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a b s t r a c t
Water pollution is increasing day by day due to the wastewater discharge from various industries. 
Different pollutants like pesticides, insecticides, bromate ions, heavy metals such as copper, zinc, 
antimony, lead, nickel, cadmium, mercury, etc. create various health and environmental problems 
due to their toxicity. Overall, this review paper intends to provide literature concerning the removal 
of various pollutants from aqueous medium by adsorption with two objectives. First, it offers vari-
ous health effects associated with different pollutants in wastewater followed by various adsorbent 
materials and applications, adsorption capacities, and certain characteristics of these adsorbents 
to remove pollutants from aqueous solution.
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1. Introduction

Water is recognized as a precious resource for human 
civilization and all kinds of life on earth, so its demand is 
increasing with the improvement of living standards and 
the rapidly growing global population [1–3]. Due to global 
climate change and population growth, the current water 
supply is facing enormous challenges. Millions of people and 
animals are suffering a water crisis with a shortage of fresh 
and clean water throughout the world due to the release of 
pollutants in freshwater supplies [4–6]. According to the 
WHO report, 780 million people worldwide still lack access 
to clean water sources.

Rapid growth in industrialization, urbanization, inade-
quate sanitation, household wastes, agricultural practices, 
strenuous activities of human beings, unrestrained use and 
exploitation of natural water resources which have steadily 
increased over the last decades, are main and major sources 
of water pollution [4,7–10]. The disposal of highly polluted 
water is rising. It has become a serious issue and the worst 
enemy for humans and animals on planet earth. Reduction 
in economic status, environment, and human sustenance 

are the results of water pollution [11–15]. High levels of 
toxic and bio-degradable pollutants produce consider-
able adverse effects on the environment, plants, animals, 
and human beings [16,17]. In developing countries, almost 
70–80% of the diseases [18,19] are mainly related to contam-
inated water. Accumulation of pollutants and their ions in 
water results in cerebral and nervous system damage, mem-
ory loss, an increase of allergies, blood pressure, poisoning, 
cancer, lungs, kidneys and other organs diseases and cell 
death which ultimately leads to death [7]. These pollutants 
and effluents also affect the nature of water by inhibiting the 
penetration of sunlight in water, which results in the reduc-
tion of photosynthesis reaction. Besides this, these pollutants 
are the main cause of serious ecological issues. They pose 
a great threatening to aquatic life, animals and plants due 
to their non-biodegradable and toxic nature [20–22]. So, 
the most basic humanitarian goal of the 21st century is to 
provide reliable access to clean and affordable water and 
to reduce, eliminate or treat the non-biodegradable, toxic, 
and life-threatening pollutants from the wastewater [23]. 
Therefore, researchers are executing and focusing on pro-
moting feasible technologies for removing or converting 
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the pollutants and metal ions present in the water into less 
harmful substances [24]. The present review article intends 
to present the relevant studies on the adsorption of various 
pollutants from aqueous medium using various adsorbents, 
particularly those that are economical and easily available, 
while also commenting on their efficiency.

2. Various types of pollutants in wastewater

Different types of pollutants such as pathogenic organ-
isms, endocrine-disrupting chemicals, pharmaceutical prod-
ucts and personal care products (PCP), phenols [25,26], 
pesticides, bromate ions (BrO3

–) [22], oils, metal-bearing 
contaminated effluents [27], dyes [28,29], and heavy metals, 
etc. [20,21,30–32] which are released from anthropogenic 
sources like metallurgical, galvanizing, metal finishing, 
power generation, electronic device manufacturing, metal 
plating, steel, fertilizers and paper industries, mining oper-
ations, pesticides, nuclear power plants, coal processing, 
battery manufacturing processes, paints and pigments pro-
duction, glass operations, smelters metallurgy, pharmaceu-
tical, and PCP, oil refineries, petrochemicals, textiles, leather 
tanning, municipal and stormwater runoff [16,17,33–36] 
are increasing day by day in the ground, industrial, surface 
and household water. Some common pollutants present in 
wastewater are discussed below:

2.1. Pesticides

Pesticides like organophosphorous compounds, dimeth-
oate, methyl parathion, phosphamidon, fenitrothion, mala-
thion, monocrotophos, and phorate [37] are the compounds 
used in domestic and agricultural activities that deter, inca-
pacitate, kills or discourage pests. These are toxic and can 
harm more than just the “pests” at which they are targeted. 
These pesticides and their metabolites are also contaminat-
ing natural resources of water, and exposure to pesticides 
can cause a number of health effects, including kidney 
problems, immune and endocrine system, cancer, infer-
tility, and behavioral and neurological disorders and are 
also affecting animals, fish, and birds population [38–40]. 
Malathion is an example of toxic dyes that may cause vom-
iting, chest infection, diarrhea, vision problems, diseases 
of eyes, dizziness, sweating, headache, unconsciousness, 
difficulty in breathing, and even death [37].

2.2. Insecticides

Insecticides, which are very active and toxic compounds 
formulated to kill or harm different species of insects, are 
mainly used in the agriculture and medicine industries. 
These are of mainly two types, including ovicides and lar-
vicides used against insect eggs and larvae, respectively. 
These are available in different forms like gels, baits, dusts 
and sprays, having the potential to alter ecosystems and 
can pose different levels of risk to non-target insects, peo-
ple, pets, and the environment and their exposure can 
affect the liver, respiratory system in humans and can cause 
severe headache, influenza, nausea, abdominal pain, cancer, 
paralysis, diarrhea, and sweating [41].

2.3. Dyes

Dyes discharged from printing, textile, food, and leather 
industries are toxic and carcinogenic pollutants [42–44]. 
These are of various types like acidic, dispersive, reac-
tive, and basic, but two main types are cationic (basic) and 
anionic (acidic), which are commonly used in these indus-
tries. More than 7 × 105 metric tons of dyes are produced 
annually throughout the world, and at the time of manu-
facturing, almost 12% of these dyes are misplaced, from 
which 20% move in water bodies, which causes water pol-
lution [45]. These dyes inhibit the penetration of sunlight 
in water reducing the reaction of photosynthesis and affect 
the nature of water and aquatic life [4,22] and also cause 
adverse effects on human health by causing skin, eyes, kid-
ney diseases, allergic dermatitis and cancer etc.

2.4. Phenolic compounds

Phenolic compounds released into water resources by 
the industries of steel, pharmaceuticals, chemical, fertiliz-
ers, dyes, phenolic resins, petrochemical, and petroleum 
refineries are considered toxic and dangerous [46,47]. The 
content of phenolic compounds in industrial wastewa-
ter should be less than 0.5 mg/L according to the standard 
limits but in industrial wastewater, their amount is almost 
200–2,000 mg/L, which is very high. Short-term exposure 
to high levels of phenol has caused irritation of the respi-
ratory tract and muscle twitching in animals; anorexia, 
progressive weight loss, diarrhea, vertigo, salivation, dark 
coloration of the urine have been reported in humans due 
to long term exposure [48].

2.5. Bromine

Bromate ion (BrO3
–) is a bromine-based oxoanion which 

is formed when ozone used to disinfect drinking water 
reacts with naturally occurring bromide found in water. It is 
a human carcinogen that causes nausea, cancer, diarrhea, 
vomiting, anuresis, anemia, pulmonary, and central ner-
vous system diseases, depression, and abdominal pain [34].

2.6. Heavy metals

The word ‘heavy metal’ refers to the element having 
a higher density, specific gravity greater than 5.0, atomic 
weight between 63.5 and 200.6 [49], and toxic even at very 
low concentration [50,51]. Unlike most organic pollutants, 
heavy metals are generally refractory, notorious, highly 
toxic, non-thermo degradable, carcinogenic and non-biode-
gradable elements, so there is a risk that the surrounding 
soil, as well as the ground and surface water, is contami-
nated by metal-containing effluents, then these effluents 
accumulate in the body of living organisms and cause a 
variety of diseases. In addition, if these heavy metals are 
present in the water above the permissible limit, they cause 
incurable toxicity, which threatened the growth of flora and 
fauna [52,53]. Main pervasive and hazardous heavy met-
als present in wastewater and induce dangerous and toxic 
effects to the living environment are lead, copper, cadmium, 
chromium, cobalt, mercury, nickel, phosphorus, arsenic, 
zinc, and antimony etc. [14,49,54].
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2.6.1. Lead

Lead is among the very toxic heavy metal ions even at 
low concentrations when found in the environment. It usu-
ally exists in sulfide, galena, and cerussite forms. Its main 
cause is effluents from lead-acid batteries, electroplating, 
steel industries. It enters the environment through air, soil, 
and water and finally enters the food chain [7]. It causes a 
decrease in intelligent quotient (IQ) score, physical growth 
retardation and impaired functions of hearing, decreased 
attention, and performance in learning in children and 
mainly affects the central nervous system, brain, reproduc-
tive parts, kidney, and liver. It may also cause diseases such 
as encephalopathy, anemia, high blood pressure, hepatitis, 
and nephritic syndrome in males and females of middle 
and old age [55,56]. Its availability is of high risk to plants 
and animals’ life also. The maximum permitted level of lead 
in drinking water is 0.5 mg/L. Hence, the removal of lead 
ions from water and wastewater is essential for the pro-
tection of the environment and public health [57,58].

2.6.2. Copper

Copper is an essential element that humans need for 
the development of bones and enzyme synthesis. It usu-
ally presents in different forms like elemental, cupric, or 
cuprous ions, and cupric is considered the most toxic form 
present in the environment. Copper and its compounds are 
frequently discharged from municipal water, mining, met-
allurgy, steel and fertilizer industries, pigments, paints, and 
electroplating runoff. The maximum permissible concentra-
tion of copper is 1.3 and 1.0 mg/dm3, respectively by World 
Health Organization (WHO) and the United States Public 
Health Service (USPHS) in drinking water [59,60] and heavy 
doses of copper beyond this limit lead to depression, liver 
and gastrointestinal diseases, renal failure, hair fall, anemia, 
central nervous system retardation and mucosal irritation 
[61,62]. It may accumulate in the brain, liver, and pancreas, 
which lead to death. Therefore, it is needed to recover 
the copper from industrial effluents and aquatic systems.

2.6.3. Cadmium

Cadmium and its derivatives are another types of 
water pollutants that have been listed as a carcinogen by 
the Environmental Protection Agency (EPA) [63]. Even at 
low concentrations, its compounds get concentrated in the 
ecosystem and are harmful. These are discharged into water 
from the industrial wastewater, especially from pharmaceu-
tical, paint, paper, nickel-cadmium batteries, electroplat-
ing, coal processing, and pulp industries, and refineries are 
hazardous to all types of life. When ingested, these replace 
the Zn2+ at key enzymatic sites, which results in the meta-
bolic, bone marrow, and kidney disorders, digestive sys-
tem diseases, renal failure, hypertension, cardiovascular 
system damage, cancer, choking, and anemia Moreover, 
these also create negative effects on eyes, lungs, skin, liver 
and unborn babies and are proved to be very toxic and 
objectionable even at trace level to aquatic life. According 
to WHO, 0.005 mg/L is the maximum permitted level of 
Cd2+ in drinking water [64]. So, it is needed to remove the 
cadmium and its derivatives from wastewater.

2.6.4. Chromium

Chromium is the seventh-largest element in the earth’s 
crust, where it is found in the form of ores. It usually exists 
in oxidation states from +2 to +6, but only Cr(III) and Cr(VI) 
are of significance in water and according to EPA Cr(VI) is 
highly toxic to aquatic life even at very low concentrations 
and usually causes cancer and other diseases in humans. 
It also causes skin diseases, pulmonary, and digestives sys-
tem failure [65,66]. Its compounds usually enter into aquatic 
systems by discharging concentrated effluents mainly from 
plastic coatings, tanning, electroplating of metals, paint, 
and textile industries. The legal discharge limit of chro-
mium in water varies from 0.5 mg/L (surface water) to 
2.0 mg/L (in sewer) [67] and according to the WHO and EPA 
0.05 mg/L is the maximum permitted level of Cd2+ in drink-
ing water [68–70]. Due to these harmful effects, it should 
be removed or modified into less toxic ions before its dis-
charge into to water bodies.

2.6.5. Mercury

Mercury (Hg2+) usually exists in elemental, mercuric or 
mercurous ions and is the highly toxic metal that is pres-
ent in wastewater. It is released in different forms in the 
aquatic system from various sources like paper and pulp 
manufacturing, oil refineries, chloralkali wastewater, power 
generation plants, and fertilizers industries and has no pos-
itive impacts on human life [71,72] and Overexposure of 
mercury causes ill effects on the human nervous system, 
kidneys, reproductive and respiratory system and other 
body systems, like one of its compounds named methyl 
mercury damaged enzymes sites and affects the protein 
synthesis system. Minamata convention was designed to 
preserve the environment and health of humans from mer-
cury. The prescribed limit for mercury is 0.001 ppm, which 
is the lowest among all heavy metal ions. The maximum 
permitted level of mercury in drinking water is 0.002 mg/L 
[20]. Because of its harmful effects, its removal from 
industrial wastes has gained special attention.

2.6.6. Arsenic

Arsenic, which is toxic heavy metal for humans, ani-
mals, and plants, exists in the different oxidation states like 
−3, 0, +3, and +5 but arsenite (AsO3

3–) and arsenate (AsO4
3–) 

known as arsenic(III) and arsenic(V) are common forms 
present in wastewater from which arsenite is more mobile 
and toxic [73]. The main sources of arsenic are natural 
[70,74], in addition, many factors like biological and geo-
logical actions, mining activities, anthropogenic activities, 
mining activities, fossil fuels burning, arsenic pesticides, 
and disposal of fly ash elevate the concentration of arsenic 
in soil and water. The maximum permitted level of chro-
mium in drinking water is 0.05 mg/L, and due to its tox-
icity, drinking water contaminated with arsenic beyond 
its permitted level causes severe health problems, includ-
ing anemia, cardiovascular and skin diseases, lungs, liver, 
bladder, and kidney cancer [75,76]. Table 1 shows various 
types of pollutants, their permitted limits, sources and toxic  
effects.
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Table 1
Various types of pollutants, their permitted limit, sources and toxic effects

Pollutants Permitted level Sources Diseases References

Pesticides – Used in domestic and 
agricultural activities

Diseases of kidney, immune and endocrine 
system, cancer, behavioral and neurological 
disorders, and infertility

[38–40]

Insecticides – Agriculture and medicine 
industries

Liver and respiratory system disorders, severe 
headache, influenza, nausea, abdominal pain, 
cancer, paralysis, diarrhea, and sweating

[41]

Dyes – Printing, textile, food, and 
leather industries

Vomiting, chest infection, diarrhea, problems 
of vision, diseases of eyes, dizziness, sweating, 
headache, unconsciousness, difficulty in breath-
ing, and even death

[37]

Phenolic com-
pounds

– Industries of steel, phar-
maceuticals, chemical, 
fertilizers, dyes, pheno-
lic resins, refineries of 
petroleum 

Respiratory tract irritation and twitching of 
muscles in animals, weight loss, diarrhea, dark 
coloration of the urine, anorexia, vertigo, saliva-
tion, liver and blood disorders in humans

[48]

Bromate Ions – Reaction naturally occur-
ring bromide with Ozone 
which disinfects drinking 
water 

Nausea, cancer, diarrhea, vomiting, anuresis, 
anemia, pulmonary and central nervous system 
diseases, depression, abdominal pain

[34]

Lead 0.5 mg/L – Effects the central nervous system, brain, repro-
ductive parts, kidney and liver, diseases such as 
encephalopathy, anemia, high blood pressure, 
hepatitis and nephritic syndrome in males and 
females of middle and old age and ultimately 
causes death

[55]

Copper 1.3 mg/dm3 Municipal water, fertil-
izer, pigments, paints, 
and electroplating indus-
tries runoff

Depression, liver and gastrointestinal diseases, 
renal failure, central nervous system retardation, 
and mucosal irritation

[61]

Cadmium 0.005 mg/L Pharmaceutical, paint, 
paper, nickel-cadmium 
batteries, electroplating, 
coal processing, and pulp 
industries

Metabolic, bone marrow and kidney disorders, 
digestive system diseases, renal failure, hyper-
tension, cardiovascular system damage, cancer, 
choking and anemia; moreover, it also creates 
negative effects on eyes, lungs, skin, liver, and 
unborn babies

[178]

Chromium 0.05 mg/L Plastic coatings, tanning, 
electroplating of metals, 
textile and paint industry

Cancer [70]

Mercury 0.002 mg/L Paper manufacturing, 
power generating plants, 
refineries of oil, fertilizer 
industry

Nervous system disorders [20]

Arsenic 0.05 mg/L Natural sources, bio-
logical and geological, 
anthropogenic and 
mining activities, use of 
arsenic pesticides and 
herbicides, by the burning 
of fossil fuels and dis-
posal of fly ash

Cardiovascular and skin diseases, lungs, liver, 
bladder, and kidney cancer and anemia

[76]
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3. Sequestration of water pollutants

To control the water pollution, several technologies and 
conventional treatment methods have been developed. The 
selection of water treatment process (physical, chemical, 
and biological processes) is a complex task which involves 
the consideration of many factors like, available space for 
the construction of treatment unit, reliability of equipment 
used in the treatment process, waste disposal limits, quality 
of desired water and operating costs. Various technologies 
like adsorption [77,78], activated sludge, aerobic and anaer-
obic treatment, biological removal, catalytic reduction, coag-
ulation/flocculation [22], photocatalysis, chromatographic 
techniques, electrodialysis [7] electrolysis, foam or froth 
flotation, electrochemical technology [23], Fenton degra-
dation, membrane filtration [56,79], ion exchange method 
[80], reverse osmosis [14,30], microbial reduction, oxida-
tion processes, precipitation, photosonochemical method, 
photodegradation [81–86], phytoextraction, ultra-filtration 
[21], sonochemical and sonoelectrochemical technology, 
solvent extraction and UV irradiation etc. either indepen-
dent or in conjunction are available with promising results 
to control water pollution and for the removal of toxic sub-
stances. Fig. 1 shows various available technologies for the 
removal of different types of pollutants from wastewater.

3.1. Adsorption method

For the removal, determination, and treatment of haz-
ardous pollutants which are discharged from various indus-
tries and to control water pollution, currently, adsorption 
has been proven and believed to be main and simple, most 
attractive and effective, widely adopted and economically 
feasible advance process due to the better mechanical, 
chemical, thermal, and radiation stabilities, easy operation, 
simple design, high efficiency, economic convenience and 
low cost [16,24,48,87,88].

The term adsorption is defined as accumulating a sub-
stance at the interphase between two phases like solid and 
liquid or solid and gas. The substance that accumulates at 
the interface is called “adsorbate,” and the solid on which 
adsorption occurs is known as “adsorbent”. The efficiency 
of adsorbents is characterized by surface area, effectiveness, 
number of active sites, the selectivity of adsorbents, and 
adsorbent kinetics [53,89]. Different adsorbents including 
organic as well as inorganic ion-exchange materials [90], 
composite ion-exchangers [91–93], activated carbon [94], clay 
minerals [4], silica, alumina and some industrial solid wastes 
[95], zeolites [96], polymeric adsorbents [97–99], fibers [100], 
hydrogels [101], agriculture materials, biomaterials [102], 
peat and bentonite [103] have gained appreciable status in 

 

Fig. 1. Different technologies for removal of pollutants from aqueous medium.
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current research due to high ion-exchange capacity, chemi-
cal stability, better regeneration, high thermal and radiation 
stability, rigid structure and negligible swelling character-
istics [12,56]. Fig. 2 represents the main type of adsorbents 
for the removal of pollutants from an aqueous solution. In 
this review paper, different adsorbent materials such as 
composite-ion exchange materials, agricultural materials, 
activated carbon, and resins have been discussed.

3.2. Composite ion-exchange materials

Organic exchangers decompose at elevated tempera-
ture, and high ionization radiation and inorganic exchang-
ers hydrolyze with aqueous solvents. Due to these certain 
limitations encountered with pure organic and inorganic 
exchangers, efforts have been made to overcome these bar-
riers [104,105]. Large numbers of different types of com-
posite cation-exchange and anion-exchange materials have 
been synthesized by incorporating organic polymer into 
the matrix of inorganic precipitates by a well-known sol-
gel mixing method. These composite materials have well 
established their position. They have shown valuable appli-
cations for the adsorption and removal of metal ions and 
other pollutants from the contaminated water due to their 
characteristic properties like excellent adsorption capac-
ity, better functionality, chemical, mechanical, radiation, 
and thermal stability and good selectivity [106]. Composite 

cation- exchange materials have the property of regener-
ation, by which these exchangers can be used for several 
cycles in an economic way [27,41,107,108].

AL-Othman et al. [21] synthesized polyaniline Sn(IV) 
molybdate (crystalline organic–inorganic composite cation 
exchanger) having good ion exchange capacity, high chem-
ical and thermal stabilities. It was analyzed by applying 
Fourier transform infrared spectroscopy (FTIR), thermograv-
imetric analysis-differential thermal analysis (TGA-DTA), 
scanning electron microscopy (SEM) and X-ray analysis. 
0.1 M nitric acid was used for the elution of metal ions as 
an eluting reagent, in the presence of which 90%–99% metal 
ions were adsorbed. The optimum temperature for the max-
imum adsorption of metal ions was 45°C. Based on distri-
bution studied it was observed that adsorption of Pb2+ was 
highest among all metal ions and equilibrium was attained 
after 30 min at optimum pH (8.0). So, it is clear from the 
results that the quantitative and efficient separations of var-
ious metal ions are feasible on polyaniline Sn(IV) molyb-
date columns. This cation exchange material is a potential 
candidate for removing heavy metals from contaminated 
water to control pollution [21]. Similarly, Al-Othman et al. 
[109] studied the adsorption capacity of composite cation 
exchanger polypyrrole Th(IV) phosphate (prepared by sol–
gel method) for the adsorption of trichloroacetic acid (TCA), 
from aqueous solutions. TCA, a very toxic water contami-
nant even at very low concentration, is present in a very toxic 

 
Fig. 2. The main type of adsorbents for the removal of pollutants from an aqueous solution.
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water contaminant even at very low concentration, pres-
ent in the aquatic environment. Investigations showed an 
ion exchange capacity of 1.56 meq dry g–1 and equilibrium 
was established within 72 min, and 98% adsorption was 
achieved at optimal conditions. So, it was concluded that 
this composite ion exchanger was very good for removing 
pollutants (TCA) from the aqueous solutions.

Naushad et al. [17] synthesized an organic–inorganic 
based composite cation exchanger polyaniline Sn(IV) 
silicate. The physicochemical properties of that cation 
exchanger were studies by applying different analyti-
cal techniques like X-ray diffraction (XRD), SEM, ener-
gy-dispersive X-ray spectroscopy (EDX), FTIR, elemental 
analysis and thermogravimetry analysis etc. Adsorption 
properties of this ion exchanger were investigated. The 
adsorption was very fast, and equilibrium was established 
within 40 min which showed that polyaniline Sn(IV) sil-
icate is a very excellent ion-exchanger for the removal of 
metal ions and some binary separations showed that it 
has the highest adsorption capacity for Cd2+. It was highly 
thermally and chemically stable. The feasibility of regen-
eration by diluted HNO3 makes it perfect candidate for 
removing heavy metals from water to control water pollu-
tion. Similarly, sodium dodecyl sulfate acrylamide Zr(IV) 
selenite (SDS-AZS) was developed by sol–gel method, and 
this composite material was used for the removal of highly 
toxic lead ion (Pb+2) from aqueous medium. The physico-
chemical properties of SDS-AZS were studied using EDX, 
TGA, transmission electron microscope (TEM), SEM, 
FTIR, and XRD. The results showed that SDS-AZS can be 
used in water pollution control [7]. Bushra et al. [30] syn-
thesized an ion exchanger, Polyaniline Sn(IV) tungstomo-
lybdate nanocomposite (PSTM) by sol-gel method for the 
efficient removal of Pb2+. The properties (physico-chemi-
cal) of PSTM were characterized by using techniques like 
TEM, FTIR, XRD, and SEM. The results showed that 85% 
adsorption of Pb2+ was obtained at the optimal pH (6.0), and 
equilibrium was achieved after 50 min. From these results, 
it was concluded that PSTM cation exchanger is the best 
option and excellent ion-exchanger for the removal of lead 
ions from the aquatic system. AL-Othman et al. [21] syn-
thesized crystalline composite cation exchanger polyani-
line Sn(IV) molybdate to remove Pb2+. This composite ion 
exchanger’s practical usefulness was studied by carrying 
out the selective separation of Pb2+ on this newly synthe-
sized material. It was observed that 99% adsorption was 
achieved within 30 min at pH 8.0. Bushra et al. [79] syn-
thesized a composite material polyaniline-Zr(IV) phos-
phoborate (PZPB) via sol–gel method by combining Zr(IV) 
phosphoborate and polyaniline, which was selective for 
the removal of Hg2+ by adsorption method. It was charac-
terized by various analytical techniques. X-ray diffracto-
gram of this material showed that it was semi-crystalline in 
nature. Table 2 shows different types of composite materi-
als and their applications to remove pollutants at optimum  
parameters.

3.3. Agricultural and food waste-derived adsorbents

Scientists and Investigators have discovered low-
cost, eco-friendly, and economical agricultural adsorbents 

materials to remove pollutants from wastewater, which 
have shown potential sorption properties due to their com-
position, renewable nature, and availability. Agriculture 
wastes usually contain renewable organic matters, includ-
ing plant materials like seeds, fruit components and pulp, 
food processing, and forestry by-products [67]. These mate-
rials usually contain high levels of cellulose, hemicellulose, 
lignin, proteins, lipids, water, sugars, hydrocarbons and 
starch [53,110]. These materials require little processing 
and are used in natural form or in modified form. In natu-
ral form, these materials are washed, crushed, ground, cut 
into small pieces, sieved, then washed with water and weak 
acid solutions, while modified form product is subjected to 
modification techniques [111].

Various researchers have demonstrated good adsorp-
tion potential in agriculture materials like Acacia leucoceph-
ala bark [112], apricot seeds, cotton stalks [113], avocado, 
melon and dragon fruit peels [114], Bael fruit (Aegle marme-
los correa) shell [115], banana peels [116,117], coconut coir 
pith, [118], coffee grounds [119], mango peel [120], Moringa 
oleifera bark [121,122], orange peel [123], Peanut hull [124], 
peanut husk [125], pomegranate peel [126], red pepper [127], 
rice bran [128], sago [129], Salsola vermiculata [130], Swede 
rape straw (Brassica napus L.) [131], turmeric [67], walnut 
shell [132], wheat bran [133], soybean hulls, grapes stalks, 
sugar beet pulp, sunflower stalks, coffee beans [134], pine 
bark, cone and sugar cane, due to low cost, availability and 
eco-friendly nature and high efficiency [135,136].

Sha et al. [123] described copper and cadmium’s 
adsorption behavior on acetic acid modified orange peel. 
The basic characteristics of this adsorbent were studied by 
infrared spectrophotometer. It was found that adsorption 
of Cu2+ and Cd2+ was dependent on pH, contact time, and 
initial metal ion concentration. Results showed that max-
imum adsorption capacities of Cu2+ and Cd2+ on the modi-
fied orange peel were 70.67 and 136.05 mg/g, respectively. 
Moreover, this material can be used up to five times due 
to regeneration ability. It was concluded from this study 
that the orange peels, after simple modification could 
be used as potential adsorbent for the removal of heavy  
metals.

Ajmal et al. [135] studied the ability of orange fruit peel 
to remove heavy metals like nickel from aqueous solu-
tion, and it was found that removal extent was dependent 
on pH, temperature, and initial concentration. The process 
was endothermic, and the maximum adsorption percentage 
was 96% at 50°C and pH 6. Moreover, the adsorbent can be 
regenerated and recycled thrice. From these results, it was 
concluded that peels of orange can be used as an effective 
adsorbent for the removal of nickel from wastewater.

Mallampati et al. [114] selected three natural, simple, 
and renewable materials such as avocado, melon and dragon 
fruit peels for water purification, and different analytical 
techniques were applied to characterize the morpholo-
gies of the peels. Results showed that the extraction effi-
ciency of dragon fruit peels was highest for alcian blue dye 
(71.85 mg/g) and methylene blue dye (62.58 mg/g), and 
extraction capacity of melon peels and avocado peels was 
(7.89 and 9.82 mg/g) for Pb2+ and (9.45 and 4.93 mg/g) for 
Ni2+. The results also revealed that these materials can be 
regenerated and reused for many cycles.
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Wang et al. [124] used peanut hull (an agricultural 
by-product abundant in China) as adsorbent for removing 
Cu(II) from aqueous solution. Adsorption extent was inves-
tigated as a function of contact time, pH, concentration, and 
temperature, and it was found that maximum removal was 
reached at pH 5.5, and equilibrium was obtained within 
2 h. The adsorption capacity of Cu(II) was 21.25 mg/g at 
30°C, so, from obtained data, it was concluded that pea-
nut hull is an excellent element for the removal of heavy 
metals from wastewater.

Bhatnagar and Minocha [126] studied the feasibility of 
pomegranate peel waste for the removal of nickel from water, 
and it was found that adsorption was endothermic and max-
imum adsorption capacity of pomegranate peel for nickel 
removal was 52–72 mg/g with the variation of temperature, 
moreover, it was seen uptake rate of nickel was initially 
rapid, and 50% adsorption was obtained within 2 h while 
equilibrium was achieved within 7h, so, it was concluded 

from the present study that pomegranate peel waste could be 
used beneficially for the removal of nickel from wastewater.

Jain et al. [23] used the rice husk to remove the Rhodamine 
B (toxic and hazardous dye of xanthene class, used in tex-
tiles and foodstuffs as a colorant) from the wastewater. The 
results showed that 90% adsorption was obtained at 2.1 
pH, and equilibrium was achieved within 2 h. Chemical 
oxygen demand (COD) measurements were carried out to 
observe the quality of water before and after the treatments 
and it was observed that COD value of water decreased 
from 1,608 to 276 mg/L after the treatment, so it was con-
cluded that rice husk is a feasible and good adsorbent for 
the wastewater treatment.

Özcan et al. [127] investigated the adsorption of copper 
ions on Capsicum annuum (red pepper) seeds. The nature of 
adsorption and interaction of metal ions was examined by 
the application of different techniques with the variation in 
the parameters of temperature, initial concentration, time, 

Table 2
Various types of composite materials and their applications for the removal of pollutants at optimum parameters

Composite ion Type Pollutants Analytical tech-
nique

Temp. Time for 
equilibrium

pH Adsorption Ref.

Polyaniline Sn(IV) 
molybdate

Crystalline 
organic–inorganic 
composite cation 
exchanger

Lead FTIR, TGA-DTA, 
SEM and X-ray 
analysis

45°C 30 min 8.0 99% [21]

Polypyrrole Th(IV) 
phosphate

Composite cation 
exchanger

TCA – – 72 min – 98% [109]

Sodium dodecyl 
sulfate acrylamide 
Zr(IV) selenite (SDS-
AZS)

Nanocomposite 
cation exchanger

Lead EDX, TGA, TEM, 
SEM, FTIR and 
XRD

55°C 40 min 6.0 90% [7]

Polyaniline Sn(IV) 
molybdate

Organic–inorganic 
composite cation 
exchanger

Lead FTIR, TGA-DTA, 
X-ray, SEM

200°C – 2.8 98.5% [21]

Polyaniline Sn(IV) 
tungstomolybdate 
nanocomposite 
(PSTM)

Ion exchanger Lead TEM, FTIR, XRD 
and SEM

50°C 50 min 6.0 85% [30]

Polyaniline-Zr(IV) 
phosphoborate 
(PZPB)

Composite material Mercury X-ray diffracto-
gram

37°C 180 min 6.0 86.3% [79]

Polyaniline Sn(IV) 
silicate

Organic–inorganic 
based composite 
cation exchanger

Cadmium XRD, SEM and 
TGA

45°C 40 min 9.0 92% [17]

Polyaniline Th(IV) 
tungstomolybdo-
phosphate (PANI/
TWMP)

Nanocomposite ion 
exchanger

Copper FTIR, XRD, SEM 
and TEM

400°C – – 96% [14]

Fe3O4−TSC nano-
composite

Nanocomposite ion 
exchanger

Malachite green 
(MG) dye

FTIR 25°C 40 min 7.0 98.5% [45]

Polypyrrole Th(IV) 
phosphate compos-
ite cation-exchanger

Composite cat-
ion-exchanger

Trichloroacetic 
acid herbicide

– 25°C 70 min 6.0 98% [179]
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adsorbent dose, and pH. The results showed that equilib-
rium was attained within 60 min at 50°C, and 11.53 mg/g 
copper was adsorbed on the red pepper seeds. These 
results concluded that red pepper can be further used as a 
copper adsorbent from wastewater.

Bhanger et al. [137] utilized the water melon peels for the 
removal of methyl parathion (pesticide) after their chemical 
and thermal treatment. For the characterization of water, 
melon peels, different analytical techniques like SEM and 
BET (Brunauer–Emmett–Teller) were carried out, and the 
effect of pH, shaking speed, contact time, adsorbent dose, 
initial concentration and temperature was measured by 
variation of these parameters. By using 0.1g of adsorbent 
at 6.0pH maximum adsorption was achieved within 60 min 
and this method was employed for the removal of methyl 
parathion from surface water with 99% ± 1% removal.

Rao and Rehman [138] studied the adsorption of Cr(VI) 
by using the fruits of Ficus glomerata in the batch system. 
They investigated the effect of the initial concentration of 
chromium, pH, temperature and time while surface mor-
phology and active functional groups present on the adsor-
bent surface were investigated by using the SEM and FTIR. 
The applicability of the adsorbent was demonstrated by 
removing the Cr(VI) from electroplating wastewater, the 
percentage adsorption of Cr(VI) was 98% at 50°C and 2.0 pH 
while the adsorbent dose was ranging from 0.2 to 0.1 g/L, 
and equilibrium was obtained within 40 min. This study 
indicated that Ficus glomerata is the best adsorbent for the 
removal of Cr(VI) from aqueous solution.

Table 3 shows the main characteristics of agricultur-
al-based adsorbents with their adsorption capacities for the 
removal of various pollutants from aqueous solutions.

3.4. Activated carbons (AC)

Among many adsorbent, activated carbon (Non-graphite 
class of carbons) has gained widespread importance due 
to its use for [56,89] the treatment of pollutants released 
from textile industries [139,140]. It can be defined as “solid 
carbon, which is thermally produced having porous struc-
ture [141], large internal surface area (500–3000 m2/g, high 
mechanical strength, highly active [142] and suitable sur-
face for the reactivity”. Generally, it may be macro-porous 
or meso-porous and micro-porous used to remove large 
molecules and small molecules, respectively.

Activated carbon contains heteroatoms like hydrogen 
and oxygen and has many carbon-carbon incomplete bonds 
that create chemically active sites responsible for specific 
chemical and physical interactions [143]. It is one of the most 
common, versatile and effective media for removal, separa-
tion and purification of a wide range of pollutants released 
from industrial and municipal wastewaters [111] throughout 
the world due to having a high capacity for the adsorption 
of metal ions, phenols, dyes and other pollutants [141–145]. 
The activated carbon is produced from various raw materi-
als, so, it exhibits different properties, moreover, agriculture 
and waste food materials can be turned into activated car-
bons by some pretreatments, which include carbonization. 
After carbonization, this carbonized biomass (charcoal) is 
activated by activation process (single or many steps). This 
activation process, either physical or physical/chemical must 

be at low temperature (400°C–600°C) or at high tempera-
ture (700°C–1,000°C) [67,141,145]. These pretreatments are 
done to enhance and reinforce the functional group poten-
tial and consequently increase the number of active sites. 
These raw materials can be modified into activated carbon 
for the development of desirable properties for adsorption 
like pore size, volume, surface area and functional groups. 
The modification of techniques can be classified into three 
main groups: (i) modification with biological compounds; 
(ii) modification with physical compounds and; (iii) modi-
fication with chemical compounds. Modification with chem-
ical compounds has been more frequently used to increase 
the adsorption process.

Many cheap and easily available agricultural materials 
such as apple pulp [146], apricot stone [147], avocado ker-
nels [148], carrot residue [149], bagasse pith [150], babbool 
wood [151], citrus fruit peel [152], coconut shell fibers [67], 
cocoa shells and siriguela seeds [153], corncob [154], date 
stems [130], 2-amino-5-guanidinopentanoic acid modified 
activated carbon (AGDPA@AC) [155], grape seed [156], 
guava seeds [157], jack fruit peel [158], jatropha husk [159], 
longan seed [160], lotus stalks [139], mango seed [161], olive 
fruit stone [162], orange peel [163], palm seed coat [164], pea 
shell [165], peanut shell [166], pomelo skin [167], Potato peel 
[168,169], pumpkin seed hull [170], rambutan (Nephelium lap-
paceum) peel [171], reedy grass leaves [139], rice husk, cot-
ton [172], sago waste, maize cob, banana pith [173], soybean, 
cotton seed hulls, rice straw, sugarcane bagasse [174], sugar 
cane bagasse [130] and Sunflower seed oil [175] have been 
used as a source for the production of activated carbon for 
the removal of pollutants and heavy metals from the waste-
water, due to their low cost and abundance (Fig. 3) [155].

Mohan et al. [67] prepared a low-cost activated carbon 
from coconut shell fibers and utilized it in the adsorption 
process for the decontamination of chromium Cr(III) from 
tanneries effulents/ wastewater. The maximum adsorption 
capacity was 12.2 mg/g at 25°C and 16.10 mg/g at 40°C. The 
adsorption of Cr(III) was almost 100% at pH 5.0, and equi-
librium was established within 48 h. It was concluded that 
adsorption was rapid within the first hour of contact, and 
40%–50% adsorption occurred within the first hour of contact.

Mohan et al. [67] prepared a low-cost activated carbon 
from the fibers of coconut shell (agriculture waste) and uti-
lized it to treat trivalent chromium Cr(III) from wastewater. 
It was seen that the maximum adsorption capacity at 25°C 
was 12.2 mg/g, and at 40°C, it was 16.10 mg/g.

Jain et al. [23] used the activated carbon to remove the 
Rhodamine B (toxic and hazardous dye of xanthene class, 
used in textiles and foodstuffs as a colorant) from the 
wastewater. The results showed that 93.2% adsorption was 
obtained at 2.1 pH. COD measurements were also carried 
out to observe the quality of water before and after the treat-
ments and it was observed that COD value of water was 
decreased from 1,608 to 267 mg/L after the treatment. It was 
concluded that AC is feasible and good adsorbent for the 
wastewater treatment.

Wang et al. [56] synthesized AC with the surface area 
of about 1,400 m2/g from Polygonum orientale Linn. (PL) 
by phosphoric acid activation for the adsorption of Pb(II) 
ions from aqueous solutions. Morphological features and 
ability of this low cost activated carbon was investigated 



Table 3
Main characteristics of agricultural-based adsorbents with their adsorption capacities for the removal of various pollutants from 
aqueous solutions

Agriculture 
adsorbents

Pollutants to 
be removed

Adsorbent 
dose

Temperature Contact 
time

pH Initial pollutant concen-
tration range

Amount 
adsorbed (qe)

Ref.

Rice husk Phosphate 3 g/L 24.85°C 180 min 6.0–8.0 10–30 mg/L 68 mg/g [180]
Coconut shells Urea 8 g/L 30°C 200 min – 4959 mg/L; 19,800 mg/L 60 mg/g; 

256.41 mg/g
[181]

Branches of 
pomegranates 
trees

Anionic 
herbicide 
bentazon

1.5 g/L 30°C 8–10 h – 200–250 mg/L 80 mg/g [182]

Grapefruit peel U(VI) 2 g/L 24.85°C 60–80 min 4.0–6.0 50–500 mg/L 140.79 mg/g [183]
Lentil shell 
(raw)

Cu(II) 10 g/L 39.8°C 180 min 6.0 25–500 mg/L 9.59 mg/g [184]

Mango peel 
waste

Cu(II) 5 g/L 25°C 60 min 5.0–6.0 10–500 mg/L 46.09 mg/g [185]

Garlic peel Pb(II) – 25°C 60–120 min 4.0–7.0 1–200 mg/L 109.05 mg/g [186]
Orange peel Cu(II) 5 g/L 25°C 120 min 5.0–5.5 10–300 mg/L 40.37 mg/g [187]
Melon peel Pb(II) 5 g/L 25°C 120 min 4.5 1–5 mmol/L 167.8 mg/g [188]
Grapefruit peel Pb(II) 10 g/L 30°C 90 min 5.3–6.5 100 mg/L 12.73 mg/g [189]
Cucumis sativus 
peel

Cd(II) 1 g/L 24.85°C 60 min 5.0 5–150 mg/L 58.14 mg/g [190]

Sunflower hull Cu(II) 2 g/L 30°C 180 min 5.0 25–200 mg/L 57.14 mg/g [191]
Sugarcane 
bagasse

Hg(I) 5 g/L 30°C 60 min 4.0 76 mg/L 35.71 mg/g [192]

Pomegranate 
peel

Ni(II) 10 g/L 25°C 120 min 5.5–6.5 – 52 mg/g [193]

Mosambi (Cit-
rus limetta) peel

Cr(VI) 5–50 g/L 40°C 120 min 2.0 200–300 mg/L 250 mg/g [194]

Rice straw Cd(II) – 25°C 180 min 2.0–6.0 25–350 mg/mL 13.84 mg/g [195]
Cashew nut 
shell (raw)

Ni(II) 3 g/L 30°C 30 min 5.0 10–50 mg/L 18.86 mg/g [196]

Potato peels Cu(II) 10 g/L 29.85°C 20 min 6.0 150–400 mg/L 0.3877 mg/g [197]
Olive stone Cu(II) – 20°C 60 min 5.5–6.0 3.0 × 10−4 to 0.15 mol/L 3.19 × 10−5 mol/g [198]
Garden grass Pb(II) 0.5 g/L 29.85°C – – 1–500 mg/L 58.34 mg/g [199]
Gourd peel 
powder

Cr(VI) 6 g/L 28°C 40–60 min 1.0 75–350 mg/L 18.7 mg/g [200]

Pomelo peel Cu(II) 5 g/L 25°C 60 min 4.0 25–125 mg/L 19.7 mg/g [201]
Barley straw Cu(II) 1 g/L 25°C 120 min 6.0–7.0 0.0001–0.001 mol/L 4.64 mg/g [202]
Egyptian 
mandarin peel 
(raw)

Hg(II) 5 g/L 19.85°C 24h 6.2 50–200 mg/L 19.01 mg/g [203]

Banana peel Cd(II) 30 g/L 25°C 20 min 3.0 30–80 mg/L 5.71 mg/g [204]
Pear millet husk 
carbon

Methylene 
blue dye

100 mg/L 32°C – 6.0 10–60 mg/L 82.37 mg/g [205]

Mango seed 
powder

Methylene 
blue

6.67 mg/L 30°C 140 min 8.0 20–100 mg/dm3 142.86 mg/g [161]

Ficus glomerata Cr(VI) 0.2–1.0 g/L 50°C 40 min 2.0 10–100 mg/L 98% [138]
Capsicum 
annuum (red 
pepper) seeds

Copper(II) – 50°C 60 min 5.0 1.2 g/dm3

2.0 g/dm3

5.55–11.53 mg/ g [127]

Watermelon 
peels

Methyl 
parathion 
pesticide

– 30°C 60min 6.0 (0.38–3.80) × 10–3 mol/dm3 99% [137]

Carica papaya 
seeds

Methylene 
blue dye

0.05 mg/L 30°C 120 min 7.0 10–400 mg/L 99% [206]
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by different techniques like XRD, BET, FTIR and SEM 
analysis. About 69.5% Pb(II) was taken up by Polygonum 
orientale Linn activated carbon (PLAC) and equilibrium 
was established after 30 min. It was concluded that car-
boxyl groups play an important role in Pb(II) adsorption 
and adsorption of Pb(II) on PLAC was strongly influenced 
by ionic strength and pH. It was also studied that PLAC 
has the ability to regenerate after desorption with HCl. 
Therefore, it has great potential to be used as an economi-
cally efficient adsorbent.

Naushad et al. [149] used a bio-adsorbent carrot res-
idue (CR) (Daucus carota L.) for the production of AC by 
using HNO3 as a chemical activator for the removal of 
BrO3

–
. Several analytical techniques were applied for the 

characterization of this chemically AC. Ultra-performance 
liquid chromatography mass spectrometry was used to 
assess the concentration of BrO3

–. Equilibrium was achieved 
within 40 min and 93.7% BrO3

–
 was adsorbed at the most 

suitable pH (3.5) and temperature. It was concluded that 
AC, which was derived from carrot residue is excellent and 
feasible candidate for the removal of BrO3

–, which is a very 
toxic water pollutant.

Hai et al. [176] developed the date-based bio-char 
through the pyrolysis technique. The developed bio-char was 
modified into porous activated carbon using KOH. Finally, 
AC based electrodes were fabricated as high performed 
CDI electrodes for NaCl removal from saline solution as 
clearly shown in Fig. 4.

 
Fig. 3. Adsorption/desorption mechanism for the MB dye onto AGDPA@AC composite adapted with permission from the study of 
Naushad et al. [155].

 

Fig. 4. Preparation of date seed-derived highly mesoporous activated carbon for high electrochemical performances of capacitive 
deionization electrodes for NaCl removal. Adapted with permission from the study of Hai et al. [176].
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Rambabu et al. [177] developed the watermelon-based 
activated carbon (WMAC) and its MnFe2O4 composite 
(WMAC/MnFe2O4) for NaCl desalination via single-step 
low-temperature pyrolysis by H3PO4 activation. NaCl 
removal studies using WMAC/MnFe2O4 showed an electro-
sorption capacity of 29 mg/g for the nanocomposite, with 
rapid desalination and good recyclability. Fig. 5 shows the 
preparation of WMAC/MnFe2O4 composite material and 
SEM images for WMAC and WMAC/MnFe2O4 composite.

Table 4 shows the main characteristics of activated car-
bon adsorbents as well as their adsorption capacities for 
the removal of various pollutants from aqueous solutions.

4. Advantages, disadvantages and future prospects

The presence of different pollutants and heavy metal 
ions in water at higher concentrations is a severe matter. 
These pollutants induce adverse health effects and envi-
ronmental problems; therefore, there is a requirement 
for detailed studies on the presence of these pollutants in 
water, their health effects, and their treatment by using 
different adsorbents. This review paper discusses various 

health problems associated with these pollutants and other 
adsorption materials for the removal of various pollutants 
from aqueous medium. Generally, adsorption is one of the 
best water treatment technologies suitable for the adsorp-
tion of various pollutants from waste and natural water 
sources. Different adsorbent materials cited in this paper 
are very effective materials for the treatment of pollut-
ants. Cited composite materials, agriculture materials, and 
activated carbon have been discussed due to their specific 
characteristics like low cost, abundant availability, fast and 
high removal efficacy.

5. Conclusion

Nowadays, the removal of different pollutants and 
heavy metal ions from water is essential due to their 
adverse effects on the environment and living species. In 
this review article, a detailed discussion on the adverse 
effects of the different pollutants and heavy metals and 
their toxicity has been presented. This review article also 
shows the removal of different pollutants from water. It 
was concluded that composite ion exchange materials, 

 
Fig. 5. (a) Scheme for the development of WMAC/MnFe2O4, (b–d) FE-SEM images of WMAC, (e–g) FE-SEM images of WMAC/
MnFe2O4 nanocomposite. Adapted with permission from the study of Rambabu et al. [177].
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Table 4
Main characteristics of activated carbon adsorbents as well as their adsorption capacities for the removal of various pollutants from 
aqueous solutions

Source of acti-
vated carbon

Pollutants to be 
removed

Adsorbent 
dose

pH Contact 
time

Temperature Initial pollutant 
concentration 
range

Amount 
adsorbed 
(qe)

Ref.

Silk cotton 
hull

Methylene blue, Mer-
cury(II) Nickel(II)

5.0 g/L 4.0–5.0 – 31°C 25 mg/dm3 4.7 mg/g [173]

Cassava peels Cu(II) 10 g/L 8.0 20–120 min 39.85°C 4 mg/L 8.0 mg/g [207]
Date seed Anionic herbicide 

bentazon
0.8 g/L 5.5 24 h 30°C 25–250 mg/L 86.26 mg/g [208]

Rice husk Phosphate 3.0 g/L 6.0–8.0 180 min 24.85°C 10–30 mg/L 97.0% [180]
Coconut tree Mercury(II) Nickel(II) 

methylene blue
5 g/dm3 4.0–6.0 – 31°C 25 mg/dm3 4.70 mg/g [173]

Pomegranates 
trees

Anionic herbicide 
bentazon

1.5 g/L – 8–10 h 30°C 200–250 mg/L 80.0 mg/g [182]

Sago waste Methylene blue, Mer-
cury(II) Nickel(II)

5.0 g/L 3.0–4.0 – 31°C 25 mg/dm3 4.51 mg/g [173]

Fruit juice 
residue

Phosphate 3.0 g/L 6.0–8.0 180 min 24.85°C 10–30 mg/L 99.9% [180]

Apricot waste Methylene blue 2.0 g/L – – 50°C 100–400 mg/
dm3

136.98 mg/g [209]

Almond shell Methylene blue – – 24 h – – 1.33 mg/g [210]
Maize cob Methylene blue, 

Rhodamine, Mercu-
ry(II) Nickel(II)

5.0g/L 4.0 – 31°C 25 mg/dm3 5.0 mg/g [173]

Banana stalks Anionic herbicide 
bentazon

1.2 g/L – 1 d 30°C 250 mg/L 100.95 mg/g [211]

Sugar cane 
bagasse

Acid blue 80 0.01 g/L 7.4 21 h – 20–1,050 mg/
dm3

391 mg/g [212]

Date pits Methylene blue 5.0 g/L – – 25°C 20–400 mg/dm3 123.1 mg/g [213]
Sky fruit husk Anionic herbicide 

bentazon
0.8 g/L 5.0 20 h 30°C 250 mg/L 131.11 mg/g [214]

Longan seed Cr(VI) 0.5 g/L 3.0 1.5 h 50–500 mg/L 28.74 mg/g [160]
Euphorbia 
rigida

Disperse orange dye 2 g/L 7.0 – 20°C – 118.93 mg/g [215]

Banana pith Methylene blue, 
Mercury(II) Nickel(II), 
Rhodamine

5.0 g/L 4.0 – 31°C 25 mg/dm3 4.67 mg/g [173]

Palm seed 
coat

Phenol 2 g/L 4.0–9.0 3 h - 10–60 mg/L 96% [164]

Coconut Methylene blue 0.25 g/L 8.0 – 25°C 1.00 × 10–5 mg/
dm3

15.25 mg/g [216]

Rambutan 
(Nephelium 
lappaceum) 
peel

Acid yellow dye – 6.8 4 h 30°C 50–400 mg/L 218 mg/g [171]

Jute fiber Methylene blue 0.4–4.0 g/L 5.0–
10.0

250 min 28°C 50–200 mg/dm3 225.64 mg/g [217]

Corncob Acid blue dye 1 g/L 6.1 – 30°C – 1,060 mg/g [218] 
Coconut shell 
fibers

Cr(III) 2 g/L 5.0 48 h 25°C 25–100 mg/L 12.2 mg/g [67]

Palm kernel 
shell

Methylene blue dye 1g/L 7.0 40 min 28°C 100–700 mg/
dm3

311.72 mg/g [219]

(Continued)
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activated carbon, and agricultural materials are very effec-
tive adsorbent materials for different pollutants from 
water due to their availability, low-cost and high removal 
efficacy. The novel literature on water treatment applica-
tions of these adsorbents has been thoroughly discussed. 
The main characteristic and adsorption capacities of these 
adsorbents have also been discussed. Therefore, the present 
study in the form of a literature review would be beneficial 
for further research in the field of water treatment.
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