describe the relationship between the selected indicators 
and independent variables. The solution adopted in the 
work allows assessing the impact of inclusion in the calcu-
lation models of subsequent dependent variables (TN, TP, 
TSS, TN and TP and TSS), which has not been analyzed by 
the researchers involved in the simulation of wastewater 
quality indicators. The adopted approach also allows for a 
detailed analysis of the impact of selected independent vari-
ables on the modeled quality indicators. This is also very 
important because it allows supervised search for similar-
ities in data groups, taking into account the variability of 
the values of selected independent variables. This is a sig-
nificant simplification in the methods used to identify sim-
ilarities in multidimensional data sets (HCA – hierarchical 
cluster analysis, K-NN – K-nearest neighbors or Kohonen 
neural networks, ANN – artificial neural network) so far. 
In the proposed approach, there is no need to implement 
complex numerical algorithms and the obtained results 
have a physical interpretation, which is not limited to the 
above-mentioned statistical methods. These analyses are 
supplemented by a sensitivity analysis, in accordance with 
Eqs. (2)–(4), which allows assessing the impact of various 
ranges of selected independent variables on the modeled 
values of wastewater quality indicators. The above-men-
tioned aspect may have practical significance because it 
can be used at the bioreactor modeling and optimization 
stage, limiting the pollution load of technological objects.

2.3. Logistic regression

Logistic regression model, also called binary regression, 
is used to analyze binominal data. Compared to the meth-
ods commonly used in classification issues such as the lin-
ear regression model, artificial neural networks, regression 
trees, etc. The logistic model allows probability modeling, 
which is a significant advantage [27–30]. This method can be 
used for modeling a variety of scientific data like complex 
phenomena in ecology, hydrology, water, water supply net-
work failure [16,17] and wastewater modeling [18,31–34]. 
The analyses performed showed that the logit model was 
used to identify the quality of surface water effluents in 
flowing [15] and stagnant waters [20], underground water 
[11,21] as well as perform the analysis of the relationship 
between the activity of the society and the concentration 
of heavy metals [35]. The logistic regression model in its 
general form can be described by the following relationship:
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where p is the probability of exceeding of limit values – other 
independent variables included in the model i = 1, 2, 3, …, j.

On the basis of the definition of the local sensitivity 
coefficient given by Petersen et al. [36] it can be concluded 
that there is the following relationship:
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which can be written the following equation for the value of 
the sensitivity coefficient:
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On the basis of the above-mentioned relationship, the 
values of the sensitivity factor Sxi in the surroundings of 
the value xi can be determined. In addition, while analyz-
ing Eq. (4), it can be stated that when determining the value 
of Sxi, the probability value of p can be taken into account, 
which can be related to the numerical quantities of the 
modeled dependent variable p = f(y). On this basis, it can 
be concluded that the value of p1 > p2 the calculated values 
of the sensitivity coefficient will differ, and the higher the 
probability value is, the smaller the Sxi values.

In order to assess the predictive abilities of the logit 
model, the SENS – sensitivity, expresses the correct case clas-
sification when (y > ylim) and SPEC – specificity, expresses 
the correct case classification when (y < ylim) was used, which 
was discussed in detail by Harrell [37].

In this work, the logistic regression model tries to iden-
tify the suitable range of variability of single wastewater 
quality indicators (TSS, TN, TP), based on the results of 
quality measurements at the inlet of Gdansk-Wschod and 
Rzeszow WWTPs. Logit models also can be used to classify 
the variability of two indicators in set (TSS, TN), (TN, TP), 
and three (TSS, TN, TP) wastewater quality indices simul-
taneously. On the basis of the measurement data for the 
Gdansk-Wschod WWTP, reference models were determined, 
while, based on the data from Rzeszow WWTP, the possi-
bility of identifying selected indicators for the previously 
given WWTP was checked.

2.4. Classification for the variability of wastewater 
quality indicators

In the classic approach, the logistic regression model 
was used to identify the numerical values of individual 
dependent variables. For example, the limit value of total 
nitrogen at the influent of WWTPs as (TNlim) is expressed 
by means of two independent variables:

p
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However, considering that the value of TN > TNlim and 
TSS > TSSlim, the above-mentioned criteria can be separated, 
and the logistic regression model can be written as:
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Moreover, assuming from the literature data [31,38] that 
in Eq. (5), the value of TNlim is equivalent to the probability 
value, p = 0.50 which can be written as follows:

� � �1 1 2 2 0 0 693 0x x� � � �.  (7)

However, assuming for Eq. (6) the value of p = 0.5 
equivalent to TN = TNlim and TSS = TSSlim. It can be written 
p > 0.5 for TN > TNlim and TSS > TSSlim.

� � � �11 1 21 2 1 01 0 693 0x x xi i� � � � � � .  (8)

In addition, p < 0.5 for the values of TSS < TSSlim and 
TN > TNlim or vice versa. Following the methodology 
described above, the logit model may include subsequent 
values of wastewater quality indicators constituting the 
basis for the identification of multidimensional classes of 
quality variability.

2.5. Assessment of the interactions and relationships between 
the selected wastewater quality indicators (TN, TP, TSS)

In the classic approach, logistic regression is usually 
used to identify the classes of the variability of individual 
dependent variables (wastewater quality, wastewater pour-
ing, sludge bulking, etc.). The adopted model identifies in 
parallel the ranges of variability in two (TN and TP) and 
even three (TN, TP, TSS) indicators. Therefore, the dif-
ferentiation of the obtained p(TN) or p(TN, TP) values for 
independent variables (xj) is a measure of the interaction 
between them. The above-mentioned dependence can be 
written as follows:

p f p x x xjTN TP TN, , , , ,� � � � �� �1 2   (9)

In the theoretical case, that is, when a single variable 
is analyzed, the relationship above Eq. (9) is linear and as 
p(TN) = p(TN,TP) and may indicate that TP has no influ-
ence on the identified quality class expressed by TN, TP. 
For the assumed values of xj, the obtained values have the 
form of p(TN) ≠ p(TN,TP) = f(x1, x2, …, xj). The adopted 
solution can thus be used to analyze the impact of selected 
independent variables on the relationship between the 
modeled wastewater quality indicators or multidimen-
sionality of their variability, that is, TN and TP or TN, 
TP, TSS. This is important from the point of identifica-
tion for processing that occurs in flowing wastewater 
and the possibility of modernization by designing sys-
tems depending on local conditions to ensure the quality 
of wastewater at the inflow of WWTPs and has a large 
impact on the optimization of processes at the WWTP.

3. Results and discussion

3.1. Logistic regression models

The measured data for the Gdansk-Wschod WWTP 
(320 samples) and Rzeszow WWTP (900 samples), includ-
ing COD, NH4–N, TN, TSS, TP, phosphate-phosphorus 
(PO4–P), pH, and Q were considered in this study. The range 

of each value variation was determined as TN and TP and 
on the same TN, TP, and TN, TP, TSS constituting the basis 
for building a logit model for both plants (Table 2). In the 
analyses, due to the broadest scope of laboratory tests at 
the Gdansk-Wschod WWTP, it was selected as the so-called 
reference model (including independent variables that 
determine the best fit). This allowed the assessment of the 
possibility of simulating the wastewater quality at the 
Gdansk-Wschod WWTP, considering the limited range for 
measurement data. In parallel, the model for the Rzeszow 
WWTP was made based on the independent variables found 
in the previous case. The analysis results (empirical coeffi-
cients α, standard deviations and measures of matching 
the simulation results to measurements) are given in Table 3.

Based on the data in Table 2, it can be observed that the 
limit value for TN in the case of Rzeszow WWTP is lower 
than Gdansk-Wschod WWTP, while an inverse relation 
was found for the TP. For two and three dependent vari-
ables included in the models in parallel, the established 
limit values are conditioned by the predictive abilities of 
the models. The analysis of those values shown in Table 2 
shows that the order of indicators magnitude is similar and 
the differences in the values of the analyzed wastewater 
quality indicators do not exceed 16%.

Due to the fact that only two WWTPs were adopted 
in the considerations, the possibilities of analyzing the 
impact of the catchment and meteorological characteristics 
on their values of the physical and geographical character-
istics are limited. However, further study is required, which 
may constitute a basis to the generalization of the relation-
ship given above. In Table 3, it can be stated that among 
the considered models, the greatest problem with identify-
ing the wastewater quality indicators occurs in relation to 
TP. This statement applies primarily to the Gdansk-Wschod 
WWTP and for independent variables specified for the 
Rzeszow WWTP. The values of the measures matching the 
calculation related to TP are SPEC = 58.53%–69.90% (con-
cerning 900 data obtained from measurements in 527 and 
629 events, the calculations were consistent with the mea-
surements) and SENS = 69.70%–80.61% (concerning 900 
data obtained from measurements in 628 and 726 events), 
the calculations were consistent with the measurements). 
On the basis of Table 3, it was found that the values of the 
measures matching the simulation results are not lower 
than SENS = 69.09% and SPEC = 71.25%. This way, the 
results confirm the applicability of the new concept logistic 
models for forecasting wastewater quality indicators.

Table 2
Range of selected wastewater quality indicators adopted for 
determining logit models

Gdansk-Wschod WWTP Rzeszow WWTP

Model Value Model Value

TN 80 TN 76
TP 9.4 TP 11.2
TN/TP 80/9.4 TN/TP 76/11.2
TN/TP/TSS 80/9.4/396 TN/TP/TSS 76/11.2/411

TN = TNlim, TP = TPlim, TSS = TSSlim.
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3.2. Impact of selected independent variables on the content 
of TSS, TN and TP in the wastewater quality indicators of 
WWTPs influent

The results presented in Table 3 have indicated the 
non-linear relationships between the TN and NH4–N. Total 
nitrogen includes all forms of nitrogen, that is, NH4–N, 
nitrite–nitrogen (N–NO2), nitrate–nitrogen (N–NO3) and 
organic nitrogen (Norg). These relationships were also pre-
viously demonstrated by analyzing the data on WWTP 
influent in Jiangsu Province (China), obtaining a high cor-
relation coefficient [39]. The simulation results also showed 
an influence of the COD and TSS values on TN. This is also 
confirmed by the analyses carried out by Kim et al. [40], 
using the 24-h measurements from a WWTP in Busan, South 
Korea to simulate TN. Zou et al. [39] showed a non-linear 
relationship TN = f(COD), analyzing the data from a Jiangsu 
WWTP obtaining R = 0.14. Additionally, the relationship of 
TP = f(COD) has been confirmed by Zou et al. [39] obtaining 
R = 0.32. Ebrahimi et al. [41], showed non-linear relationships 
TP = f(TSS), obtaining correlation coefficients at the level of 
R ≈ 0.22. Ebrahimi et al. [41], when conducting analyses for 
a single treatment plant also showed a significant impact of 
BOD and TSS values on the simulation of TP results. Their 
reports find theoretical confirmation in models describing 

the kinetics of organic compound’s transformation in waste-
water systems. This dependence is local and is depended 
on the hydraulic conditions (filling, retention time), size of 
the wastewater network, etc [42]. Due to the fact that the 
BOD5 measurement is time-consuming (5 d), this indicator 
has been omitted in the calculation models. The models in 
which the BOD5 value is included have limited practical 
application. The results obtained in this way confirmed that 
identification of TP variability is possible to a limited extent 
(COD, N–NH4, TSS), which simplifies the results of computa-
tional experiments. Ebrahimi et al. [41] showed the relation-
ship TP = f(BOD, TSS, COD) and TP = f(BOD, TSS, TN). The 
results of analysis [43] based on the data from Solumstrad 
WWTP in Norway confirmed the effect of NH4–N on TP 
by obtaining R2 = 0.79. Despite the fact that they showed 
the relationship TP = f(Q, pH, NH4–N), it should be borne 
in mind that the WWTP analyzed in Norway was much 
smaller (PE = 130,000) than the WWTP considered in work.

The wastewater quality can be shaped by fewer fac-
tors than in the treatment plants considered in this work. 
The results of research Ansari et al. [44] performed for the 
WWTP in Kuala Lumpur with a size of 100,000 PE showed 
that the forecast of N compounds in the inflow is possi-
ble using modified neural networks (ANFIS + GA or PO) 
based on the inflow and precipitation depth. However, 

Table 3
List of determined empirical coefficients (αi), and standard deviations in the logistic models for wastewater quality indicators 
prediction

(Gd)wz (Gd)nwz Rz

Var. αi Std. Dev. Var. αi Std. Dev. Var. αi Std. Dev.
TN NH4 0.196 0.028 NH4 0.191 0.029 NH4 0.27 0.018

PO4 0.287 0.107 TSS 0.006 0.002 TSS 0.004 0.007
TSS 0.008 0.001 Inter. –14.6 1.813 Inter. –19.51 1.248
Inter. –16.76 2.04
SENS = 71.52%; SPEC = 77.9% SENS = 69.70%; SPEC = 75.56% SENS = 90.21%; SPEC = 72.97%

TP PO4 0.544 0.116 COD 0.002 0.0009 COD 0.004 0.001
TSS 0.008 0.001 NH4 0.017 0.0029 NH4 0.08 0.011
Q –0.00008 0.0000 TSS 0.004 0.002 TSS 0.011 0.001
Inter. –0.925 0.085 Inter. –4.772 1.161 Inter. –12.787 0.85
SENS = 71.66%; SPEC = 71.25% SENS = 71.51%; SPEC = 58.83% SENS = 78.60%; SPEC = 78.81%

TN, TP NH4 0.149 0.025 NH4 0.147 0.025 NH4 0.261 0.018
PO4 0.432 0.113 TSS 0.007 0.002 TSS 0.005 0.001
TSS 0.009 0.001 Inter. –12.46 1.63 Inter. –19.29 1.231
Inter. –15.879 1.975
SENS = 75.08%; SPEC = 78.56% SENS = 72.53%; SPEC = 67.90% SENS = 79.60%; SPEC = 80.81%

TN, TP, TSS COD 0.005 0.001 COD 0.005 0.001 COD 0.008 0.007
NH4 0.128 0.026 NH4 0.093 0.022 NH4 0.15 0.014
pH –3.813 0.026 Inter. –10.07 1.42 Inter. –16.642 1.076
Inter. 17.146 7.70
SENS = 78.46%; SPEC = 69.09% SENS = 80.61%; SPEC = 63.67% SENS = 90.08%; SPEC = 69.92%

TN(Gd)wz – a logit model for modeling TN at the inflow to the Gdansk-Wschod WWTP; TN(Rz) – a logit model for modeling TN at the 
inflow to the Rzeszow WWTP; TN(Gd)nwz – a logit model for modeling TN at the inflow to the Gdansk-Wschod WWTP, for independent 
variables identical to the model for the Rzeszow WWTP; TNTP(Gd,Rz) – a logit model for modeling the value of TN > TNlim and TP > TPlim at 
the inflow of the Gdansk-Wschod and Rzeszow WWTPs; TNTPTSS(Gd,Rz) – a logit model for modeling the value of TN > TNlim and TP > TPlim 
and TSS > TSSlim at the inflow to the Gdansk-Wschod and Rzeszow WWTPs.



427B. Szeląg et al. / Desalination and Water Treatment 232 (2021) 421–432

such relationships are usually possible for facilities of 
a limited size (PE value), where the processes of provid-
ing the wastewater quality are conditioned by the dilu-
tion of the wastewater. This was confirmed by the results 
of [45,46], who demonstrated the relationship COD = f(Q) 
by analyzing several treatment plants in Germany and 
Belgium (167 sites). While analyzing the determined val-
ues of coefficients in logit models, it can be stated that the 
characteristics of the catchment area (length of the waste-
water network, the surface of the drained area, the load of 
the WWTP – PE) have an impact on the quality of waste-
water flowing into the wastewater treatment plant. For the 
Rzeszow WWTP in this study, the obtained coefficients in 
logit models for forecasting individual indicators of waste-
water quality were higher than for the Gdansk-Wschod 
WWTP facility. It may indicate that in the case of smaller 
facilities (PE = 400,000 – Rzeszow WWTP), the modeled 
TN and TP values show lesser sensitivity to the values of 
selected indicators (COD, TSS). For the TN and TP forecast 
models applied simultaneously, an inverse relationship 
was found – for the Gdansk-Wschod WWTP, the αi values 
in logit models were higher than for Rzeszow. The impact 
of the size of the treatment plant (facility load using PE) on 
the model parameters for the COD, total Kjeldahl nitrogen 
(TKN), TP forecasts was demonstrated by Langergraber et 
al. [42], by adopting second-order Fourier models in their 
study. The impact of geographical location and thus the 
size of the facility on the relationship between TN = f(TP) 
was demonstrated by the statistical analyses pertaining 
to the operation of wastewater treatment plants in China 
located in 31 provinces, as described in the work of Sun et 
al. [47]. Their dependencies showed increased content of 
TN and TP for the objects in the north (Beijing) and North-
East of China (Gansu, Xinjang etc.). Similar relationships 
were found in relation to the relationship TN = f(NH4–N). 
The results of the analysis conducted by Sun et al. [47] for 
the relationship TN = f(COD) showed increased values for 
the WWTPs located in the South-East (Gansu, Xinjang, 
Qinghai etc.). However, the analyses conducted did not 
take into account the size of the treatment plant. In the case 
of the models for simultaneously identifying the range of 
variability of several wastewater quality indicators, similar 
analyses have not been conducted so far. This is an inter-
esting aspect, which enables to study the impact of inter-
actions between the selected wastewater quality indicators 
(TN and TP, TN as well as TP and TSS, etc.). This gives 
an opportunity to generalize the results obtained and to 
explain the variability of wastewater quality at the inflow 
to facilities in a global perspective (several indicators at 
the same time) rather than locally. This is important from 
the point of view of optimizing the operation of WWTP 
(modeling energy consumption, wastewater quality, reduc-
ing greenhouse gas emissions), because quality identifica-
tion gives the opportunity to control the operation of the 
facility and the selection of optimal settingsThe solution 
adopted in the work is a significant simplification and 
the algorithm developed (Fig. 2) allows the identification 
of the values of individual wastewater quality indicators. 
Considering the above-mentioned remarks, it can be stated 
that many authors showed correlations between selected 
quality indicators of influent wastewater, however, due 

to the models used, they did not provide analytical rela-
tionships. Therefore, they did not indicate how the content 
of TN is affected quantitatively by NH4–N and COD.

3.3. Quantitative analysis of the impact of selected independent 
variables on the wastewater quality

The interaction between TN, TP and TSS was checked, 
and the impact on the variability of the probability of a single 
value and simultaneously the values of two and three waste-
water quality indicators was determined (Fig. 3). On the 
basis of the set coefficients for logit models (Table 3) and 
the equation describing the sensitivity coefficient, the effect 
of independent variable values (NH4–N) and probability (p) 
on the variability of Sxi values was determined (Fig. 4).

Based on Fig. 3, it can be observed that both the NH4–N 
and TSS values have a significant impact on the probabil-
ity of exceeding TN. For example, for TSS = 500 mg/L, the 
increase in the NH4–N value from 50 to 55 mg/L leads to 
an increase in the p(TNlim) value from 0.28 to 0.55 for the 
Gdansk-Wschod case. In the case of Rzeszow, an identical 
change in the value of the NH4–N results in an increase in 
p(TNlim = 76 mg/L) from 0.028 to 0.083. On the other hand, 
increasing the TSS value from 250 to 500 mg/L for NH4–N 
leads to an increase in the value of p(TNlim) from 0.048 to 
0.280. For the Rzeszow WWTP, an identical increase in the 
TSS value leads to an increase in the probability of exceed-
ing TNlim from 0.001 to 0.0280. Additionally, it was found 
that for TN > 63 mg/L the value of p(TNlim)TSS = 500 is greater 
than p(TNlim)TSS = 1000. In turn, for TN > 64 mg/L the value 
of p(TNlim)TSS = 250 is greater than p(TNlim)TSS = 500. The results 
indicate a strongly differentiated impact of both TSS and 
NH4–N on the probability of exceeding TNlim, depending 
on the wastewater influent. According to Fig. 4, describing 
the probability of exceeding TNlim and TPlim, it can be stated 
that for Rzeszow WWTP, the increase in the value of inde-
pendent variables (TSS) from 0.05 to 0.50 has a lesser impact 
than the change in the TSS, PO4–P for the Gdansk-Wschod  
WWTP.

While analyzing the determined curves (Fig. 4) for 
the average values (0.50 percentile) of independent vari-
ables (Table 3) in the TN = 80 mg/L and TP = 10.1 mg/L 
model (Gd) with the probability value p(TNlim and TPlim) 
are greater than those obtained with the simplified model, 
that is, p = f(N–NH4, TSS). On the other hand, the inverse 
relationship was obtained when 0.05 percentiles were sub-
stituted in the designated models, that is, TNTP(Gd)wz 
and TNTP(Gd)nw.

3.4. Interaction analysis and the relationship between 
TN, TP, TSS in logit models

On the basis of the obtained logit models and deter-
mined empirical coefficients (Table 2), the curves 
p(TN,TP) = f(p(TN), NH4–N, PO4–P) – for the WWTP 
Gdansk-Wschod (Fig. 5a) and Rzeszow WWTP (Fig. 5b) 
were drawn. The values of p(TN) and p(TN,TP) were 
determined for the assumed values TSS = 285–855 mg/L 
and PO4–P = 6.94–8.88 mg/L and for N–NH4 = 20–84 mg/L. 
For example, subsequent p(TN) values for TSS = 285 mg/L 
and PO4–P = 6.94 mg/L were calculated for increasing 
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NH4–N values from 20 mg/L with the constant step equal 
NH4–N = 2 mg/L. The p-values (TN, TP) were determined 
identically. For changing NH4–N values, variability of 
p(TN) and p(TN,TP) values was obtained – Fig. 5a and b, 
which allowed determining the curves p(TN,TP) = f(p(TN), 

NH4–N, PO4–P). On the basis of the above-mentioned 
assumptions, the curves describing the relationship p(TN, 
TP, TSS) = f(p(TP), NH4–N, COD) and p(TN) = f(p(TP), 
NH4–N) were determined, which are presented in Fig. 6 
for Rzeszow WWTP.

 
Fig. 4. Impact of the NH4–N value for the Gdansk-Wschod and Rzeszow plants on the probability of exceeding TNlim and TPlim for 
average values and 0.05 percentiles of independent variables.

 
Fig. 3. Effect of NH4–N and TSS for Gdansk-Wschod and Rzeszow WWTPs on the probability of exceeding TNlim.
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On the basis of Fig. 5, for the Rzeszow WWTP, the rela-
tionship of p(TN,TP) and p(TN) is almost similar for a linear 
one, provided that the TSS value varies within the appro-
priate range – in such a way as to obtain the compatibility 
of p data (TN) = f(TN, TP). An increase in the TSS value 
for the Gdansk-Wschod WWTP of p(TN) = f(NH4–N, TSS) 
indicates increasingly stronger nonlinearities.

Strongly linear relationships were found between 
p(TN) and p(TN,TP) in which the increase in TSS for 
p(TN) = f(NH4–N) has a significant impact on the relation-
ship p(TN) = f(p(TN,TP)). Assuming PO4–P = 6.94 mg/L and 
TSS = 285 mg/L for p(TN) = 0.18 and p(TN) = 0.42, the val-
ues of p(TN,TP) are 0.12 and 0.25, respectively. In turn, for 
PO4–P = 6.94 mg/L and TSS = 855 mg/L, the values of p(TN,TP) 
are 0.41 and 0.64. Only for the mean values TSS = 570 mg/L 
and PO4–P = 6.94 mg/L and the changing NH4–N value 
– the relation p(TN) = f(p(TN,TP)) is close to linear, which 
confirms the obtained course curves. The non-linear rela-
tionships, as well as strong interactions between dependent 
variables (TN, TP, TSS), are also confirmed by the curves 
in Fig. 6a. The complex relationships between TN and TP 
are confirmed in Fig. 6b. The obtained curves indicate that 

COD and TSS significantly impact the relationship between 
the analyzed wastewater quality indicators. The lower 
the concentration in the TSS wastewater, the stronger the 
relationship between TN and TP.

The results obtained above are of significant impor-
tance from the point of view of building regression models 
for forecasting wastewater quality. They indicate the need 
to create several models in parallel to simulate the selected 
wastewater quality indicators. This approach is confirmed 
in the analyses where the first step in building the regres-
sion model was the analysis aimed at separating similar data 
groups. For this purpose, clustering methods were used, 
such as HCA, method K-NN. This is an important stage in 
creating models because it allows identifying local relation-
ships between the selected indicators of wastewater qual-
ity. The methods listed above are complex algorithms that 
require numerical implementation.

Conversely, the methodology proposed in this study is 
much simpler. Secondly, the dependencies obtained are of 
analytical nature, expressed by means of empirical mod-
els, with the help of which the impact of the examined 
independent variables on the simulation results can be 

 
Fig. 5. Relationship of p(TN,TP) and p(TN) for WWTPs: (a) Gdansk-Wschod and (b) Rzeszow.

Fig. 6. Impact of p(TP) and COD values on: (a) p(TP,TN,TSS) and (b) p(TN) for the Rzeszow WWTP.
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analyzed. Using such methods as HCA, K-NN, neural net-
works, etc., the analysis of the impact of selected wastewa-
ter quality indicators allocation to separate data classes that 
are similar to each other is limited.

3.5. Sensitivity analysis

A sensitivity analysis was performed in order to sup-
plement the analysis results. Therefore, based on the devel-
oped logit models (Table 3) and Eq. (4), its variability was 
determined on the example for TN value in the Gdansk-
Wschod plant data. The range of NH4–N = 40–60 mg/L 
was used for calculations, while the values of independent 
variables included in the equation were adopted in the 
range PO4–P = 4.5, 10.0, and 12.0 mg/L and TSS = 300, 600, 
and 750 mg/L, respectively. The results of the probability 
of exceeding TNlim and Sxi are presented in Fig. 7.

On the basis of Fig. 7, it can be observed that the bound-
ary values PO4–P and TSS have a great impact on the sen-
sitivity model. In most cases, p-value got higher with the 
value moderately increase of NH4–N, and the model’s 
sensitivity decreases. For example, an increase in the con-
centration of NH4–N on the inflow to the treatment plant 
from 40 to 46 mg/L (PO4–P = 10 mg/L and TSS = 600 mg/L), 
caused to decrease in the value of Sxi from 6.09 to 4.67 
(approx. 24%). An identical change in the value of NH4–N 
for PO4–P = 4.5 mg/L and TSS = 300 mg/L leads to an 
increase in Sxi from 7.98 to 8.86.

On the basis of the determined logistic regression models 
and the derived sensitivity coefficient [Eq. (4)], the impact of 
the interaction between TN and TP as well as TN, TP and 
TSS on the relative change in the value of Sxi(TNlim) was 

analyzed. For this purpose, set values of PO4–P and TSS, 
the values of sensitivity coefficients were calculated con-
sidering two (TN and TP) and three (TN, TP and TSS) indi-
cators as the basis for classification. The calculation results 
are presented in Fig. 8. The values of Sxi(TNTP) compared to 
Sxi(TN) depending on NH4–N are smaller at Gdansk-Wschod 
WWTP by 25% (PO4–P = 4.5 mg/L and TSS = 300 mg/L). 
With an increase in the NH4–N value from 40 to 60 mg/L, 
it was found that the values of Sxi(TNTP) are smaller than 
Sxi(TN) by 12%. A similar relation, taking into account the 
variability of NH4–N was also found for Sxi(TNTP) when 
P–PO4 = 6.9 mg/L and TSS = 450 mg/L.

In the range of NH4–N = 40 - 50 mg/L, it was found that 
the values Sxi(TNTP) and Sxi(TNTPTSS) for P–PO4 = 10 mg/L 
and TSS = 600 mg/L and P–PO4, respectively 6.9 mg/L and 
TSS = 450 mg/L are lower than Sxi(TN) by approx. 43%–
51%. A further increase in NH4–N caused a decrease in the 
relative difference between the values of Sxi(TNTP) and 
Sxi(TNTPTSS) and Sxi(TN). In the considered variants, it was 
found that an increase in the NH4–N value of Sxi(TNTPTSS) 
for (P–PO4 = 10 mg/L and TSS = 600 mg/L) is 2.8 times 
higher, compared to Sxi(TN).

4. Conclusions

A new concept of logistic regression model provided 
a suitable range of TN, TP, and TSS as suitable indicators 
for WWTPs influent quality in two evaluated plants. The 
developed logistic regression model approach in this study 
is flexible to use as a wide range of indicators, but machine 
learning methods limit the possibilities of analyzing the 
impact of selected independent variables on the results of 

 
Fig. 7. Impact of the NH4–N value for the Gdansk-Wschod plant on the probability of exceeding the TNlim and values of the coefficients 
sensitivities (Sxi).
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calculations. This method was found as a useful tool, and 
can be extended for prediction beyond the current case stud-
ies. Although the dependencies obtained in the paper are 
presented for only two WWTPs, the obtained results pro-
vide the opportunity for further research in the area and 
ultimately build universal models. In addition, the results 
of the sensitivity analysis showed the occurrence of strong 
nonlinearities between the values of TN, and TP as well as 
TN, TP, and TSS, which is confirmed by relative changes 
in the values of the calculated sensitivity coefficients.
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