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a b s t r a c t
Agriculture is one of the most important areas that is wedged by a variety of factors such as climate 
change, water level, soil characteristics, seasonal variations, and so on. Forecasting water level plays 
a major role in water management because it seriously affects the crop production. The prediction 
of water level is based on numerous sorts of data collected and derived from various sources that 
are relevant for growth using data mining techniques. These techniques used to estimate the evapo-
transpiration (ET) in the water level needed for crop and yield amount ahead of time, before the 
harvest takes place. The model is designed with six inputs parameters as minimum temperature and 
maximum temperature (°C), average humidity (%), wind speed (km/d), duration of sunshine (h), 
and radiation (MJ/m2 d) and evapotranspiration (mm) as output parameter. The model used in this 
work for computing evapotranspiration is adaptive network based fuzzy inference system (ANFIS) 
with grid partitioning (GP) method. The membership functions (MFs) have smoothness and com-
ponents for mathematical calculation, and each piece of input data can be used to get the optimal 
result in the ANFIS models by utilizing a triangular membership function (trimf). The goal of this 
system is to forecast water management to schedule irrigation based on change in climatological 
parameters and other considerations. The results show that the ANFIS is a reliable tool for calculat-
ing evapotranspiration and crop production prediction can be immensely beneficial to farmers. The 
model is confirmed using the coefficient of correlation, which shows that the observed and evaluated 
yields have a coefficient of correlation of more than 0.9. The Nash–Sutcliffe efficiency (NSE), perfor-
mance index and Willmott’s refined index of agreement have been used for performance evaluation 
and their values are 0.99, 0.998 and 0.040 respectively, suggesting satisfactory model performance. 
The ANFIS method demonstrated in this work holds promise in modelling evapotranspiration.

Keywords:  Evapotranspiration; Water management; Fuzzy logic; Adaptive network based fuzzy 
inference system; Irrigation

1. Introduction

Due to the diverse climatic conditions in countries 
like India, a wide range of plants are grown. In drought 
or flood-prone areas crop failure has major consequences 
on the local and global economy as well as food security. 

The evapotranspiration can be calculated using different 
factors such as climatic variables, biometrical traits and agri-
cultural inputs and these are used separately or in tandem 
to generate a composite model. Several studies have been 
undertaken to forecast the harvest and to predict the yield 
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using statistical models such as extreme learning machine 
and generalized regression neural network [1]. The conse-
quences of changing environmental conditions and weather 
fluctuations in various locations require continuous mon-
itoring to assist policymakers in making effective decisions 
to combat bad situations in process of food production.

In dry and semi dry environments where there is a water 
constraint, evapotranspiration is critical for optimizing irri-
gation water usage. Estimating evapotranspiration is not 
only critical for agricultural purpose but also for hydrolog-
ical and climatic research since water usage is involved in 
these areas. Artificial intelligence techniques have garnered 
increasing interest in recent years for modelling and pre-
dicting evapotranspiration. The hybrid of random forest, 
support vector regression and whale optimization algo-
rithm have been investigated to evaluate the performance of 
evapotranspiration process [2,3].

Models that describe how evapotranspiration estima-
tion respond to diverse weather conditions are essential to 
examine the impact of climate change on crop productiv-
ity. Weather and its influence are frequently contradicted 
by predictions from various models. A common technique 
is to use statistical models based on historical yields and 
certain basic climate parameters, such as average growing 
season temperature and precipitation [4]. Climate change 
is a serious issue that affects everyone. It is critical to com-
prehend its direct impact on crop growth and output. The 
evapotranspiration estimation model can be constructed 
by an adaptive network based fuzzy inference system that 
takes into account several climatic variables such as dura-
tion of sunshine, radiation, temperature, humidity, wind 
and evaporation parameters [5].

Evapotranspiration is a process that combines two 
separate processes: evaporation and transpiration. The 
passage of water from a soil or water surface into the 
atmosphere is referred to as evaporation. The transfer of 
water from the earth into a plant, up the plant body, and 
from the leaves of the plant into the atmosphere is referred 
to as transpiration. Fig. 1 depicts the simultaneous occur-
rence of evaporation and transpiration. Lakes, rivers, 
pavements, soils, and moist plants all experience evapo-
ration by vaporization. The energy required to change the 
state of water molecules from liquid to vapour is provided 
by direct sunshine and the ambient temperature. Water 
vapour is evacuated from the evaporating surface due to 
the difference in water vapour pressure between the evap-
orating surface and the surrounding atmosphere. While 
evaporation proceeds, the surrounding air becomes grad-
ually saturated, and if the wet air is not evacuated to the 
atmosphere, the process would slow down and possibly 
cease. The pace at which saturated air is replaced by dry 
air is influenced by wind speed. As a result, climatological 
factors such as temperature, humidity, sun radiation, and 
wind speed must be considered while analysing evapora-
tion. The evaporating process in the soil surface is affected 
by the water level available at the evaporating surface. 
Irrigation, rainfall, and upward water movement makes 
the soil surface wet frequently. Evaporation in the soil is 
based on the weather conditions when the soil can deliver 
water quickly enough to meet the evaporation demand. 
When the gap between rainfall and irrigation becomes 

substantial and the ability of soil to carry humidity to the 
surface is weakened, the water level in the ground low-
ers and the soil surface dries up. The limited availability 
of water in these conditions has an effect on soil evapora-
tion. The availability of water in the soil surface reduces 
and consequently the evaporation process diminishes 
and stops completely within a few days [6].

Stomata are the pores through which most of the 
water content of plant is lost. Fig. 1 depicts the little 
holes on the plant leaf for the passage of gases and water 
vapour. The plant roots collect water and certain nutri-
ents, which are then carried throughout the plant. The 
vaporisation takes place within the leaf and the stomatal 
aperture regulates the vapour exchange with the atmo-
sphere. Transpiration loses nearly all of the water taken 
in, with only a small amount being utilised by the plant. 
Transpiration, like direct evaporation, is influenced by the 
amount of energy available, the vapour pressure gradient, 
and the wind. During evaluation of transpiration, the effects 
of radiation, temperature, humidity, and wind should be 
considered. Water content in the soil and the ability of soils 
to transfer water to the roots, as well as waterlogging and 
soil water salinity, all influence transpiration rate. Crop 
features, ambient circumstances, and production practises 
also impact transpiration rate. Depending on the type of 
plant, the rate of transpiration differs. When determining 
transpiration, it is critical to consider not just the type of 
crop but also its growth, atmosphere, and supervision.

The neural network has an advantage of being able to 
learn and adapt to its surroundings. Similarly, fuzzy logic 
has ability to account for the inherent uncertainty and 
imprecision of real world systems using fuzzy if-then rules 
[7] and that constitutes its prominent feature. An integrated 
forecasting approach incorporating both the fuzzy logic 
and the neural network offers unique advantage of the 
self-adaptability and learning capability of neural network, 
as well as the fuzzy system’s capacity to use fuzzy if-then 
rules to account for the uncertainty and imprecision of real-
world systems. Because of its expert knowledge, the fuzzy 
system works as a frontend pre-processor for the neural net-
work input and output layers. The parameters of the expert 
knowledge based fuzzy system are determined using neu-
ral network learning techniques based on historical data. 
The use of adaptive network based fuzzy inference system, 

 
Fig. 1. Combination of evaporation and transpiration processes 
results evapotranspiration process.
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a hybrid system, aids in compensating for the limitations 
of the individual approaches [8]. The parameters related 
with the input membership functions are estimated using 
back propagation, whereas the parameters associated with 
the output membership functions are estimated using least 
squares estimation. Sugeno fuzzy inference uses trimf 
for input values and linear function output values in the 
suggested method. Sugeno defuzzification outperforms 
Mamdani defuzzification in terms of computational effi-
ciency [9].

2. Background

Evaporation pans are useful in hydrology because they 
combine significant physical elements such as radiation, 
temperature, humidity, sunshine length, and wind speed 
into a single evaporative demand assessment. However, 
evaporation cannot be built at every location where a res-
ervoir and irrigation are proposed or currently in place. 
It is also unusual to see it in remote places without accu-
rate instrumentation. When no pans are accessible, hydrolo-
gists, meteorologists, and agriculturalists require a practical 
approach to anticipate evaporation.

Goyal et al. [10] investigated pan evaporation in 
sub-tropical climates along with two models Hargreaves 
and Samani method and Stephens–Stewart using various 
machine learning methods such as least squares-support 
vector regression, artificial neural network, fuzzy logic, and 
adaptive neuro-fuzzy inference system modelling. Among 
those, least squares-support vector regression and fuzzy 
logic methodologies provided the best estimates for evapo-
ration in the studied watershed.

Kisi [9] explained the evapotranspiration prediction 
models based on meteorological data have been constructed 
using soft computing technologies for successful estimation. 
The test results were compared using the daily meteorolog-
ical data as inputs for fuzzy genetic models that were used 
to estimate ET using Penman–Monteith equation. According 
to the comparison results the Sugeno fuzzy approach was 
faster and more accurate in modelling daily ET than the 
Mamdani fuzzy genetic technique.

Feng et al. [11] developed an evapotranspiration estima-
tion model that included a number of climate change factors 
and used random forest and generalized regression neural 
networks. Temperature, humidity, rainfall, and wind speed 
are all factors in evapotranspiration estimation in the crop 
yield model. The model was based on data on agricultural 
yields from 2009 to 2015, as well as climate data from the 
same period. The k-fold test was used to assess model per-
formance in terms of temporal and geographical criteria, 
as well as scanning strategies for data sets. However, the 
model did not focus on forecasted temperature data, a criti-
cal aspect for water resource management.

Mousa et al. [12] discussed the combination of fuzzy rule-
based system learning and distant microwave sensing. The 
reported studies illustrate the ability of technique to solve 
a number of agricultural problems. Fuzzy logic is a sim-
ple method for obtaining a clear conclusion from evidence 
that is imprecise, ambiguous, perplexing, noisy, or absent.

Roderick et al. [13] used the PenPan model, which used 
the radiation, temperature, wind speed, and humidity as 

input data, is used to observe evaporation. Temperature 
and humidity changes were infrequent enough to have lit-
tle effect on pan evaporation rates. The attribution approach 
provided here can be utilized to decipher the aerodynamic 
and radiative drivers of the hydrologic cycle using the pan 
evaporation data.

Pandey et al. [14] used subtractive fuzzy inference 
algorithm for evaluating potato crop. At various stages of 
growth in potato crop, the variables such as plant height, 
leaf area index, biomass as well as soil moisture were 
measured. The dispersion coefficient for the horizontal 
transmit and horizontal receive and vertical transmit and 
vertical receive polarizations was used as an input during 
the network training and validation. The crop/soil param-
eter values calculated using this technology were signifi-
cantly nearer to the experimental values. The investigation 
confirmed the good estimation capabilities of fuzzy sub-
tractive grouping in potato cultivation parameters. Other 
crops grown on a regional or continental scale should 
benefit from such strategies [15–17].

3. Methodology

Evapotranspiration (ET) is an important aspect of consid-
eration in designing an irrigation system and management, 
and it is measured indirectly based on climatic factors includ-
ing temperature, wind and humidity. Evapotranspiration 
can be computed using a variety of techniques, including 
experimental relationships and combination approaches 
based on physical processes like Penman and Monteith. 
ET prediction is a complex process because the lack of 
the relevant data can result in erroneous estimation.

The proposed strategy in this work is based on an 
adaptive network based fuzzy inference system (ANFIS) 
model with six inputs such as minimum and maximum 
temperature, humidity, wind, duration of sunshine, radi-
ation and one output as evapotranspiration [18–20]. The 
output of each production is passed on to the next stage, 
which entails performing particular activities in accordance 
with current circumstances. Each input variable is consid-
ered to have three levels of values as low, medium, and 
high in inputmf (input membership function) stage and 729 
rules are generated in the rule stage, following which the 
output evapotranspiration is estimated from the outputmf 
(output membership function) as shown in Fig. 2.

3.1. Evapotranspiration calculation

The flowchart for computing evapotranspiration in 
ANFIS using MATLAB is shown in Fig. 3. In this method, 
the data set is collected and values are loaded for training 
and testing. Grid partitioning method is selected for fram-
ing fuzzy rules and membership function for six input vari-
ables and each has three levels of values as low, medium 
and high. The input parameter value is set as [333333]. 
The system is trained and tested till the best fuzzy infer-
ence system is obtained at epoch 100. The predicted result 
for evapotranspiration is computed with minimal training 
RMSE as 7.19888 × 10–7.

Weather variables, crop factors and environmen-
tal circumstances influence evapotranspiration. Climate 
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parameters are experimentally measurable factors affecting 
ET. Thus, ET can be determined with the help of meteorolog-
ical data. ET is a measurement of the evaporating power of 
atmosphere at a certain place and time of year that takes crop 
attributes and soil conditions into account. The Penman–
Monteith methodology is the only method suggested for 
determining ET. The method is chosen to closely depict 
grass ET in the region studied since it is physically based 
and clearly incorporates both physical and aerodynamic 
properties [16].

4. Dataset description of input and output variables

In the proposed methodology, six fuzzy input vari-
ables, namely, minimum temperature, maximum tempera-
ture, duration of sunshine, wind, humidity, radiation and 
one output variable, ET, are used. The system built in this 
work is based on an adaptive network based fuzzy infer-
ence system with a triangle membership function. There are 
a variety of membership functions that can be constructed 
for the given inputs and the suggested methodology 
employs the triangle membership function to simplify the 
system with Sugeno as shown in Fig. 4.

Each of the variables is represented by three terms: low, 
medium and high, with values for input variables includ-
ing minimum temperature (T1) and maximum temperature 
(T2), humidity (H), wind (W), duration of sunshine (S) and 
radiation (R). The membership function plots are shown in 
Fig. 5a–f. The ranges of values of each input variable with 
low, medium and high values are given in Table 1.

Here a weighted sum of a few data points is computed 
rather than calculating the centroid of a two-dimensional 
area. According to the simulation results, the ANFIS model 
serves as a promising tool for calculating evapotranspiration. 
The data is defuzzified using the weighted average method 

as expressed in Eq. (1). The output y is calculated using the 
following mathematical relation.
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where the membership of each rule’s output is y, the weight 
associated with each rule is zi, the number of rules is n, 
and the defuzzified output is y. A part of these numerous 
rules is shown in Fig. 6.

5. Results and discussion

It is tough to tell the difference between water lost by 
evaporation and transpiration because they happen at the 
same time. Aside from topsoil water availability, the quan-
tity of solar radiation that reaches the surface of soil is the 
most important factor in determining evaporation from a 
cropped soil. This percent decreases with time when crop 
matures and crop canopy covers more of the ground sur-
face. When the crop is tiny, soil evaporation is the primary 
source of water loss; however, once the crop has matured 
and fully covers the soil, transpiration becomes the pri-
mary source of water loss. During sowing, evaporation 
accounts for roughly 100% of ET, but under complete crop 
cover, transpiration accounts for more than 90% of ET [17]. 
Evaporation is usually measured in millimetres (mm) per 
unit time. The rate is a water depth measurement that 
expresses how much water is lost from a chopped surface. 
The time unit could be an hour, day, decade, month, or even 
a full growth season or year.

The reported works suggest that the ANFIS models 
generally outperform the other models [21]. A fundamental 

 

Fig. 2. The ANFIS methodology combines neural networks and fuzzy logic principles, as well as the benefits of both, into a 
unified framework for calculating evapotranspiration at various stages.
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advantage of these models is their ability to train several 
ANFIS models separately for different ranges. The mete-
orological data linked with each range is used to optimise 
the parameters of the ANFIS model. Because each ANFIS 
was not exposed to the entire range of substantially dif-
ferent values, the ET estimates of the subgroup ANFIS 
were less likely to diverge significantly from the related 
data. Because a single ANFIS was used without a range 
specification, a single model was built for the whole 
data set, which was subsequently subjected to extraor-
dinarily high and low ET values on a regular basis. As a 
result, weights inside the ANFIS are restricted, resulting 
in lower overall estimations [22].

The performance of our proposed model in estimating 
evapotranspiration using ANFIS and its comparison with 
Penman–Monteith method is shown in Table 2. The results 
of estimating evapotranspiration are done by using the input 
variables such as temperature, wind speed, radiation level, 
duration of sunshine and air humidity.

The seasonal impact also plays an important role on 
evapotranspiration and water management and must 
be captured by the model. In addition to the low ET rate 
during winter, there is a chance that it may rain during 
these months, so the soil would remain hydrated for a lon-
ger period of time than during the rest of the year. This 
minimizes the demand for irrigation during the winter 
months, allowing water resources to be conserved. In the 
summer, when rainfall is less and evapotranspiration is 
high, irrigation water is the only resource available to give 
the soil the appropriate moisture content, and thus irriga-
tion is dosed frequently. As a result, the behaviour of our 
system mimics the actual scenario well, demonstrating its 
efficiency, adaptability, and suitability for the manage-
ment and control of irrigation systems, along with proper 

 
Fig. 3. Methodology developed to carry out evapotranspiration 
computation.

Fig. 4. Fuzzy inference system for evapotranspiration computa-
tion using Sugeno method with six inputs and one output.

Table 1
Input values ranges for membership function construction

Input variable Range Low Medium High

T1 17.3–26
14.9 17.6 20.3
17.58 20.28 22.98
20.28 22.98 25.5

T2 25.1–30.6
22.35 25.1 27.85
25.1 27.85 30.6
27.85 30.6 33.35

H 78–84
75 78 81
78 81 84
81 84 87

W 69–130
38.5 69 99.5
69 99.5 130
99.5 130 160.5

S 2–5.1
0.45 2.3 3.55
2.3 3.55 5.1
3.55 5.1 6.65

R 12.2–17.4
9.6 12.2 14.8
12.2 14.8 17.4
14.8 17.4 20
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Fig. 6. Classical operators AND = min, OR = max, and NOT = additive complement used in this work to form fuzzy rule 
set with 729 rules and each rule’s output fuzzy sets are then combined into a single output fuzzy set. The resulting set is then 
defuzzified for evapotranspiration computation using ANFIS in MATLAB.

  

 

(a)

(b)

(c)

(d)

(e)

(f )

Fig. 5. (a) Membership function plot for minimum temperatures T1 ranges from 17.3°C to 26°C where low, medium and high plot-
ted in the range of L(14.9,17.58,20.28), M(17.6,20.28,22.98), H(20.3,22.98,25.5). (b) Membership function plot for maximum tempera-
tures T2 ranges from 25.1°C to 30.6°C where low, medium and high plotted in the range of L(22.35,25.1,27.85), M(25.1,27.85,30.6), 
H(27.85,30.6,33.35). (c) Membership function plot for humidity (H) ranges from 78%–84% where low, medium and high plotted 
in the range of L(75,78,81), M(78,81,84), H(81,84,87). (d) Membership function plot for wind (W) ranges from 69–130 km/d where 
low, medium and high plotted in the range of L(38.5,69,99.5), M(69,99.5,130), H(99.5,130,160.5). (e) Membership function plot for 
duration of sunshine (S), ranges from 2–5.1 h where low, medium and high plotted in the range of L(0.45,2.3,3.55), M(2.3,3.55,5.1), 
H(3.55,5.1,6.65). (f) Membership function plot for radiation (R) ranges from 12.2–17.4 (MJ/m2 d) where low, medium and high plotted 
in the range of L(9.6,12.2,14.8), M(12.2,14.8,17.4), H(14.8,17.4,20).
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adaptation to various types of soils, various types of crops, 
a wide range of locations, and various irrigation strategies 
and equipment due to soil, crop, and atmospheric condi-
tions. The simulation results revealed that evapotrans-
piration can be quantitatively estimated using the inputs 
and its variation as a function of various combination of 
inputs is presented in Fig. 7a–d. A surface map of ET fuzzy 
prediction can be constructed using the fuzzy rule table as 

illustrated in Fig. 7. It can be shown that as temperature, 
radiation, and wind speed rise, ET increases. Furthermore, 
it decreases when the relative humidity increases. The 
evapotranspiration is influenced by the temperature and 
relative humidity as shown in Fig. 7a and the effect of tem-
perature and windspeed is plotted in Fig. 7b. The effect of 
humidity and radiation is depicted in Fig. 7c and humidity 
and wind speed influence on output is shown in Fig. 7d.

  

  

(a) (b) 

(c) (d) 

Fig. 7(a). Temperature and humidity are indirectly proportional to one another, therefore as the temperature rises, the relative humid-
ity falls. As a result, temperature has a direct relationship with the amount of moisture that the atmosphere can hoard. (b) Transpi-
ration at plant leaves impacts temperature dependent on wind speed variations, and tends to decrease as wind speed increases due 
to increased cooling efficiency by heat change. (c) Humidity and radiations are indirectly proportional to each other, therefore as the 
humidity rises, when radiation is low. (d) Humidity and wind speed influence evaporation rates by allowing more water vapor to 
escape, and evaporation will continue as the wind blows.

Table 2
Evapotranspiration computation using ANFIS model

Run Min. Temp. 
(T1) °C

Max. Temp. 
(T2) °C

Humid.  
(H) %

Wind (W)  
km/d

Duration of  
sunshine (S) h

Radiation (R)  
MJ/m2 d

ET (Penman 
method) mm/d

ET (ANFIS 
method) mm/d

1 22.8 29.6 81 78 4 15.7 3.4 3.4
2 22.7 30.3 82 69 4.6 16.9 3.7 3.7
3 23 30.6 80 78 5.1 17.4 3.8 3.8
4 23 30.2 82 69 5 16.4 3.5 3.5
5 22 28.6 84 69 3.8 13.5 2.9 2.9
6 19.2 26.5 81 69 3.3 12.2 2.6 2.6
7 17.6 25.1 78 78 3.2 12.3 2.6 2.5
8 18.6 25.3 78 78 2.6 12.4 2.6 2.56
9 20.5 26.5 78 104 2 12.4 2.8 2.8
10 22.5 28 79 130 2.2 12.9 3.1 3.1
11 23 28.7 80 104 3.2 14.4 3.3 3.3
12 23 29.1 82 95 3.8 15.2 3.4 3.4
13 21.5 28.2 80 85 3.6 14.3 3.1 3.2
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The pressure of vapor is calculated by assuming that 
the dewpoint temperature (Tdew) which is close to the daily 
minimum temperature (Tmin) when humidity data is scarce 
or questionable. When the air is saturated with water vapour 
and the relative humidity is approaching 100%, it means the 
air temperature is near the lowest temperature. ANFIS is an 
accurate and efficient approach for forecasting and man-
aging irrigation volume, according to simulation results. 
Based on evapotranspiration, it translates the imperfect 
fluctuation in weather conditions to the required amount 
of irrigation to be applied. Fig. 8 depicts the likelihood 
of ET calculation between observed and expected values.

With an objective to get the minimum error and maxi-
mum coefficient of regression values between observed and 
predicted values, optimal model parameters were chosen 
and calculated using MATLAB tools. The error measured 
using SSE (sum of the squared errors), R-square, adjusted 
R-square and RMSE (root mean square error) are 0.01903, 
0.9916, 0.9908 and 0.04159 respectively using Eq. (2).

f x p x p x p( ) = × + × +1
2

2 3  (2)

where p1 = –0.1406, p2 = 1.919, p3 = –1.48. The remaining val-
ues are given in Table 3 and corresponding error values are 
calculated accordingly. The comparison between Penman 
method and ANFIS is shown in Fig. 9 based on error sta-
tistics for ET computation. The learning time of ANFIS 
is much less than that of a neural network. It means that 
ANFIS is faster than neural networks at reaching the aim. 
When a more complicated system with a large amount of 
data is considered, the usage of ANFIS rather than a neu-
ral network would be more beneficial in overcoming the 
complexity of problem sooner. ANFIS provides results 
with the relatively lesser data required for training.

5.1. Performance evaluation criteria

The performance evaluation criteria assess the sys-
tem performance by comparing the predicted results from 

model with the experimentally observed results. The Nash–
Sutcliffe efficiency (NSE), performance index (PI) and 
Willmott’s refined index of agreement (WI) were used in 
the system for performance evaluation to measure the close-
ness of ANFIS results of evapotranspiration modelling with 
experimental data [23–25].

5.1.1. Nash–Sutcliffe efficiency

Nash–Sutcliffe efficiency (NSE) is a normalized statistic 
for determining the goodness of match between the pre-
dicted and the observed data. In the proposed system, the 
NSE is calculated using Eq. (3). The NSE value of 1 indi-
cates that the results of both predicted and observed data 
from experiments are perfectly matched. The NSE value 
of 0 indicates that the system predictions are more accu-
rate than the observed data from experiments and the 
NSE values ranging between –∞ and 0 indicate that the 
observed values are better than the system predicted results.

The Nash–Sutcliffe efficiency coefficient for the esti-
mation of evapotranspiration using ANFIS is deter-
mined as 0.99 using Eq. (3). The results revealed that the 
predicted and observed values are matched well as shown 
in Fig. 10.
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where EToi denotes observed value of evapotranspiration 
from experiment, ETpi is predicted value evapotranspira-
tion using ANFIS model and ETo  is the average of observed 
values.

5.1.2. Wilmott’s refined index

Willmott’s refined index (WI) is a standard measure of 
assessing agreement between the observed and the system 
predicted results and ranges from 0 to 1. The value of WI as 
1 indicates a perfect match between the observed and the 
predicted results, and 0 suggests no agreement between the 

 
Fig. 8. Probability for ET calculation between the experimental 
value using Penman method and predicted value using ANFIS 
model.

Table 3
Error statistics for ET computation

Degree SSE R-square Adjusted 
R-square

RMSE

1 0.01903 0.9916 0.9908 0.04159
2 0.01903 0.9916 0.9908 0.04159
3 0.01203 0.9947 0.9929 0.03655
4 0.0117 0.9948 0.9922 0.03824
5 0.01101 0.9951 0.9916 0.03966
6 0.01099 0.9951 0.9903 0.04279
7 0.01022 0.9955 0.9891 0.0452
8 0.01007 0.9955 0.9866 0.05017
9 0.01007 0.9955 0.9821 0.05793
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observed and the predicted values. The Willmott’s refined 
index (WI) for the estimation of evapotranspiration using 
ANFIS is calculated as 0.998 using Eq. (4).

WI
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where EToi is the observed experimental value and ETpi is 
the predicted value using ANFIS model and the averages 
of observed and predicted values are ETo  and ETp  respec-
tively. The corresponding plot is shown in Fig. 11.

5.1.3. Performance index

Performance index (PI) is a statistical parameter for 
evaluating model performance in comparison to exper-
imental observations and it varies from 0 and ∞. The PI 

values close to zero represent that the modelling system 
has highly accurate results. The performance index for 
estimating evapotranspiration using ANFIS models in 
comparison to experimental values is calculated using Eq. 
(5) as 0.040. The value being close to zero proved that the 
model prediction achieved highly accurate results.

PI
RMSE ET

ET ET

ET ET ET EToi pi

oi

�

�

��

�� � �� ��
��

�
���

�
/ o

o

o p
i

n

1 1

u ruuu

�� �� �
�
�

2 2

1
ET ETpi p

i

n

 (5)

where EToi and ETpi are evapotranspiration values observed 
from experiments and predicted from ANFIS modelling, 
respectively, whereas ETo and ETp  denote corresponding 

Fig. 9. Error statistics for ET is compared between experimental value using Penman method and predicted value using ANFIS model.

 
Fig. 10. Nash–Sutcliffe efficiency (NSE) plot against the val-
ues between the evapotranspiration computation using ANFIS 
model (predicted) and experimental values (observed).

 
Fig. 11. Wilmott’s Refined Index plot against the values between 
the evapotranspiration computation using ANFIS model 
(predicted) and experimental value (observed).
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averages of the observed and the predicted values of 
evapotranspiration.

5.1.4. Kruskal–Wallis test between the estimation and obser-
vation values

The Kruskal–Wallis test is a non-parametric test for 
independent measurements and is an alternate to ANOVA. 
It relies on the ranking of data rather than means and vari-
ances calculations. It is evaluated using the differences 
between observed and predicted evapotranspiration values 
as independent samples as shown in Fig. 12 as boxplot dia-
gram. The Kruskal–Wallis test was performed to estimate 
the statistical significance to measure the similar distri-
bution among the values obtained from the experimental 
results and the predicted data computed for evapotranspi-
ration as shown in Fig. 13. The probability value of 0.9179 
and H value of 0.01063 showed 95% of significantly satis-
fied results were between the predicted and the observed 

values for evapotranspiration estimation obtained from 
Eqs. (6) and (7).
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where Rj is a summation of sample in a set j, nj is a sam-
ple size of set j, n is a total sample size of all sets such as 
n = n1 + n2 + … nj and H denotes hypothesis.

6. Conclusions and future work

Effective water management in agriculture facilitates 
farmers in adapting to changing climatic conditions. The 
suggested system predicts evapotranspiration based on 
the meteorological data from previous conditions, thereby 
giving the farmers an early indication of the irrigation 
needs. The anticipation of water requirements can help 
farmers in preventing agricultural losses. Before plough-
ing and sowing, the farmer can acquire an estimate of the 
irrigation scheduling. Often, farmers perform agricultural 
operations without holistic consideration of various envi-
ronmental factors. As a result, they face crop yield losses, 
which has far-reaching consequences. A new modelling 
schema based on ANFIS was established in this study for 
quantitative prediction of evapotranspiration. The model-
ling approach for the subset ANFIS was built utilizing an 
active learning loop to produce reliable ET predictions. 
The estimated ET was found to be accurate when using 
local meteorological data, air temperature, and sun radia-
tion. The model can be further expanded to consider addi-
tional factors involved. The approach demonstrated in this 
work can aid in the development of automated irrigation 
systems for optimal use of water resources.
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