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ABSTRACT

Hydrological modeling of rainfall and surface runoff are crucial elements for simulating flood
events in watershed and water resources management. In this paper, the Soil Conservation
Services Unit Hydrograph (SCS UH) and CLARK Unit Hydrograph (CLARK UH) transform
methods were employed in rainfall-runoff simulation of a case study semi-arid watershed, the
Wadi Ouahrane basin in Algeria in north-west Africa, by employing the Hydrologic Engineering
Center’s-Hydrologic Modeling System. The results obtained showed that the CLARK UH method
had the higher performance compared to the SCS UH method with R-Squared (R?), Nash-Sutcliffe
(NSE) and root mean square error values of 0.9, 0.83, 3.5 and 0.77, 0.75, and 3.7, respectively. While
both methods gave acceptable results for the Wadi Ouahrane watershed, the CLARK UH was the
most suitable for flood events simulation.

Keywords: Hydrological modelling; Simulating flood events; Hydrologic Engineering Center’s-

Hydrologic Modeling System; Soil Conservation Services Unit Hydrograph; CLARK
Unit Hydrograph; Wadi Ouahrane basin; Rainfall-runoff; Watershed; Water resources

management

1. Introduction

In watershed and water resources management, hydro-
logical modeling has become a vital tool in predicting flood
events [1,2]. Furthermore, adequate knowledge of rain-
fall-runoff processes is essential in assessing peak flow rates,
as well as the volume of runoff produced in a watershed
during the transformation of rainfall hyetographs into runoff
hydrographs. In semi-arid regions, it is very critical to be able
to assess surface runoff mechanisms, which usually occurs
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when the rate of precipitation exceeds infiltration capac-
ity [1,2]. Recently many hydrological models with diverse
degrees of complexity and accuracy have been developed
to simulate flood events [1,3].

Rainfall-runoff models can be divided into three cate-
gories: lumped, semi-distributed, and distributed [4,5]. The
selection of a hydrological model depends on the purpose,
data availability and ease of use and can therefore influence
the quality of the results. Several hydrological models are
available for rainfall-runoff simulations, although not all
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models are appropriate for all issues [6,7]. Likewise, sev-
eral studies have utilized the semi distributed hydrologi-
cal model Hydrologic Engineering Center’s-Hydrologic
Modeling System (HEC-HMS) to simulate hydrological
processes and have attained satisfactory results in various
countries and under different climate conditions [8-11].
The HEC-HMS model for example considers environmen-
tal conditions and can be adapted to watershed charac-
teristics of each area, including semi-arid regions such as
Algeria in north western Africa [7]. Furthermore, studies
done by others [12-14] used the HEC-HMS for flood esti-
mation in the semi-arid regions from Algeria. This model
has also been employed for watershed control and assessing
the rainfall-runoff process globally [15-22]. Steinmetz et al.
[23], for example, employed HEC-HMS software of semi-
distributed and conceptual modeling in the application
of Soil Conservation Services Unit Hydrograph (SCS UH)
and CLARK Unit Hydrograph (CLARK UH) for calculating
runoff hydrographs in Brazil. The SCS UH is a dimension-
less method commonly utilized due to its ease of applica-
tion, to predict peak discharge and to create hydrographs.
Similarly, CLARK UH is a functional, analytical approach
for flooding hydrology because the hydrograph’s shape and
peak water flow are connected to watershed parameters
[24-26]. Currently, there is a shortage of research comparing
the CLARK’s and SCS’s Unit Hydrograph transform meth-
ods. Based chiefly on watershed’s features, better insights
related to these problems can be a valuable addition to engi-
neers and decision makers in improving watershed man-
agement [23].
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Fig. 1. Wadi Ouahrane basin location.
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The aim of the present study was to employ the Soil
Conservation Services Unit Hydrograph (SCS UH) and
CLARK Unit Hydrograph (CLARK UH) transform methods
in rainfall-runoff simulation of a semi-arid case study water-
shed, the Wadi Ouahrane basin in Algeria in north-west
Africa, by employing the Hydrologic Engineering Center’s-
Hydrologic Modeling System (HEC-HMS). An analysis
and comparison were made of the findings of the SCS UH
and CLARK UH approaches in estimated peak discharge
and surface runoff. In addition, calibration, validation,
sensitivity analysis of the HEC-HMS program, and model
performance were performed using statistical metrics.

2. Materials and methods
2.1. Case study region and data sets

The Ouahrane wadi basin which covers an area of
270 km? is part of the town of Chlef in the north-west of
Algeria (Fig. 1). The elevation of the area varied from 117
to 958 m above sea level. The climate in the region is semi-
arid Mediterranean type, with average precipitation of
up to 400 mm y. The watershed of the Ouahrane wadi is
marked by marly soil, a carbonate-rich mud, occupying 80%
of the area of the basin. In terms of land use, polyculture
and cereals are the essential agricultural activities in the
study region [27].

The spatial distribution of precipitation shows two
rainfall levels in two different sectors; the Ouled Fares sec-
tor gets less than 400 mm of rain, below 200 m elevations.
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This sector covers about 40% of the basin. The Benairia sec-
tor on the other hand is situated at more than 380 m alti-
tude, where the average annual rainfall is slightly higher
at 480 mm; this sector covers 60% of the watershed [27,28].
The annual precipitation of the Ouled Fares and Benairia
stations are shown in Fig. 2.

Land use of the Wadi Ouahrane watershed was digi-
talizing using Landsat8 images and then classified into six
groups: 36.4% grain cultivate, 27.38% barren land, 15.6%
polyculture, 11.2% forest, 9.11% built-up and urban area,
and 0.32% water bodies (Fig. 3). Soil hydrological groups
(HSG) in the basin were categorized as A, B, C, and D from
the soil data map, and then the curve number (CN) map
was generated for Fig. 3.

2.2. Basin processing and model construction

The digital elevation model (DEM) map with 30 m x 30 m
resolution was inserted into ArcGIS software. The ter-
rain concept was developed with ArcHydro tools, and the
model basin was constructed with HEC-GeoHMS Extention
[29,30]. Essentially, terrain processing is the first prerequisite
for the construction of a basin model utilizing this method.
This phase involved the reconditioning of the DEM, spa-
tial calculation of direction and accumulation of flow, and
the boundary of the grid catchment. Besides establishing the
characteristics of the bowl and the process parameters, the
basin was segregated into six sub-sinks (Fig. 4). Elements of
the sub-basins, such as slope, length, and longest flow path
of the waterways, are critical data for running the model
and for ensuring the accuracy in the data collected. The
possible model errors were then assessed, fixed if necessary,
and imported into the HEC-HMS program [29,30].

2.3. Hydrologic modeling and HEC-HMS definition

model, and time-series data input details were used. The
watershed model, as illustrated in Fig. 5 describes the spa-
tial basin with hydrological components. The basin model
comprised six sub-basins, three reaches, and one outlet.
The Soil Conservation Service-Curve Number (SCS-CN)
loss method, SCS and CLARK Unit Hydrograph trans-
form model, and Muskingum routing channel were uti-
lized in the study. The SCS-CN loss method for the basin is
represented by Eq. (1):

(P-1) "
© P-1+S
where P, denotes accumulated excess precipitation (mm),
P signifies cumulative rainfall (mm), I indicates original
abstraction (mm) and can be set to (0.2 S), and S represents
the maximum possible retention (mm) [31].

The SCS UH transform model is a non-dimensional

unit hydrograph, and the Lag time (T, of each sub-basins
was measured by using the SCS formula shown in Eq. (2):

I o6 (s +1)” 2
=0.6 x| ——=——
8 1,9004Y

where T, denotes the latency period in hours; L depicts
the watershed length (km), S indicates the longest poten-
tial retention (mm), and Y represents the mean watershed
slope (%) [32].

The CLARK UH is a synthetic unit hydrograph method.
It needs the values of two parameters: T (concentration-
time) and S, (storage coefficient). They are represented by
Egs. (3) and (4) and are the first steps in the model [33,34].

The HEC-HMS model created by the United State Army ;7 =~ 0, ®)
Corps for Engineers (USACE), was employed to simulate the
hydrological processes for the Wadi Ouahrane watershed.
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Fig. 2. The total annual rainfall at the rain gauges of Ouled Fares and Benairia.
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Fig. 3. LU/LC map, soil classification map, hydrological soil group (HSG) map and curve number (CN) map of Wadi Ouahrane

watershed.
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Fig. 4. Form of Wadi Ouahrane and sub-basins input to HEC-HMS.
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where dS/dt represents the rate of shift of water in storage
over time. I, stands for average inflow (m®s™), and O, stands
for outflow storage (m® s™). R__ is the CLARK coefficient
(1.632).

The Nash-Sutcliffe (NSE) coefficient [35] represented by
Eq. (5), the root mean square error (RMSE) in Eq. (6), and the
linear regression (R?) shown in Eq. (7) were used to measure
the efficiency of the models.

coef

n

Z (Qiobs - Qisim )2

NSE=1-| 2t ®)
21: (Qinbs - Qobs )
" ) 1/2
(Qiobs - Qisim )
RMSE=|#&—— (6)
> (Q[obs - Qobs ) X (Qisim Qsim )
R?=| —=! (7)

The observed and simulated discharges at t = are Q
and Q,, (m’s™), respectively, and Qsim, Qs are the mean sim-
ulated and observed flows (m? s™?). N is the number of data
points that have been observed [36].

iobs

3. Results and discussion
3.1. Comparison of the SCS and CLARK Unit Hydrographs

The performance of the hydrological basin model
depends on the quality of its calibration, which depends
on the technological capabilities of the hydrological model
and the quality of the input data [12]. The basin was
divided into six sub-basins based on the river network,
runoff hydrographs are computed based on two rain-
fall-flow events (05 Feb 1987 and 11 Nov 2001), using the
parameter values shown in Table 1. The calibration goal of
the watershed model (HEC-HMS) was to align measured
and optimized runoff volumes and discharge peaks [37].
The CN, lag time, and Muskingum’s parameters were
adjusted through the optimization process. The initial
CN values range from 64.27 to 80.50 for each sub-basin,
while the optimized CN estimates values from 53.67 to
78.22 (Table 2). The same CN value was used for CLARK’s
UH and SCS UH. The T, values obtained by the SCS UH
ranging from 73.63 to 49.68 min for one sub-basin, how-
ever, in the other sub-basins the results obtained are close
to each other. Compared to CLARK’s UH parameters (T,
and S,), their values adjusted to some sub-basins showed
notable variation, for example, T ranged from 2.04 h to
1.36 h, and S, showed a large spread with values ranging
from 3.91 to 5.90 h (Table 1). Also the results are similar for
Muskingum-K (h) 1.42 to 3.19 (h).

The peak flow is the most significant feature of any
hydrograph since it correlates to the highest downstream
flooding. In this study, calibration was carried out using
simulation of initial conditions, manual and automated cali-
bration. After calibration, it was observed that the HEC-HMS
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Table 1
Initial and calibrated parameters for HEC-HMS model
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Sub-basin ID Loss model Transform method Routing method
SCS-CN SCSUH CLARK UH Muskingum
CN Tlag (min) T (h) S, (h) Channel Muskingum-K (h)
Org Cal Org Cal Org Cal Org Cal D Org Cal
W1060 78.68 76.41 86.38 78.12 2.39 2.41 3.91 5.90 R360 2.89 2.92
W1270 80.50 53.67 51.12 51.19 1.42 0.94 231 3.49 R430 2.39 3.61
W1290 64.27 62.99 21.66 22.00 0.60 0.60 0.98 0.65 R620 1.42 3.19
W1300 75.77 74.25 73.63 49.08 2.04 1.36 3.33 4.90 R650 0.60 0.88
W920 79.81 78.22 105.8 106.40 2.94 294 4.79 4.72
W970 78.48 76.91 104.3 104.85 2.89 291 4.73 4.77
Table 2

Model simulation and performance for the calibration period

Event 5th Feb, 1987 (calibration)

Event 11th Nov, 2001 (calibration)

SCS UH CLARK UH SCS UH CLARK UH
Observed peak discharge (m?s™) 71.80 87.60
Simulated peak discharge (m®s™) 71.80 71.74 87.52 87.71
Observed volume (mm) 18.95 18.98
Simulated volume (mm) 22.47 17.53 20.38 25.74
NSE 0.83 0.80 0.76 0.78
RMSE 6.80 7.30 14.40 13.90
R? 091 0.86 0.86 0.88

model obtained satisfactory results for both methods (SCS
and CLARK Unit Hydrographs) and events (1987 and 2001).

Fig. 6 show that the observed and simulated streamflow
hydrographs for calibration, for each rainfall event (1987
and 2001), have similar shapes for the SCS and the CLARK’s
method, but this shape is dissimilar from the estimated
hydrograph. The observed and simulated peak flow val-
ues change from 58.4, 51.30 m® s in the 05 Feb 1987 event
to 71.8 m® s and 100.1 and 118.4 m® s in 11 Nov 2001 to
87.60 m® s™ before and after calibration, respectively.

At this stage, it was found that the results were close.
The statistical assessment of calibrated phases, the modeling
results for peak flow, and total volume are shown in Table 2.

The comparison of the simulated unit hydrograph of the
both methods shows that the simulated volume obtained
using the SCS-CN method is 22.47 and 20.38 mm while the
simulated volume obtained from the CLARK UH method
is 17.53 and 25.74 mm for the event of 5 February 1987 and
11 November 2001 respectively.

For the observed and optimized discharge, no differences
were seen in peak discharges during the 1987 event in the
SCS UH whose value is about 71.80 m? s!. A slight change of
0.08% was detected in the CLARK UH and has an estimated
value of the order of 71.74 m?® s™. This was also expressed
in the 2001 event, where it was calculated at 0.09% and
0.11% differences for SCS UH and CLARK UH, respectively.

In terms of the model efficiency, the NSE ranges from 0.76
to 0.83 for two studied events for the both methods which

the greater value of the NSE (0.83 and 0.78) was obtained
by the SCS-CN method for 05 February 1987 event and
the CLARK UH method for 11 November 2001 event con-
secutive. Likewise, the RMSE criterion varies between 6.80
to 14.40, with the highest and the weak value obtained by
the SCS-CN method. The correlation coefficients (R?) rang-
ing from 0.86 and 0.91, reflecting the HEC-HMS model’s
calibration accuracy.

3.2. Model validation

The 1st February 2011 event was used in the validation
phase, as this event was distinct from the events used for
calibration and was chosen to confirm the efficiency of the
optimization phase. The observed and simulated hydro-
graphs are almost identical except for the peak discharge,
which is higher for the simulated graph, overestimated by
the CLARK UH, and underestimated using the SCS UH.
The validated peak flow values for SCS UH and CLARK UH
were 30.5 and 36.1 m®s™, respectively, as seen in Table 3 and
Fig. 7. The average volume of the SCS UH was predicted
to be 4.61 (mm), while the CLARK UH was estimated to be
6.59 mm.

The findings comparing runoffs show that the CLARK
UH model in the validation process simulated the floods
hydrograph with NSE, RMSE, and the R? values of 0.83,
3.50, and 0.9, respectively. The CLARK UH model thus
had the better fitness between the observed and optimized
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Table 3
Model validation results

Event 1st Feb, 2011 (validation)

SCS UH CLARK UH
Observed peak discharge (m®s™) 34.00
Simulated peak discharge (m®s™) 30.50 36.10
Observed volume (mm) 4.37
Simulated volume (mm) 4.61 6.59
NSE 0.75 0.83
RMSE 3.70 3.50
R? 0.77 0.90

Event (01 Feb,2011) in validation Phase (SCS)

NSE = 0.75
R2 = 0.77
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Fig. 8. Comparison of optimized and observed runoff on SCS and CLARK Unit Hydrographs during validation.

data relative to the SCS UH method which was valued at
NSE = 0.75, RMSE = 3.70 and R* = 0.77 (Fig. 8). This meant
that the CLARK UH process did well when simulating flood
hydrographs [23,38]. Through comparison of the statistical
evaluation parameters of NSE, RMSE, and R? both for opti-
mization and validation phases, CLARK UH had a lower root
mean square error and a much more accurate R*> and NSE
than the SCS UH process.

This suggests that the model is suitable for hydrologi-
cal simulations for the CLARK UH method. The cause for
this is based on the linear reservoir model concept and con-
sidering the Muskingum-K coefficient parameter. The SCS
method is highly dependent on the calibration because of
the dependence on empirical relationships. Therefore, the
error is great.

4. Concluding remarks

The Hydrologic Engineering Center’s-Hydrologic
Modeling System (HEC-HMS) was very suitable in terms
of accuracy for rainfall-runoff simulation thus supporting
reports by others. The current study illustrated the impor-
tance of the Soil Conservation Services Unit Hydrograph
(5CS UH) and CLARK Unit Hydrograph (CLARK UH)
transform methods in runoff prediction in a watershed
under various climatic conditions. The validation phase
demonstrated a difference between the observed and pre-
dicted peak discharge, which ranged from 11.5% to 5.81%
for both SCS UH and CLARK UH, respectively. The results
obtained showed that the CLARK UH method had the
higher performance compared to the SCS UH method
with R-Squared (R?), Nash-Sutcliffe (NSE) and root mean
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squared error (RMSE) values of 0.9, 0.83, 3.5 and 0.77, 0.75,
and 3.7, respectively. While both methods gave acceptable
results for the Wadi Ouahrane watershed, the CLARK UH
was the most suitable for flood events simulation using the
HEC-HMS model.
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