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a b s t r a c t
Petroleum refinery wastewater treatment is a serious challenge due to the presence of complex 
organics and recalcitrant pollutants. In this research study, reduced graphene oxide – biochar 
composite material was synthesized and applied to treat the refinery wastewater. The effect of 
operating parameters namely, initial effluent pH (4.0–10.0), composite dosage (0.25–5.0 g/L), initial 
effluent COD (340–1,360 mg/L), agitation speed (0–400 rpm) and temperature (30°C–40°C) were 
studied. At pH 8.0, composite dose 4.0 g/L, shaking speed 300 rpm, temperature 35°C, and the 
initial COD 1,360 mg/L, rGO removed 82% of the effluent COD. The COD reduction efficiency 
increased, and COD uptake decreased with an increase in composite dose. The kinetic modeling was 
carried out using three kinetic models namely, pseudo-second-order, power function, and Elovich 
model. The pseudo-second-order model fitted well with the experimental data (R2 > 0.970) and the 
root mean square error was evaluated. The pseudo-second-order kinetic constant was evaluated 
and found to be 0.7 × 10–4 g/(mg min) with the actual refinery effluent at 35°C. The COD uptake 
achieved in this study is comparable with other studies and confirmed the suitability of the com-
posite for refinery effluent treatment. ANN modeling was used to model the data and predicted 
with good levels of agreement.
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1. Introduction

Petroleum refining involves a complex combination of 
physical and chemical processes aimed at cracking the crude 
into desired fractions with diversified properties. The petro-
leum crude processing is a water-intensive process with a 
high steam requirement in the process stream and utility 
requirements [1]. The water consumption in the refineries 
is reported to be in the ratio of 10–19 units of volume for 
every 100 volumes of crude [1]. The water utilized often 
leads to the generation of huge volumes of wastewater with 
daily average of 100,000 barrels operating capacities with 
most of the leading petroleum refineries. The water released 

are from different sections of the refinery and contains 
pollutants including oil, unrecovered petroleum fractions, 
metals, phenol, inorganic miscellaneous constituents, and 
many other hydrocarbon traces [2]. The petroleum refinery 
effluent is unique in terms of diversified contaminants that 
present a unique challenge to degrade all the pollutants in 
a single or series of operations [3]. The hydrocarbon con-
taminants like benzene are reported to be carcinogenic and 
their complete removal is mandatory by the environmental 
pollution monitoring and regulatory bodies [4,5]. Treatment 
of petroleum refinery waste was attempted by conven-
tional methods which are physical and chemical techniques 
such as coagulation, precipitation, ion exchange, oxidation, 
adsorption, etc., and modern techniques like membrane 
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separation, photocatalytic and advanced oxidation methods 
[6,7]. Biological methods present an alternative to the phys-
ico-chemical methods and involve the use of aerobic and 
anaerobic microorganisms. To combine the advantageous 
features of different methods, hybrid methods, also called 
combination methods, are investigated to degrade the refin-
ery wastewater [8]. Most of these conventional methods are 
less favored due to the lower efficiency of treatment, higher 
carbon footprint, production of secondary pollutants, and 
incompatibility with low pollutant concentrations in the 
effluent [9]. Adsorption, a surface property-based method, 
is always considered an effective technique to treat oil-based 
impurities which are resistant to chemical and biological 
oxidation methods [10]. Conventional adsorbents like acti-
vated carbon, clay, fly ash, and charcoal are extensively 
employed and found unsuitable due to excessive cost and 
reduced efficiency [11,12]. Carbon-based nano-adsorbents 
are the new class of materials found to be more suitable 
for pollution control applications due to their excellent 
surface properties [13–15]. Enhanced surface area for mono-
layer graphene was reported as 2.630 m2/kg of the mate-
rial. Modified forms of carbon-based nano- adsorbents have 
gained high importance due to their high selectivity and 
target specificity. Closely packed carbon atoms in a honey-
comb structure with a single sp2 hybridization pattern were 
found to promote the uptake capacity of the graphene-based 
adsorbents [16,17]. Application of graphene and its deriva-
tives for removal of dye molecules have produced success-
ful results and the favorable properties responsible for the 
same were identified as porosity, surface area, and active 
sites for dye molecule interaction [17–20]. The presence of 
negatively charged oxygen groups in the graphene oxide and 
its derivatives are found to enhance the adsorption capacity 
and efficiency. Reduced graphene oxide (rGO) is proposed 
by several researchers for the effective removal of single 
or multiple ionic groups in solution [21,22]. Biochar, an 
eco-friendly adsorbent synthesized from natural biomass, 
has gained attention for environmental pollution control 
applications [23]. There is no study reported on the use of 
rGO for the treatment of refinery wastewater and the nov-
elty of this study is related to the synthesis of hybrid nano-
composite using rGO. In this experimental study, a novel 
hybrid nanocomposite was synthesized using rGO and bio-
char and employed for the treatment of petroleum refinery 
wastewater. The parametric experiments were conducted 
in order to identify the optimal conditions namely effluent 
pH, COD, speed of agitation, and operating temperature. 
The mechanism of COD reduction by the rGO-DPB compos-
ite was verified using the pseudo-second-order, power func-
tion, and Elovich models. The thermodynamic parameters 
are evaluated to understand the nature of sorption.

2. Materials and methods

2.1. Preparation of composite

The date palm tree, Phoenix dactylifera, was used as a 
source for biochar synthesis [24]. Date palm tree barks were 
extensively washed to remove dirt, dried in sun for 48 h and 
reduced to the desired size (<2 cm) using a sieve shaker. 
The dried plant biomass was crushed into a fine powder 

and sieved through 0.6 mm screen. The fine powder was 
pyrolyzed at 600°C for 3 h in an oxygen-lean environment 
and the biochar produced, date palm biochar (DPB) was 
stored for further use in airtight plastic containers. Reduced 
graphene oxide was synthesized from graphite powder 
using sulfuric acid, potassium permanganate, and sodium 
nitrate mixture. The oxidized form was exfoliated to sepa-
rate the fine sheets and further reduced using hydrazine 
hydrate to produce reduced graphene oxide (rGO) [25]. 
The rGO – DPB composite was produced by dispersing 
4 g of rGO and 8 g of DPB in 1 L of deionized water and 
sonicated for 30 min (Branson, USA). The sonicated prod-
uct was filtered using a CA membrane (Sigma Aldrich, EU) 
and dried at 80°C in an oven (Memmert, USA). 

2.2. Batch experiments on COD reduction

The untreated petroleum refinery wastewater was 
analyzed to determine the physicochemical characteris-
tics namely, pH 8.00, chemical oxygen demand (COD) 
1,360 mg/L, total solids 1,326 mg/L, and oil and grease 
560 mg/L. Under batch operating conditions, the refinery 
effluent was treated under pre-determined values of process 
variables. The effluent pH was chosen as the first parameter 
to be varied in the range of 4.0–10.0, while other parameters 
are fixed. The influence of rGO-DPB dose was examined 
in the range 0.25–5.0 g/L, at optimal pH identified through 
the first experiment. The ability of the sorbent to handle a 
wide range of effluent concentrations was studied in the 
COD range of 340–1,360 mg/L. Temperature effects were 
monitored by conducting studies at 30°C, 35°C, and 40°C 
in a thermostatic water bath shaker. All the experiments 
(except the effect of temperature studies). The treated water 
samples were analyzed for residual COD after filtering the 
sample [26]. The COD adsorbed during the contact time 
was estimated using % COD reduction, given in Eq. (1).

%COD reduction =
−
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COD uptake, a measure of removal per unit weight of 
composite, is defined in Eq. (2).

q
V C C

me
e=

−( )0  (2)

where qe is the mg of COD removed/g of adsorbent, C0 and 
Ce (mg L–1) are the initial and equilibrium COD values, 
respectively, V is the volume of the effluent (L) and m is the 
mass of rGO-DPB composite (g). The average of the three 
readings are reported in the calculations.

2.3. ANN Modelling

Artificial neural network modeling is a useful tool and 
applied widely for the prediction of process performance 
in environmental applications. The generalized regression 
neural network (GRNN) is one of the feed-forward neural 
network techniques on non-linear regression theory and 
comprises four layers namely the input, pattern, summation, 
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and output layers. The architecture of GRNN is shown in 
Fig. 1. The first three layers consist of fully connected neu-
rons and selective connections to the summative layer. Radial 
basis function was used for computation of activation and 
has unity as its maximum when input is zero. Data fitting is 
usually experimented by using a smaller spread for close-fit-
ting. The output units usually decide the summation units 
and unsupervised training patterns are employed in GRNN.

3. Results and discussion

3.1. Characteristics of the sorbent

The surface morphology of the synthesized sorbent was 
examined using the scanning electron microscopic imag-
ing (100x), as shown in Fig. 2. The sorbent material was 
found to have a multilayered surface with internal cracks 
and suit adsorption of contaminants from the wastewater. 
The surface patterns suitable for sorption are clearly visi-
ble in the SEM image (Jeol, USA). The rGO-DPB compos-
ite was found to have folded edges and resulted in better 
diffusion between the layers and enhanced adsorption.

3.2. Effect of pH

The industrial effluent is always susceptible to have pH 
variations due to the change in the composition of the dis-
charged compounds. In this set of experiments, the efflu-
ent pH was varied using buffer addition (either 0.1 M HCl 
or NaOH). The COD reduction efficiency increased from 
60% (at pH 4.0) to 82% (at pH 8.0) as presented in Fig. 3. 
The attainment of lower efficiency at acidic pH could be 
related to the competition of the excess hydrogen ions 
with the negatively charged ionic pollutants in the efflu-
ent to be adsorbed on the rGO-DPB composite surface. 
When the pH was increased above 8.0 in the alkaline 
range, the COD reduction efficiency decreased, and this 
phenomenon was related to the precipitation effect under 
hyper alkaline conditions. In addition, the rGO-DPB com-
posite could have negatively charged unconverted oxygen 
functional groups. Under acidic conditions, these groups 

undergo neutralization. Removal of malachite green 
dye using rGO reported similar observations [27]. Lower 
uptake capacities using rGO for removal of tetracycline 
were reported at lower pH values [10].

3.3. Effect of composite dosage

Adsorption of solute ions by the sorbent surface is 
dependent on the surface-active sites. The surface area 
made available, represented by composite dosage, is 
identified as a key design variable for the scale up of this 
batch process. The effect of rGO-DPB composite dose was 
studied from 0.25 to 5.0 g/L of the effluent, under opti-
mal conditions of pH. Fig. 4 confirmed the directly pro-
portional relationship between dose and the percentage 
COD reduction. The maximum COD reduction of 82% was 
reported at a dosage of 4 g/L. The increase in COD reduc-
tion percentage was found to be linear in the dosage range 
of 0.25–4 g/L and no change was observed in the dosage 
range of 4.0–5.0 g/L. At higher dosages, the availability 

Fig. 1. Structure of GRNN.

 
Fig. 2. SEM micrographs of rGO-DPB composite.
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of free surface area and the number of active sites were 
higher, and this contributed to better COD reduction 
percentages. Higher adsorbent quantities often result in 
incomplete saturation leading to reduced sorption. The 
influence of adsorbent dosage on COD uptake was found 
to be inverse with lower uptakes achieved at higher dos-
ages and the COD uptake decreased from 357 to 170.8 mg/g 
with an increase of composite dosage from 0.25 to 5 g/L. 
Non-uniform contact and negative interactions between 
excessive sites adjacent to each other at high adsorbent 
concentrations were found to reduce the COD uptakes. 
The empirical equation relating the COD uptake (qe) and 
composite dosage (m) is given by Eq. (3):

q ee
m= −405 71 0 114. .  (3)

Adsorption studies on removal of COD from tannery 
wastewater reported a similar effect of dosage on per-
centage removal efficiency [28]. A study using modified 
activated sludge for refinery effluent reported an uptake 
of 153.846 mg/g was reported at a dosage of 8 g/L [29].

3.4. Effect of contact time and initial effluent concentration

Treatment of refinery effluent using rGO-DPB com-
posite was conducted for an equilibrium time of 360 min 
and the rate of COD reduction was evaluated under fixed 
intervals of time. The effluent was tested at diluted con-
centrations with an average initial COD values of 340, 680, 
1,020 and 1,360 mg/L at optimal pH identified from the 
first set of experiments. The time versus COD reduction 
plot was given in Fig. 5 confirmed higher percentages of 
COD reduction achieved with effluents having lesser initial 
COD and due to the vacant surface active sites, the rate of 
adsorption was found to be faster during the early contact 
phase. Ion exchange, micro-precipitation, and complex for-
mation were identified as the possible reasons for the bet-
ter sorption during the initial period. The COD reduction 
achieved was found to be maximum (96%) with a diluted 
effluent having initial COD 340 mg/L. The COD reduction 
percentages were observed with an increase in effluent COD 
values. With effluents having higher COD values of 1,020 
and 1,360 mg/L, the COD reduction percentages decreased 
to 86% and 82% at an equilibrium time of 300 min. With 
high concentration effluents, the ratio between the sorbate 

pollutant molecules and sorption sites is higher and could 
hinder adsorption of more molecules or ions. The perfor-
mance of the adsorbent was comparable with the other 
study reported on petroleum refinery effluent treatment 
[6]. Treatment of refinery effluent using modified acti-
vated sludge reported 84% COD reduction when the initial 
COD was 3,400 mg/L [29].

3.5. Effect of speed of agitation

Adsorption is a surface phenomenon-based separa-
tion technique and the degree of mixing is reported to 
promote better contact between the sorbate molecule and 
sorbent surface. The contact between the surface sites 
of the adsorbent and the sorbate ions is better at higher 
speeds. In this set of experiments, the samples were 
contacted with rGO-DPB composite under different agi-
tation speeds namely 0, 100, 200, 300 and 400 rpm. The 
conditions optimized from the previous set of experi-
ments were employed in terms of pH and rGO-DPB dos-
age. Results obtained at different speeds were presented 
in Fig. 6 and the COD uptake increased from 8% to 82% 
when the shaking speed increased from 0 to 300 rpm. 
Mass transfer rate through the film and reduced bound-
ary layer thickness were found to be responsible for 
the attainment of higher COD uptakes at higher speed. 
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Fig. 3. Influence of initial effluent pH on COD reduction 
(COD0 = 1,360 mg/L; w = 4 g/L; T = 35°C; speed = 300 rpm).
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Fig. 4. Influence of rGO-DPB composite dose on the COD 
reduction and uptake (COD0 = 1,360 mg/L; pH = 8; T = 35°C; 
speed = 300 rpm).
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Fig. 5. Influence of effluent concentration on the COD reduction 
(pH = 8; T = 35°C; w = 4 g/L).
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At the maximum speed of 400 rpm, the COD decreased 
to 137.2 mg/g, which could be due to excessive shear force 
or lack of homogeneity in the sorbate-sorbent system.

3.6. Effect of operating temperature

Temperature influences the sorption rate either by 
activation of the surface and excitation of the solute. The 
effect of temperature on the COD reduction percentage 
by the rGO-DPB composite was studied in the range of 
30°C–40°C. From Fig. 7, it was inferred that the COD reduc-
tion percentages decreased with an increase in tempera-
ture. The maximum COD reduction percentage obtained 
was 87% at an operating temperature of 30°C. Better sorp-
tion at higher temperatures confirmed the nature of the 
process as chemical sorption and the sorption by rGO-
DPB composite was found to be exothermic. Removal 
of malachite green by rGO followed exothermic sorp-
tion with similar observations and the uptakes decreased 
when the temperature increased from 30°C to 50°C [26].

3.7. COD reduction prediction using generalized 
regression neural network

In the GRNN model, the spread factor is deter-
mined using a stochastic approach. For COD reduction, 
the network was run several times to evaluate the best 
spread factor. In both testing and training, the valida-
tion was made in terms of the resultant spread factor 
for COD reduction that produced minimal MAPE error 
and GRNN network performance is shown in Fig. 8. 
The neural network model employed consisted of input 
layer embedded with 5 neurons and output layer with 1 
(COD reduction) neuron. The GRNN is selected as the 
network type with spread factor for COD reduction for 
training and testing. The network is implemented using 
the MATLAB neural network toolbox. Fig. 8 shows the 
spread factor versus the performance predicted by GRNN 
for COD reduction. The performance of GRNN increases 
for the spread factor values from 0.01 to 1 is shown in Fig. 
8. Maximum performance 99.99% occurs at the spread 
value 0.05. After that, the performance of GRNN is grad-
ually reducing for COD reduction. A comparison between 
experimental and ANN models were made and it is 
depicted in Figs. 2–7. In all the figures, the ANN predicts 

the data well and it closely follows experimental data.  
The correlation coefficient for the ANN predicted data 
and experimental data was found to be 0.9354. The ANN 
has the advantages of predicting the data outside the 
design space which is more useful as far as the applica-
tion is concerned in a large scale. Thus, the ANN-based 
model is more flexible and allows the addition of unused 
experimental data to build a fresh trustworthy model 
[30]. The results of this study show that the ANN model 
has better accuracy in predicting the COD reduction.

3.8. Kinetic model

The COD reduction kinetic studies are aimed to under-
stand the mechanism and required to design a continuous 
separator for large-scale applications. The pseudo- second-
order equation, a widely employed model, is fitted to the 
experimental data [31]. The linearized form of this model 
[Eq. (4)] was applied to analyze the adsorption kinetics of 
COD reduction.

t
q k q q

t= +
1 1

1 1
2

1

 (4)

where q1 (mg g–1) is the maximum adsorption 
capacity and q (mg g–1) is the COD adsorbed at time, t, 
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Fig. 6. Effect of agitation speed on the COD reduction 
(pH = 8; T = 35°C; w = 4 g/L).
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and k1 (g (mg min)–1) is the equilibrium rate constant for the 
pseudo- second-order adsorption.

The power function model, represented in Eq. (5), is a 
modified form of Freundlich equation. 

q k tp
n=  (5)

where kp and n (usually positive and <1) are model con-
stants. Eq. (5) is empirical except when n = 1/2, where it is a 
parabolic diffusion equation [32].

Elovich model proposed an exponentially inverse rela-
tionship between the quantity of solute and adsorption 
rate and is represented by Eq. (6) in its linearized form [33].

q
b

ab
b
t= ( ) +

1 1ln ln  (6)

where a denotes the initial adsorption rate (mg/(g min)) 
and b denotes the desorption constant (g/mg). The three 
kinetic models were fitted to the experimental data and 
represented in Figs. 9, 10 and 11. The pseudo-second- 
order model (Fig. 9) was found to be the best fitting model 
with comparatively higher values of R2 (>0.975). Based 
on this observation, the rate-determining step was iden-
tified as surface adsorption which involved chemisorp-
tion. The slopes and intercepts from the linear plots were 
used to evaluate the model constants for pseudo- second 
order and Elovich models and tabulated in Table 3. 
The best-fit equation parameters found with the power 
function model were used to evaluate the model constants. 
The pseudo-second-model rate constant (k1) was found 
to vary from 6.7 × 10–4 to 0.7 × 10–4 g/(mg min) when the 
effluent COD increased from 360 to 1,320 mg/L. The error 
function analysis is presented in Table 1.

3.9. Thermodynamic studies

To evaluate the effect of temperature on the adsorption 
process of BY28 and BR46 onto GO, the thermodynamic 
parameters such as a change in free energy (ΔGO), enthalpy 
(ΔHO), and entropy (ΔSO) were determined using following 
Eqs. (7) and (8) [34].

ln
q
C

S
R

H
RT

e

e







= −

∆ ∆  (7)

∆ ∆ ∆G H T S= −  (8)

The linear plot between ln(qe/Ce) and (1/T) is shown 
in Fig. 12. From the slope and intercept, the thermody-
namic parameters namely enthalpy change (ΔH) and 
entropy change (ΔS) are evaluated as −67.71 and 0.222 kJ/
mol K, respectively. The free energy of adsorption (ΔG) 
was evaluated using Eq. (8) and found to be –136.42 kJ/
mol. These values are in the typical range of chemisorp-
tion [35]. The negative values of enthalpy change denote 
the exothermic nature of the process and positive value 
of entropy confirms the feasibility of the sorption.

4. Conclusion

The utilization of a novel composite made from rGO 
and date palm biochar was successfully employed for 
the treatment of refinery effluent. The favorable surface 
properties with the synthesized adsorbent were studied 
using the SEM imaging. The effect of pH on COD reduc-
tion efficiency proved that the optimal pH was the neutral 
range with lower adsorption at acidic pH. The increase in 
composite dosage produced higher COD reduction per-
centages and lower uptakes. The COD uptake achieved 
at an optimal dose of 4 g/L is 170.8 mg/g. The removal of 
COD by rGO-DPB composite was found to be exothermic 
and the nature of sorption was confirmed by the pseudo- 
second-order as chemisorption. The pseudo-second- 
order model constant, q1, was found to be 153.846 mg/g 
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at an initial effluent COD of 1,320 mg/L. Power function 
and Elovich model constants were evaluated at different 
effluent concentrations. GRNN modeling predicted the 
sorption data well with lesser data. The feasibility of the 
sorption process was verified using Gibbs energy.
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