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a b s t r a c t
This study used an enzyme-free electrochemical technique to identify low quantities of Malathion 
in sea water samples. The working electrode was made from carboxylated multiwall carbon nano-
tubes (c-MWCNTs) that were hybridised with copper oxide nanostructures (CuO NRs). Scanning 
electron microscopes (SEM) and transmission electron microscopes (TEM) were used to examine 
the morphology of the produced MWCNT and CuO NRs. X-ray diffraction was used to determine 
the crystallinity of produced materials. The electrochemical behavior of the non-enzymatic sensor 
was used to determine the presence of Malathion insecticides using linear sweep voltammetry 
(LSV), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Scanning 
electron microscopy and transmission electron microscope images showed that the produced 
MWCNT and CuO NRs were well-synthesized, and the CuO NRs were successfully connected to 
the growing MWCNT. The charge-transfer resistance (Ret) of the suggested c-MWCNT-CuO/GE 
and c-MWCNT-CuO/GE was lowered from 143 to 73.4Ω, showing improved electron transport 
and conductivity. The proposed c-MWCNT-CuO/GE had good electrochemical properties, such 
as a wide dynamic range (20–250 nM) and a low detection limit of 0.303 nM for the LSV approach. 
It had strong stability for 3 d, with a current response of 91 percent, high selectivity since the 
interference effect was less than 7%, and reproducibility was evaluated with five electrodes, yield-
ing a standard deviation of 2.203%. The non-enzymatic sensor detected Malathion (organophos-
phorus insecticides) in aquatic environmental samples with recoveries ranging from 97% to 102% 
and relative standard deviations of less than 2%.

Keywords:  Electrochemical sensor; Non-enzyme sensor; Malathion; CuO nanostructure; Carboxylated 
multiwall carbon nanotubes; Cyclic voltammetry

1. Introduction

Organic pesticides like organophosphorus pesticides
(OPs) are commonly used to protect crops from pests [1]. 
They are, however, hazardous compounds and highly toxic 
substances that can harm both animals and humans [2–4]. 

They are absorbed in a variety of ways by the living body, 
many of which are severe [5–8]. Organochlorine pesticides 
are another type of organic chemical that is extremely dan-
gerous to all living things. These herbicides pollute the 
environment and have serious environmental consequences 
[9–12]. Malathion (MLT) is a common OP with the chemical 
formula diethyl 2-[(dimethoxyphosphorothioyl)sulfanyl]



241E. Serag et al. / Desalination and Water Treatment 236 (2021) 240–249

butanedioate. Excessive MLT use can be harmful to aquatic 
organisms, vertebrates, and humans by interfering with 
nervous systems, causing symptoms such as headaches and 
nausea, and suppressing the immune system at high doses. 
Furthermore, it pollutes groundwater and agricultural prod-
ucts [13,14]. As a result, detecting OPs requires a sensitive, 
precise, rapid, and dependable analytical approach. Gas 
chromatography with ECD and/or MS detectors [15–21], as 
well as liquid chromatography [22], have all been demon-
strated to be extremely accurate and sensitive methods for 
detecting OPs. They do, however, face numerous challenges, 
such as large tools, high costs, and sophisticated opera-
tion and processing, all of which require time and effort. 
As a result, because of its simple operating procedures, low 
cost, quick turnaround time, and excellent repeatability and 
reproducibility, most modern research groups focus on the 
electrochemical approach [23].

Certain substances can be detected both enzymati-
cally and non-enzymatically using the electrochemical 
approach [24–28]. The enzymatic electrochemical approach 
has some drawbacks, such as a time-consuming immobil-
isation procedure, high enzyme costs, and poor stability, 
repeatability, and reproducibility [29]. As a result, current 
research [23] is focusing on non-enzymatic electrochem-
ical detection methods. Metal oxides such as CuO, ZnO, 
Fe2O3, Co3O4, and NiO have previously been used in non- 
enzymatic sensors [30,31].

CuO is a potent electrode material for non-enzymatic 
sensors when compared to other nanostructured transi-
tion metal oxides due to its natural availability, excellent 
electrocatalytic activity, low cost, relatively low resistance, 
and lower interference [32–34]. It also has a strong affin-
ity for sulfur-containing compounds [35–37]. The detec-
tion technique is based on the detection of CuO’s good 
redox peaks in a blank buffer system, which show sig-
nificant suppression after the addition of Malathion to 
the solution, indicating an effect on CuO electrochemical  
behaviour.

CuO’s poor conductivity, on the other hand, frequently 
influences current conduction rate, resulting in sensitivity 
reduction. CuO conductivity can be increased by chang-
ing the morphology and microstructure of the material, 
as well as by modifying the surface [38–40].

Carbon-based nanomaterials, particularly carbon nano-
tubes, have been shown to be suitable for sensor applica-
tions because they are conductive, easily functionalized, 
and have a large surface area. Carbon nanotubes (CNTs) 
are a type of nanomaterial with unique geometrical, 
mechanical, electrical, and chemical properties [41]. CNTs 
have excellent electrocatalytic activity and reduce surface 
fouling on electrochemical devices, making them ideal for 
electrochemical sensing. Carbon nanotube surfaces can 
be activated or functionalized. Molecules, enzymes, metal 
nanoparticles, and other molecules can be immobilised 
at oxygen-containing activated sites [42]. The number of 
studies that have developed non-enzymatic sensors using 
MWCNTs hybridised with polymer and metal nanoparti-
cles has increased in recent years [43–49]. The hybridization 
process improves the functional qualities of each electrode 
component and harvests unique features through the 
interaction of electrode components [50,51].

Several carbon nanotube/CuO nanocomposites were 
used to detect organophosphate pesticides in the aquatic 
environment [52]. However, more research in this area 
is required before it can be used as a method of detecting 
contaminants. As a result, this study focuses on the non- 
enzymatic detection of MLT in seawater samples using a 
carboxylic multiwall carbon nanotube (c-MWCNT)/CuO 
nanostructure modified electrode. To characterise the 
fabricated materials, various approaches were used.

2. Materials and methods

2.1. Materials

Iron nitrate, cobalt nitrate hexahydrate, aluminum 
oxide, hydrazine hydrate (N2H4·5H2O, 80%), and ethylene 
glycol (EG, C2H6O2, 99.5%), poly vinyl pyrrolidone (PVP) 
(MW = 40,000) ethanol (C2H5OH, 94%) were obtained from 
Sigma-Aldrich company and used directly without further 
purification. Copper sulfate pentahydrate, sodium hydrox-
ide (NaOH, 98%), Nitric acid (HNO3, 60%), and Sulfuric 
acid (H2SO4, 98%), were obtained from El-Nasr Co., Egypt. 
The supporting electrolyte, 0.1M phosphate–buffer solu-
tion (PBS) (pH 6) was prepared with sodium dihydrogen 
phosphate and sodium phosphate dibasic. All solutions 
were deoxygenated prior to each experiment using a flow 
of purified N2 gas for 15 min. All chemical materials were 
used without further purification.

2.2. Instrument

The electrochemical measurements were measured 
via potentiostat (Gamary Instruments Electrochemical 
Analyzer, USA) in a three electrodes glass cell. Scanning 
electron microscope (SEM) images were obtained using 
JEOL Scanning Electron Microscope model JSM-6360LA, 
Japan and X-ray diffraction (XRD) analysis was conducted on 
Schimadzu-7000 X-Ray diffractometer using Cu Kα radiation 
with 1.5406 Å wavelength.

2.3. Methods

2.3.1. Synthesis of c-MWCNT

MWCNTs were grown on an iron–cobalt catalyst 
supported on aluminium oxide (Al2O3) in the presence 
of acetylene as a carbon source in previous work [53–55]. 
The reaction took place in a horizontal tube furnace with a 
flow rate of 70 mL/min of nitrogen gas and a flow rate of 
30 mL/min of acetylene (C2H2) gas for 60 min.

The MWCNT was purified and functionalized with 
carboxylic groups using a 3:1 volume ratio of sulfuric acid 
(H2SO4) and nitric acid (HNO3). The reaction mixture was 
sonicated for 30 min in an ultrasonic bath, then heated for 
5 h at 70°C, diluted with deionized water, filtered, and 
washed with deionized water until it reached a neutral pH 
of 7. The carboxylic MWCNT (c-MWCNT) was dried in a 
vacuum oven at 70°C for 24 h.

2.3.2. Synthesis of copper oxide nanostructure (CuO NRs)

1.43 g of copper sulphate pentahydrate CuSO4·5H2O, 
2.4 g of sodium hydroxide NaOH, 0.8 g of poly vinyl 
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pyrrolidone PVP, and 80 mL of ethylene glycol EG were 
mixed in a round flask and stirred at 120°C before adding 
4.9 mL of hydrazine hydrate (N2H4·5H2O). The reaction was 
allowed to run for 90 min before being poured into deion-
ized water containing 10% hydrazine hydrate and vigorously 
agitated to remove any remaining reactants and surfactants. 
The product was vacuum dried at 60°C for 24 h [56].

2.3.3. Manufacturing of carboxylic multiwall carbon nanotube 
– copper oxide (c-MWCNTs-CuO NRs) electrode

Preparation of carboxylic multiwall carbon nanotube- 
coper oxide hybridized as described in [52] with minor 
modifications. To obtain c-MWCNTs-CuO NRs suspen-
sion, copper oxide (CuO NRs) was suspended in 10 mg 
c-MWCNTs aqueous solution with a weight ratio of 2:1, and 
the mixture was sonicated for 30 min.

Prior to modification, the graphite electrode (GE) was 
polished with 0.05 μm aluminium oxide pastes to achieve 
a mirror-like shine. To remove inorganic impurities, the 
prepared electrode was immersed in deionized water and 
sonicated in an ultrasonic bath, followed by treatment with 
ethanol in an ultrasonic bath to remove organic impuri-
ties. To obtain c-MWCNTs-CuO/GE modified electrode, a 
50 μL suspension of c-MWCNTs-CuO (NRs) was dropped 
on GE electrode using the casting method and allowed to 
dry under ambient air atmosphere. The control electrode 
modified with c-MWCNTs denoted as c-MWCNTs/GE. 
The c-MWCNTs-CuO/GE modified electrodes were then 
used as working electrode in the electrochemical cell with 
silver–silver chloride electrode (Ag/AgCl)) and graphite 
serving as reference and counter electrodes, respectively.

2.3.4. Electrochemical detection procedure

Electrochemical measurements were conducted in 
0.1 M phosphate buffer PBS (pH 6.0). Cyclic voltammetry 

(CV) was performed at a potential from 0 to 0.4 V with 
the scan rate of 25 mV s−1. Linear sweep voltammetry 
(LSV) was recorded via potential range from 1 to 0.4 V. 
Electrochemical impedance spectra (EIS) was carried out at 
a frequency ranging from 0.1 to 10,000 Hz. The Malathion 
detection was based on the relative current change (ΔI/I0) 
as the following formula.
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wherein I0 and I are the anodic peak currents of the modified 
electrode treated without and with Malathion, respectively.

Fig. 1 depicts the fabrication scheme of the MWCNTs-
CuO/GE sensor as well as the mechanism of electrochemi-
cal detection of Malathion. Malathion was absorbed on the 
electrode’s surface, and its sulfur groups coordinated with 
the active site of CuO, obstructing the oxidation–reduction 
reaction of Cu+ ions and decreasing the peak current [50,57].

2.3.5. Real sample analyses

To investigate whether the proposed electrode could be 
used to detect Malathion in seawater samples. The water 
was collected from the Elanfoushy area on Alexandria’s 
Shores, filtered through a 0.45 μm membrane to remove all 
solid pollutants, and then spiked with varying amounts of 
Malathion. Finally, under ideal conditions, the fabricated 
c-MWCNTs-CuO/GE sensor was used to detect Malathion 
in various concentrations.

3. Results discussion

3.1. Characterization

The CVD-synthesized c-MWCNTs, as well as the 
synthesized CuO (NRs), are shown in SEM images in Fig. 2.  

Fig. 1. Schematic illustration for the fabrication of c-MWCNTs-CuO/GE and the electrochemical detection of Malathion.
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As demonstrated in Fig. 2a, the density c-MWCNTs are 
sufficiently entangled and free of amorphous carbon. 
In Fig. 2b, the synthesized CuO NRs are shown, which 
have a homogenous crystalline structure and a spherical 
shape with a higher tendency for agglomeration.

Another morphological investigation was carried out 
using transmission electron microscope analysis for the 
synthesized c-MWCNTs, CuO NRs, and c-MWCNT-CuO 
(NRs) nanocomposite, as shown in Fig. 3, which shows the 
smooth surface and low graphitization of the synthesized 
MWCNTs, as well as the circular shape of the synthesized 
CuO NRs. It also demonstrates that CuO was successfully 
attached to the surface of the c-MWCNT and that a full 
uniform layer of CuO was formed on the MWCNT surface.

XRD analysis of synthesized c-MWCNT, CuO NRs, and 
MWCNT-CuO hybrids are shown in Fig. 4. The c-MWCNT 
XRD pattern displays a significant peak at 2θ = 25.2° related 
to the hexagonal graphite structure. Due to an increase in 
the sp2, C=C layers separation, this peak has shifted down 
from the peak of conventional graphite 2θ = 26.5° [51–53]. 
The prominent peaks in the CuO XRD pattern, on the other 
hand, show that the as-prepared CuO NRs have a mono-
clinic structure and good crystalline quality. The diffraction 
peaks at 2θ = 35.74°, 38.9°, 49.2°, and 74.1°, which corre-
spond to (002), (111), (202), and (222), respectively, were 
in good agreement with standard ICDD Card No. 001-
1117 and matched to previously reported ones [58,59]. The 
XRD pattern of MWCNT-CuO hybridised shows that all of 
the diffraction peaks assigned to MWCNT and CuO, and 
matched to the reported ones [60]. At 25.7°, the intense 
MWCNTs diffraction peak overlapped with that of CuO 
nanoparticles. The intensity of the other characteristic CuO 
peaks was lower. This reinforces the successful functional-
ization of MWCNTs with CuO nanoparticles [61].

The average crystallite size of the prepared CuO NRs 
and MWCNT-CuO hybridized were calculated via Scherer’s 
formula as the following [60].

D =
0 9.
cos

λ
β θ

 (2)

where k is a constant (about 0.9), λ is the X-ray wavelength 
(0.15418 nm), β is the full-width at half-maximum (FWHM) 
of the X-ray diffraction peak in radians and θ is the Bragg 
angle. Based on the Scherrer’s equation, the average crystal-
lite size for CuO and MWCNT-CuO hybridized were calcu-
lated and they were about 60.2 and 17.55 nm, respectively.

3.2. Electrochemical characterization of c-MWCNTs-CuO/GE

Fig. 5a shows cyclic-voltammetry (CV) of the modified 
electrodes c-MWCNTs/GE and c-MWCNTs-CuO/GE in 
KCl (0.1 M) containing [Fe(CN)6]3−/4− (5 mM) at a scan rate 
25 mV s−1. Potassium chloride (KCl) is used as an electro-
lyte, which is an electrically conducting solution. Potassium 
ferrocyanide is a significant redox system that is chosen 
for its electrochemical reaction at the surface. Ferricyanide 
has a reversible one-electron redox performance for both 
c-MWCNTs-CuO/GE and c-MWCNTs/GE, as shown in 
Fig. 5a. The strong electro-catalytic activity and huge sur-
face area of c-MWCNTs are responsible for the remarkable 
voltammetric response of the ferricyanide redox pair on the 
c-MWCNTs electrode. The current peak of the c-MWCNTs-
CuO/GE electrode was higher than that of the c-MWCNTs/
GE electrode, indicating that the CuO NRs have improved 
the electro-catalytic active surface area. The CV curve for the 
modified c-MWCNTs-CuO/GE in the absence and presence 
of 20 nM Malathion and 0.1 M phosphate buffer PBS (pH 6) 
is shown in Fig. 5b. The peak signals were further reduced 
after incubation of the modified electrode with Malathion, 
due to Malathion absorption on the surface of CuO, which 
resulted in the formation of a barrier that blocked the redox 
reaction of CuO NRs [14]. In 0.1 M PBS solution contain-
ing 20 nM Malathion, the effects of scan rate (10–90 mV s–1) 
on the peak current of a c-MWCNT-CuO modified elec-
trode are illustrated in Fig. 5c. With R2 values of 0.986 and 
0.984, the oxidation and reduction peaks increased lin-
early with the square root of the scan rate, indicating that 
the electrochemical reaction was a dielectric reaction [57].

To investigate the electron transfer rate at the 
electrode-electrolyte interface, electrochemical impedance 

Fig. 2. SEM image of the synthesized: (a) MWCNT and (b) CuO NRs.
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spectroscopy (EIS) was used. At high frequencies, electron 
transfer is a limited process, with the charge-transfer resis-
tance (Ret) equal to the semicircle part’s diameter, whereas 
at low frequencies, electron transfer is accomplished through 
diffusion [54,55]. In the frequency range of 0.1 Hz to 100 kHz, 
the EIS of bare c-MWCNT/GE (a) and c-MWCNTs-CuO/
GE (b) are given in Fig. 6. It can be shown that the Ret of 
c-MWCNT/GE is 143 Ω, while the Ret of c-MWCNTs-CuO/

GE electrode is around 73.4 Ω, suggesting that the introduc-
tion of CuO NRs effectively enhances electron transfer and 
improves the conductivity.

3.3. Electrochemical detection of Malathion

LSV approach was employed to examine the effi-
ciency of the Malathion detection at the c-MWCNTs-CuO/
GE (Fig. 7). Different concentrations of Malathion were 
added to a PBS solution pH 6.0, and the current inhibition 
is proportional to the concentration of Malathion ranging 
from 20–250 nM. The linear curve fit a regression equa-
tion of I = 17.29 + 0.0.05 concentration with an R2 of 0.983. 
The limit of detection (LOD) was calculated as three times 
the blank signal’s standard deviation and was estimated 
to be 0.303 nM (S/N = 3). The linear range and detection 
limit of c-MWCNTs-CuO/GE were found to be quite similar 
to those of other Malathion non-enzymatic electrochemical 
sensors, as shown in Table 1.

3.4. Reproducibility and selectivity of the proposed sensor

The reproducibility of the modified electrodes 
c-MWCNTs-CuO/GE was tested by preparing five inde-
pendent electrodes and measuring Malathion (20 nM) in 

(a) (b)

(c)

Fig. 3. TEM image of the synthesized: (a) c-MWCNT, (b) CuO NPs, and (c) c-MWCNT-CuO nanocomposite.

Fig. 4. XRD patterns for grown c-MWCNT, synthesized CuO 
NRs, and c-MWCNT-CuO hybridized.
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phosphate buffer pH 6 with an amperometric measure-
ment. The relative standard deviation (RSD %) for three 
repeated experiments was 2.203%, demonstrating strong 
repeatability for c-MWCNTs-CuO/GE. The stability of the 
fabricated c-MWCNTs-CuO/GE electrode was tested using 
an amperometric signal sensing measurement of Malathion 
concentration (20 nM) every 3 d for three weeks. The cur-
rent response in the test retained around 91% of the origi-
nal measurement, showing that the manufactured electrode 
is stable. Malathion was detected electrochemically in the 
presence of interfering species such as common coexist-
ing cations K+, Na+, anions such as Cl–, SO4

–2, and mole-
cules such as glucose at concentrations 10-fold greater than 
Malathion (20 nM). In the presence of the inference, the 

signal change in Malathion detection was less than 7%, as 
shown in Fig. 8. The anti-interference ability of the fabri-
cated electrode c-MWCNTs-CuO/GE can be attributed to the 
coordination between CuO NRs on the fabricated electrode 
and thiophosphoryl group of Malathion [49].

3.5. Detection of Malathion in real samples

The manufactured electrode c-MWCNTs-CuO/GE was 
utilized to detect Malathion in seawater samples to test 
the effectiveness of the proposed sensor. Malathion with 
known concentrations (20, 40, and 60 nM) was added after 
the pH was adjusted to 6.0 using 0.1 M phosphate buffer. 
Table 2 demonstrates that the suggested manufactured 

Fig. 5. (a) CV of c-MWCNTs/GE and c-MWCNTs-CuO/GE in 0.1 M KCl containing 5 mM [Fe(CN)6]3−/4− at a scan rate 25 mV s−1, (b) CV 
curve for (i) c-MWCNTs-CuO/GE in the absence and (ii) presence of 20 nM Malathion and 0.1 M PBS (pH 6), and (c) effects of scan 
rate (10–90 mV s−1), the inset: plot of the current (mA) vs. the scan rate1/2 (mV s–1)1/2.
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electrode functioned well in detecting Malathion in seawa-
ter, with recoveries ranging from 97 to 102% and RSDs of 
less than 2%.

4. Conclusion

Malathion was detected in an aquatic environ-
ment using the non-enzymatic electrochemical sensor 
c-MWCNTs-CuO/GE. The electrochemical activity of the 
manufactured c-MWCNTs-CuO/GE electrode was investi-
gated using cyclic voltammetry and linear sweep voltam-
metry. Based on its suppressed signal measurement with 

Fig. 6. Nyquist plots of (a) c-MWCNT/GE and (b) c-MWCNT-
CuO/GE in 5 mM [Fe(CN)6]3−/4− containing 0.1 M KCl at a fre-
quency ranges of 0.1 Hz to 100 kHz, the inset represents the 
proposed equivalent circuit.

Fig. 7. LSV at a scan rate 10 mV s–1 responses of c-MWCNT-CuO/
GE in PBS (pH 6.0) containing different concentrations of Mal-
athion (20–250 nM), and LSV plots of the current inhibition % 
values against Malathion concentration.

Table 1
Comparison of different methods for Malathion detection

Modified electrode Technique Linear range (nM) LOD (nM) References

CuO-CMWCNT/GE CV 20–300 0.143 This work
LSV 20–250 0.303 This work

CuO-NPs/3DGR/GCE DPV 0.03–1.5 0.01 [1]
CuO/SWCNT/GCE DPV 0.3–1.4 0.3 [50]
PANI-ES/SWCNTs/CPE DPV 200–1,400 200 [62]
Fe3O4NP/C-MWNT/Au DPV 0.1–40 0.1 [63]
AuNP-CS-IL/PGE SWV 0.89–5.94 and 5.94–44.6 0.68 [64]
Modified paper based electrodes CV 20–60 20 [65]
PAn-PPy-MWCNTs CV 0.03–75.0 0.003 [66]

Fig. 8. The selectivity of the fabricated c-MWCNT-CuO/GE bio-
sensors in 20 nM Malathion, with existing cations such as K+, 
Na+, and anions like Cl–, SO4

2–, and glucose with concentrations 
10-fold higher than the concentration of Malathion.

Table 2
Detection of Malathion in real seawater samples using 
c-MWCNT-CuO/GE sensor

Sample Added 
(nM)

Found 
(nM)*

Recovery (%) RSD 
(%)

1 20 20.46 102.3 0.30
2 40 40.66 101.6 0.65
3 60 58.63 97.7 1.81

*Mean of three measurements.
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a LOD of 0.303 within the concentration of Malathion of 
20–250 nM using LSV, the established sensor demonstrated 
high sensitivity for Malathion detection. The established 
sensor also demonstrated high selectivity, long-term sta-
bility, and reproducibility. It was also effective at detecting 
Malathion in seawater samples, with a high percentage of 
recovery (97.0%–102.3%).
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