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a b s t r a c t
The aim of the current research was to determine the most appropriate model for estimating potable 
groundwater in a geographical area based on the water quality index (WQI) using the Western 
Middle Cheliff alluvial plain in Algeria as a case study. The spatial distribution of the WQI in a 
graphical display was determined using geostatistical ordinary kriging (OK), and artificial neural 
networks (ANN) which were integrated with a geographical information system. Results indicated 
that the ANN model with its high correlation coefficient (R) and low error rate had a greater accu-
racy than OK in estimating the WQI. Based on the WQI classification index, 60% of water samples 
were found to be poor and 34% in the excellent and good categories. Among the kriging models, 
the Gaussian version was specified as the best for determining the WQI. The findings indicated that 
the ANN model with 11 hidden layers had the greatest accuracy. The root mean square error, the 
mean absolute error, and R values were 2.347, 0.71, and 0.9998, respectively compared to the krig-
ing model. The geostatistical model, with its relatively lower precision, was limited by the number 
of samples. It was difficult to discover the relationship between the spatial location of sampling 
and the variable. Whereas intelligent models such as ANN, were more capable of obtaining this 
connection. The significance of this analysis shows that for semi-arid regions, modeling using 
ANN is an important tool for effective groundwater quality management.

Keywords:  Middle Cheliff alluvial plain; Groundwater quality: Geostatistics; Artificial neural 
network; Prediction of water quality index; Kriging model

1. Introduction

Groundwater quality is usually affected by natural pro-
cesses such as climate, geology, soil type, rock interactions, 
precipitation, and evaporation as well as anthropogenic or 
man-made factors such as agricultural practices including 

fertilizer application, pesticide spraying, and irrigation, 
as well as industrial growth and urbanization [1]. Hence, 
studying and assessing groundwater quality in specific areas 
can help in the improved management of water resources. 
Recently, much research has been conducted on understand-
ing groundwater pollution and in trying to identify the 
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sources. Sargazi et al. [1], for example, employed geographi-
cal information systems (GIS) for assessment of groundwater 
quality. Their results showed that water quality declined in 
the case study area of southeast Iran. The authors reported 
that the reasons for the decline in groundwater conditions 
included the lack of rainfall, incomplete feeding of the aqui-
fer and the geology of the surrounding area.

In arid and semi-arid regions groundwater plays an 
important role in satisfying domestic, agricultural irriga-
tion, and industrial water needs [2,3]. Groundwater is a 
vital resource. However, it is characterized by high variabil-
ity depending on climate and location. Most regions of the 
North African country of Algeria, for example, are facing 
groundwater depletion due to the combined effects of cli-
mate change, population growth and increases in irriga-
tion and urban needs. The decrease in rainfall over the past 
decades has also exerted further pressure on groundwater 
resources [4,5]. In addition, the escalating demand has led 
to a deterioration. Therefore, it is crucial to be able to mon-
itor and to better understand any changes in groundwater 
quality.

The combination of GIS and geostatistical analysis has 
become an important tool for groundwater studies. Recently, 
geostatistical techniques have been widely used in hydro-
chemical analyzes, particularly, in predictions at unsam-
pled locations, and to describe the groundwater level [6–8]. 
Currently, the developed world is using sophisticated tools 
such as mathematical models for predicting water qual-
ity to overcome the drawback of outdated data processing 
methodologies [1]. The kriging interpolation approach (i.e., 
Gaussian process regression) for instance is considered the 
most efficient method for estimating an unknown point by 
taking advantage of known points [9]. Kriging is one of sev-
eral methods that use a limited set of sampled data points 
to estimate the value of a variable over a continuous spatial 
field. Geostatistics has been widely utilized to investigate the 
spatial distribution of groundwater quality data [10,11]. This 
approach based on the modeling and estimating of the spatial 
dependence structure, is usually described using statistical 
tools like the variogram or the covariance, calculated on the 
whole field of interest and under a stationarity hypothesis.

To know the groundwater quality in a specific region, 
the use of a model becomes essential because surveillance 
is expensive and time-consuming, and in many cases, sam-
ples cannot be collected from certain points. A mathemati-
cal model such as a water quality index, for example, is an 
efficient indicator, that can be widely applied to determine, 
classify, and manage overall groundwater quality as a single 
parameter [6–8]. The water quality index (WQI) is a simple, 
powerful, and widely used technique to evaluate overall 
water quality, especially groundwater [12,13]. Various WQIs 
have been formulated worldwide, which can reflect the over-
all effect of several parameters on water quality [12–15]. The 
WQI calculation is performed using a weighted arithmetic 
indicator. It is based on selected water parameters, converted 
into a single unitless value.

The artificial neural network (ANN) is an intelligent 
modeling technique that can help to solve many prediction 
and classification problems related to groundwater quality 
[16,17]. The functioning principle is like that of the human 
brain. ANN can learn generalization and prediction skills 

which can be utilized for non-linear and complex data [16]. 
It is an excellent tool for visualizing groundwater quality 
details and for predicting the sources of pollution [16,17]. 
The artificial neural network (ANN) can be considered as a 
nonlinear model of data processing which has similarities 
to the problem-solving process of the human brain [18]. The 
ability to simulate complex functional relationships with 
high precision makes it in high demand. The multilayer per-
ceptron (MLP) is the most utilized model in feed-forward 
ANN due to its simplicity. It is a flexible method consisting 
of three layers: input, hidden, and output. The input layer 
consists of neurons which receive input values from the net-
work. This data is then transmitted to hidden neurons. The 
concealed layers in which each neuron receives information 
from several previous layers, performs the weight-weighted 
summation, and then transforms it according to its activation 
function which is generally a sigmoid function, and the out-
put layer which plays the same role as the hidden layers, the 
only difference between these two types of layers is that the 
output of the neurons in the output layer is not linked to any 
other neuron. Furthermore, in many applications, there may 
be more than one hidden layer in the network, and the num-
ber of hidden layers and the number of neurons in the layer 
change according to the problem. Using fewer neurons in 
this layer may result in less sensitive output data. Similarly, 
if more neurons are used than necessary, problems may arise 
in treating the new types of data groups in the same network. 
Therefore, it is generally suggested to use one hidden layer 
within the network. The model performance function should 
be based on error measurements [19].

Several researchers assessed the quality of groundwater 
in Algeria [20–24]. Studies have employed, the water qual-
ity index [15,25–27], and have adopted the geostatistical 
approach [28–30]. However, there is a lack of reports ded-
icated to groundwater quality space-temporal variation in 
the Middle Cheliff Basin. Such assessments are essential for 
effective development of future management plans and the 
sustainable growth of groundwater resources. In the absence 
of direct measurements, it would be helpful to be able to use a 
predictive model to estimate the quality of the groundwater.

The aim of the current research was to determine the 
most appropriate model for estimating potable groundwater 
in a geographical area based on the WQI using the Western 
Middle Cheliff alluvial plain in Algeria as a case study. The 
best method for estimating the spatial distribution of the 
WQI in a graphical display was determined using Gaussian 
process regression (i.e., kriging), and artificial neural net-
works (ANN) which were integrated with a geographical 
information system (GIS). The physicochemical water qual-
ity variables such as electrical conductivity (EC), pH, total 
dissolved solids (TDS), Ca2+, Mg2+, Na+, K+, Cl–, SO4

2–, NO3
–, 

and HCO3
– were assessed as part of this process. The results 

of ANN and geostatistical models were compared.

2. Methodology

2.1. Case study area characteristics

The case study area was in north western Algeria, 
about 200 km west of Algiers. It covered 270 km2 in the 
Western Middle Cheliff basin which is itself formed by 
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three sub-watersheds (Fig. 1). This basin belongs to the 
large Cheliff-Zahrez (CZ) hydrographic basin, which cov-
ers approximately 56,227 km2 (more than 22% of the area 
of northern Algeria) and is located between 36°01′ and 
36°17′  north latitude and 0°58′ and 01°27′ east longitude. 
The region’s climate is semi-arid Mediterranean with very 
irregular rainfall and temperature. The Plio-Quaternary 
formations forms a major part of the Cheliff valley and is 
constituted mainly of stressed water aquifers. The litholog-
ical variation and the existence of fractures make these for-
mations a multilayer aquifer with thick clay intercalations. 
The substratum is formed by the blue marls of the Upper 
Miocene and the Pliocene, which outcrop on the northern 
and southern borders of the plain. Generally, the study site 
is agricultural with pedology heterogeneity, the nature and 
distribution of the soils would promote basic exchanges 
and enrichment of the waters with calcium and magnesium.

In the current analysis, the physicochemical groundwa-
ter parameters such as EC, TDS, sodium (Na), calcium (Ca), 
magnesium (Mg), potassium (K), chlorine (Cl), sulfate (SO4), 
bicarbonate (HCO3), nitrate (NO3) and the pH were used to 
determine the drinking water quality. The data employed 
were collected in 2014 from 54 observation wells in the 
Western Middle Cheliff plain. The groundwater quality was 
assessed for its suitability for drinking purposes by com-
paring the physical and chemical parameters of different 
samples in the study area with the drinking water standards 
recommended by the World Health Organization [31].

2.1. Determination of the groundwater quality index

The first step in the computation of the WQI, consists 
of determining the weight value (wi) for each parameter 

depending on their relative influence on the overall qual-
ity of drinking water. The highest weight of 5 was given to 
EC, TDS and nitrate. Bicarbonate was assigned a minimum 
weight of 1 because it has a less significant role in water qual-
ity evaluation [12,32]. The other parameters were given a 
weight between 4 and 2 according to their influence on the 
assessment of the quality of drinking water.

In the second step, the relative weight (Wi) of each 
parameter is calculated through the following equation:
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where Wi is the relative weight, wi is the parameter weight 
and n is number of parameters.

The third step involves the calculation of the quality 
rating scale (qi) for each parameter using the equation:

q
C
Si
i

i

= × 100  (2)

where (qi) is the quality ranking, (Ci) is the concentration 
of each chemical parameter in the analyzed sample in mil-
ligrams per liter, and (Si) is the admissible limit of each 
parameter in drinking water according to World Health 
Organization (WHO) standard in milligrams per liter.

The sub-index of each parameter SIi is determined in the 
fourth step, using the equation:

SIi i iW q= ×  (3)

Finally, the WQI is calculated by adding up the SIi values 
of all the parameters as follows:

 

Fig. 1. Situation map and sampling well locations of the case study area.
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Computed WQI values are generally classified into five 
groups. The WQI range and categories of water have been 
classified and are represented in Table 1.

2.2. Application of geostatistics in assessing the spatial 
distribution of groundwater quality data

Ordinary kriging and semi-variogram models were 
applied to determine the spatial distribution of the ground-
water WQI in the Western Middle Cheliff plain. In geosta-
tistics, the variogram is the most substantial tool to identify 
the spatial structure as well as the three-dimensional cor-
relation between data. The best-fitted semi-variogram 
models were selected based on the mean absolute error 
(MAE) and root mean square error (RMSE) values. The 
efficiency of the model is the most accurate when MAE 
and RMSE are minimum. A cross-validation technique was 
used to determine the correlation between the measured 
and estimated values. The aim of a correlation coefficient 
(R) is to evaluate how accurately the quality parameters 
are estimated in the non-sampled sites of the study area.

Ordinary kriging (OK) was applied to interpolate pre-
dictive maps of groundwater quality index for unsampled 

locations. This method uses the semi-variogram to describe 
the spatial continuity or auto-correlation. The semi-vario-
gram γ (h) determines the strength of the statistical correla-
tion as a function of distance. It is defined as half the mean 
quadratic difference between two observations of a variable 
separated by a distance vector h [11]. It is defined as:

γ µ µh
N h

z h z
i

N h

i i( ) = ( ) +( ) − ( ) 
=

( )

∑1
2 1

2
 (5)

where γ(h) is the variogram for distance h; N(h) denote the 
number of data pairs for that lag h, and z(µi) and z(µi+h) 
are the values of the regionalized variable of interest at 
location µi and µi+h, respectively.

2.3. Evaluating water quality index using artificial 
neural networks

The ANN model was applied to predict the ground-
water quality index (WQI) in 54 samples from the study 
area. Fig. 2 shows the structure of an artificial neuron 
model. Multi-layer perceptron (MLP) network models 
are the common network architectures utilized in most 
research applications. In MLP, the weighted sum of the 
inputs and the term bias to the activation level are passed 
through the transfer producing output and the units are 
arranged in a layered feed-forward neural network [33]. 
The Levenberg–Marquardt algorithm was used to train 
the data and to determine the performance of neural net-
work. Several architectures of the ANN were tested with 
the error measures for validation. The number of neurons 
in the input and output layers is determined by the nature 
of the problem under study. The number of neurons in the 
hidden layer was determined by trial and error to reduce 
the whole error between the observed and estimated val-
ues by tuning weights, and these weights were combined 
and processed through an activation function and edited 
into the output layer. The process initiated with a few neu-
rons, and additional neurons continued to be added until 
the increase in neurons had no effect on error correction.

Table 1
Groundwater classification based on the quality water index 
(Sahu and Sikdar [14])

Class WQI value Type of water quality

1 <50 Excellent
2 50–100 Good
3 100.1–200 Poor
4 200.1–300 Very poor
5 >300 Unsuitable for drinking

 Fig. 2. Structure of a multi-layer feed forward ANN model.
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In this present paper, eleven parameters were selected 
as inputs (EC, pH, TDS, Ca2+, Mg2+, Na+, K+, Cl–, SO4

2–, NO3
– 

and HCO3
–) and one as output (WQI). For the training, and 

testing and validation process, 70%, and 30% of collected 
data, respectively, were utilized. During the creation of a 
neural model, a tangent sigmoid activation function was 
applied between the input layer to the hidden layer, and 
a linear transfer function was employed between the hid-
den to the output layer. To determine the optimal number 
of hidden nodes for the input layer, the trial-and-error 
methods were the most frequently used (RMSE, R, and 
MAE). If more neurons are used than necessary, problems 
may arise in treating the new types of data groups in the 
same network. Therefore, it is generally suggested to use 
one hidden layer within the network. After training all the 
architectures and comparing the results, a single hidden 
layer was considered in the current study, with a tangent 
sigmoid activation function between the input and hidden 
layers, and a linear activation function between hidden and 
output layers, The model performance function was based 
on error measurements [19].

3. Results and discussion

3.1. Analysis of water quality parameters

The groundwater hydro chemical properties of the 
study area are summarized in Table 2. The World Health 

Organization [31] drinking standards, the statistical data-
base of physicochemical parameters, and their assigned 
weights (wi) are also illustrated in this table. The results 
showed that the pH ranged from 6.9 to 8.3 in the wet season 
and from 7.0 to 7.8 in the dry season, this is within the per-
missible limits of the WHO standards. The concentration of 
calcium indicated that more than 29% of samples were below 
the WHO’s norm, with a mean of about 147 and 251 mg/L 
in the wet and dry season, respectively. The highest values 
were observed in the center of the plain with values rang-
ing from 328.6 to 385 mg/L in wet and dry seasons, respec-
tively. It can be argued that the high value of Ca2+ could 
be due to either the dissolution of carbonate formations 
(CaCO3), or the dissolution of gypsum formations (CaSO4). 
For the magnesium, the values are comparable to those of 
calcium, because they come from the dissolution of carbon-
ate formations with high magnesium contents (magnesite 
and dolomite) from the Triassic of Ouarsenis [34].

Many sampled water points (approximately 30%) pro-
vided water with magnesium contents above the drinking 
water standard of 75 mg/L, while 70 % of the observations 
were below the norm. The average value for Mg+2 was 
65.7 and 69.2 mg/L in wet and dry seasons, respectively. 
Magnesium and sodium have the same homogeneous 
spatial distributions, which increase in the northwest and 
eastern parts of the plain (Fig. 3a and b). The concentration 
of sodium shows that about 57% of the samples were below 

 Fig. 3. Spatial distribution maps for the concentrations of major cations: (a) calcium, (b) magnesium, (c) sodium, and (d) potassium.
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the standards for drinking water, with a wide variation 
from 31.6 to 460 mg/L and 59 to 520 mg/L with an average 
of 175.8 and 245 mg/L in wet and dry season, respectively. 
These values varied with a decrease in rainfall. Fig. 3c 
shows an increasing trend of Na+ in the west and center of 
the valley. The potassium concentration exceeded 12 mg/L 
in three wells in the center of the plain (Fig. 3d). One can 
speculate that this came from the alteration of potassium 
clays and the dissolution of chemical fertilizers (NPK) 
which were used by farmers in agriculture. The presence of 
this may also be associated with wastewater effluents dis-
charge. The mean value of k+ was 3.7 and 4.6 mg/L in wet 
and dry seasons, respectively.

The chloride concentrations showed that 48% of sam-
pled water points were below the WHO’s norm and 52% of 
observations were above the norm with a content ranging 
from 544.6 to 662.9 mg/L The highest value (2,312 mg/L) 
was recorded in a single well in the wet season (Table 2). 
The elevated content of Cl– was presumably due to dis-
charge of chlorinated fertilizers, the dissolution of evapo-
rite deposits (the dissolution of the halite) the permanent 
interaction of the groundwater with the marly substra-
tum; the association of the marly miocene soils [35] and 
the gypsiferous formation which mainly outcrops north of 
Ouled Fares. This formation is responsible for the salinity 
of certain runoff water and consequently for the salinity of 
aquifers [35].

Additionally, the sources of SO4
2– in groundwater can 

be attributed to dissolution and oxidation of sulfate min-
erals, discharges from industrial and domestic sewers, as 
well as leaching of waste deposits. The average values of 
SO4

2– varied from 249 to 458 mg/L in wet and dry seasons, 
respectively. Chloride and sulfate have similar spatial dis-
tributions, increasing towards the northwest, east and in 
the central part of the study area (Fig. 4a and b). Likewise, 
a few samples had nitrate levels above the standard limit 
of 50 mg/L (Fig. 4c). The sources of nitrate in groundwa-
ter were presumably industrial wastewaters, nitrogenous 

fertilizers, infiltration of surface water, return sewage water, 
and agricultural sewage usage [36].

Fig. 4d shows an increasing trend of HCO3
– in the east 

of the valley, the values range from 324.5 to 345 mg/L in 
wet and dry seasons, respectively. The concentration 
of bicarbonate in water depending on the types of soil it 
crosses (infiltration) or its flow (runoff). Furthermore, TDS 
values ranged from 416 to 3,424 mg/L in the wet season and 
from 430 to 3,590 mg/L in the dry season. These findings far 
exceeded WHO standards.

The outcomes showed that most samples (77%) had 
the highest values of EC and exceeded the WHO’s norm 
(1,500 µS/cm). Only 34% of samples exceeded the Algerian 
norm (2,800 µS/cm). Spatial variability in CE and TDS 
(Fig. 5) shows that mineralization rises toward the north-
west, east, and in the central part of the study area. The 
high values of EC in the center of the plain were likely due 
to the anthropological or man-made pollution of ground-
water or due to the water–rock interaction (i.e., the geology 
of the aquifer). Also, the EC was strongly dependent on the 
chemical composition of water and its temperature [12].

3.1. Assessment of water quality using WQI

In this investigation, WQI values of groundwater sam-
ples varied from 37-259 for the wet season (Fig. 6). The 
highest WQI values were observed at sample well F07, and 
the lowest values were observed at sample well 105/452. 
Fig. 7 summarizes the potable water quality variation 
which could be classified from excellent to very poor, with 
6% of water samples in the “excellent” category, 28% as 
“good”, 60% in the “poor” category and 6% as “very poor”.

3.2. Geostatistical evaluation of spatial distribution of groundwater 
WQI using ordinary kriging and semi-variogram models

In the kriging method, different experimental var-
iograms, containing Gaussian, exponential, circular, 

Table 2
Statistics description of water quality (WQ) parameters and assigned weights of each

Parameter WHO 
[31]

Descriptive statistics Weight 
(wi)

Percentage of samples below 
the permissible limits (%)Wet season Dry season

Max. Min. Mean CV Max. Min. Mean CV

pH 8.5 8.3 6.9 7.3 4.6 7.8 7 7.3 2.9 3 100
EC 1,500 5,350 650 2,338.4 42.1 5,540 886 3,539 48.6 5 23
TDS 1,000 3,424 416 1,525.5 43.9 3,540 567 2,260 49.1 5 25
Na+ 150 460 31.6 175.8 61.7 520 59 245 59.2 3 57
Ca2+ 100 328.6 25 147.0 40.5 385 52 251 52.4 2 29
Mg2+ 75 215.8 4.7 65.7 62.0 106 11 69.2 52.3 3 70
K+ 12 13 1.6 3.7 47.3 13 2 4.6 77 2 98
Cl– 250 2,312.5 75.9 347.5 88.7 1,295 88 547 67.8 4 48
SO4

2– 200 653 13 249.8 77.3 1,190 25 458 85.3 4 52
NO3

– 50 81.6 0.1 22.6 43.0 75 3 30 77.9 5 95
HCO–

3 300 683.2 137 324.5 31.9 445 198 345 26.5 1 37

All values are in mg/L except pH, and EC (µS/cm)
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 Fig. 4. Spatial distribution maps for the concentrations of major anions: (a) chloride, (b) sulfate, (c) nitrate, and (d) bicarbonate.

 
Fig. 5. Spatial distribution map for the concentrations of: (a) electrical conductivity and (b) total dissolved solids.
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spherical, and stable, were selected based on the lowest 
error. Results are presented in Table 3. The Gaussian model 
was identified as the best for the WQI. It had a lower error 
and more accuracy than the other four models used in 
this study with an RMSE value of 37.036, an MAE value of 
26.447 and a correlation coefficient of 0.52. According to the 
water quality map (Fig. 8), it is important to note that the 
spatial distribution of the WQI could be divided into three 
scattering levels or classes. In the northeast and southwest, 
the WQI was good, ranging from 52–100, while it was the 
lowest quality (poorest) in the rest of the case study area 
with WQI greater than 100.

3.3. Artificial neural networks model evaluation 
for WQI estimation

The applicability of ANN to predict WQI values was ver-
ified in 54 wells from the study area. Model performance 
was evaluated by monitoring the error between the pattern 

output and measured data set. The model performance 
results are presented in Table 4 and Fig. 9. The best ANN 
model at the training stage was found at 11 hidden nodes 
with the values for RMSE, MAE and R of 5.72, 3.47, and 
0.9386, respectively.

This was verified at the testing stage with values of 
2.347, 0.71 and 0.9998, respectively in validation. The per-
formance criteria shown in Fig. 9 indicate accurate results 
for training, validation, and testing periods with more 
exactness in the validation and testing stage with val-
ues of 0.9998 and 0.9813 respectively. At 13 hidden nodes 
reveals a lowest accuracy at the training and testing stage 
with the values for RMSE, MAE and R of 18.85, 6.29, and 
0.7737, respectively. The predicted WQI values of the ANN 
model were verified with the measured values and hence, 
it demonstrates that ANN is an effective tool in the assess-
ment of the WQI.

The results obtained showed that 34% of the samples 
were in the excellent and good category, 7% in the very poor 
class and 59% were in the poor category. Excellent and good 
quality water was observed in the Ouled Fares, Labiodh 
Medjadja and Boukadir locations (Fig. 10) while very poor 
water was found in the south west, central and northeast of 
the case study area.

A very salty surface layer was observed near the 
Tsighaout Wadi, close to Chlef. The spatial distribution of 
the WQI in Fig. 10 shows that the excellent and good cate-
gories are in the northeast and southwest of the study area. 
On the other hand, the very poor category was observed 
in the location of Chettia, which is known for its high pop-
ulation density, in the southwest of the study area which 
encloses a very salty surface layer and near the Tsighaout 
Wadi presumably due to wastewater discharge. It can be 
argued that the WQI values indicating poor quality of 

 

Fig. 6. Spatial distribution of water quality index.

 Fig. 7. Distribution of WQI by class or category (%) in the case 
study area.
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groundwater for consumption are mainly the results of 
domestic and/or agricultural discharges.

3.4. Comparing the outcomes of the geostatistical and ANN 
models

According to the results of Tables 3 and 4, it can be 
concluded that among methods of groundwater quality 
prediction, the ANN model had the greatest accuracy in 
the estimation method with the highest R (0.99) and the 
lowest error rate. Also, when expected values were ana-
lyzed in detail (Fig. 11), the ANN model had the higher 
performance compared to the geostatistical method. For 
example, Fig. 11 shows the comparison of the WQI values 
measured and predicted using ANN and geostatistical 
(Gaussian) model. WQI values of 50 groundwater sam-
ples out of the 54 testing water samples were predicted 
with an error ratio of less than 5% by ANN model. While 
3 samples were predicted between 5% to 10% error ratio, 
and 1 groundwater sample 10 to 20% error ratio. Whereas 

WQI values predicted by geostatistical (Gaussian model) 
reveal an error ratio lower than 5% with 12 samples out 
of the 54 testing water samples, 8 samples were predicted 
between 5% to 10% error ratio and 16, 12 and 5 groundwa-
ter samples between 10% to 20% error ratio, 20% and 50% 
error ratio and error ratio of greater than 50%, respectively. 
Thus, it can be concluded that ANN is the better model 
compared to the geostatistical model.

 
Fig. 8. Spatial distribution of water quality index based on ordinary kriging model.

Table 4
Performance statistics of ANN model for groundwater quality index estimation

Number of 
hidden nodes

Training Testing

RMSE MAE R RMSE MAE R

9 26.30 11.61 0.73521 14.582 6.258 0.7911
10 20.638 3.764 0.9091 8.541 1.681 0.8620
11 5.72 3.47 0.9386 2.347 0.71 0.99986
12 16.54 12.07 0.9464 17.325 7.139 0.7648
13 18.856 6.929 0.7737 11.448 4.609 0.1041
15 20.658 3.764 0.9955 12.488 3.576 0.6634

Table 3
Performance parameters for ordinary kriging model

Model Structure MAE RMSE R

Ordinary 
kriging (OK)

Gaussian 26.447 37.036 0.52
Spherical 32.56 45.267 0.41
Stable 32.65 45.01 0.48
Circular 32.80 45.42 0.44
Exponential 39.90 54.41 0.28
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Fig. 9. The measured values against estimated value of WQI; (a) training data, (b) validation and (c) testing.

 
Fig. 10. Spatial distribution of water quality index using the ANN model.
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4. Conclusions

The ANN model with its high R (0.99) and low error 
rate had a greater accuracy than the geostatistical ordi-
nary kriging (OK) system in estimating the groundwater 
quality (WQI). The geostatistical model, with its relatively 
lower precision, depends on the spatial location of the vari-
ables. However, correctness in approximating the variable 
depends on the number of samples that can be obtained 
from the region. Therefore, in areas like the current case 
study which are limited by the number of samples, it was 
difficult to discover the relationship between the spatial 
location of sampling and the variable. Whereas intelligent 
models such as ANN, were more capable of obtaining this 
connection.

The assessment of groundwater quality is very import-
ant in arid areas where resources are limited. The result of 
the present research showed that excellent water quality 
(i.e., WQI) is found in the northeast and southwest of the 
case study area. On the other hand, very poor groundwater 
was observed in the high population density region, as well 
as in the southeast which had a very salty surface layer and 
contained wastewater discharge sites. It can be argued that 
the WQI values indicating poor quality of groundwater for 
consumption are mainly the result of domestic and/or agri-
cultural releases. The multi-layer perceptron (MLP) model in 
feed-forward ANN gave the most reliable results. The sig-
nificance of this analysis showed that for semi-arid regions, 
modeling groundwater quality using ANN is an important 
tool for helping decision-makers to manage drinking water 
supplies more effectively. It will assist them, for example, 
in choosing the best sites for drilling new groundwater 
boreholes.
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