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a b s t r a c t
Fluoride ions are necessary and beneficial for human beings, however high levels of fluoride in 
groundwater can be toxic and harmful to human health and water resources, causing serious 
problems on teeth and bones. This situation is widespread in many parts of the world, includ-
ing Morocco. According to World Health Organization (WHO), the maximum allowable concen-
tration of fluoride in drinking water is 1.5 mg/L. The objective of this work is to understand the 
mechanism of transfer of fluoride ions in nanofiltration (NF) membranes. Two methodologies have 
been used, one mathematical, Nernst–Planck equation combined with film theory (NP-FT), and the 
other statistical artificial neural network (ANN). This study has been realized with experimental 
data obtained from three NF membranes (TR60, NF270 and NF90) that have been used for the 
removal of fluoride from NaF-doped groundwater with different initial concentrations of 5, 10, 15 
and 20 mg/L. In a first part, the NP-FT model that is proposed as a contribution to the modeling of 
the concentration polarization phenomenon and to study the influence of the initial concentration 
(Ci) of fluoride on the reflection coefficient (σ), the permeability of the solute (Ps) and the thickness 
of the boundary layer (δ) has been made. In a second part, the two models ANN and NP-FT are 
used to predict the fluoride rejection as a function of the permeate flux. In addition, a comparison 
is made in terms of coefficient of determination R2 between the two models. The results obtained 
showed that the influence of concentration bias is more important for NF270 than for TR60 and 
NF90, and high reflection coefficients, almost equal to unity, were obtained for NF90, indicating 
that convective transport is almost completely hindered. Similarly, reflection coefficients of about 
0.97 and 0.89 were found for TR60 and NF270, respectively, suggesting that both mechanisms are 
present, but that diffusion is more pronounced for NF270 than for TR60. Thus, the thickness of the 
boundary layer and permeability change inversely to one another. It is about 10–5 m for NF270 and 
10–6 m for TR60. On the other hand, the value obtained for the NF90 membrane is 10–14 m which is 
very low. The obtained solute permeability follows the order: R60 > NF270 > NF90. Although the 
experimental data agree well with the data predicted by ANN and NP-FT, which indicates that both 
models are appropriate for the prediction and satisfactory R2. However, the ANN model reveals a 
slight superiority over the NP-FT model.
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polarization; Nernst–Planck equation; Film theory
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1. Introduction

Population growth and water scarcity put pressure on 
available natural water resources. This has been confirmed 
by (WHO) and United Nations International Children’s 
Emergency Fund (UNICEF) report that millions of people 
do not have a safe and enough supply of water for drink-
ing and other everyday tasks [1,2]. Groundwater represents 
only 0.6% of total water ressources and surface water are 
threatened by pollution from intense industrialization and 
urbanization activities [3].

The physical presence of many elements and compounds, 
both natural and anthropogenic, due to the interaction 
between soil and water, soil–gas interaction, contact of rocks 
with groundwater and time of residence in aquifers [4], 
especially fluorides, arsenic, nitrates, sulphates, iron, man-
ganese, chloride, selenium, etc., can significantly affect the 
quality of water and cause adverse effects on health [5,6].

The issue of high fluoride concentration in ground-
water resources has become one of the most serious 
toxicological and geo-environmental problems in sev-
eral countries, India is the country most concerned by 
this problem of fluorides. During the last three decades, 
higher concentration of fluoride in drinking water and 
the resulting disease “fluorosis” have been significantly 
highlighted worldwide. The effect of fluoride in drink-
ing water can be beneficial or deleterious to mankind. 
The determining parameters are the concentration and 
the duration of absorption. Thus, when it is present in a 
narrow concentration range, it plays an imperative role in 
bone mineralization and also acts as an antibacterial agent 
in the mouth. On the contrary, an excessive concentration 
(3–6 mg/L) of fluoride can have a negative effect on bones 
and teeth (dental and skeletal fluorosis) [7]. Absorption of 
excess fluoride (>10 mg/L) in the human body can cause 
dental, skeletal and non-skeletal “fluorosis”. Similarly, lack 
of fluoride in groundwater (less than 0.5 mg/L) can cause 
dental caries which is why the WHO has fixed a maximum 
concentration of fluoride in drinking water of 1.5 mg/L [8].

In Morocco, fluoride levels exceed acceptable standards 
in several regions, for instance, the Ben Guerir Plateau 
(Central Morocco). The water in this region generally exceeds 
the fluoride standards of 2 to 3 mg/L. This contamination is 
due to the deposition of phosphate [9,10].

A multitude of conventional and non-conventional 
methods have been implemented for water defluoridation, 
namely adsorption [11,12], ion-exchange [13], electrodialy-
sis (ED) [11], precipitation/coagulation [14], electroagulation 
[15,16], and pressure-driven membrane-based technologies 
as nanofiltration (NF) and reverse osmosis (RO) [17–19].

Many studies have shown that NF in groundwa-
ter defluoridation is cost-effective makes it econom-
ically and operationally attractive [20,21]. Pontié et al. 
[22] employed a polyamide NF45 membrane (FilmTec), 
they obtained a fluoride rejection of 91% at 0.02 mol/L 
of NaF in the feed. Nasr et al. [23] examined the com-
mercial NF5 and NF9 membranes (Manufactured by 
Applied Membranes Inc, USA) to remove fluoride ions 
from Tunisian groundwater with fluoride concentra-
tion around 3 mg/L. NF9 exhibited a better rejection of 
(88%) than NF5 (57%) with fluoride concentrations in 

the permeate of 0.38 and 1.45 mg/L respectively. Mnif et 
al. [24] studied the defluoridation of aqueous solutions 
exceeding 1.5 mg/L using a thin film polyamide NF com-
posite membrane called HL 2514 T, manufactured by 
GE-Osmonics (USA). The results showed that the fluo-
ride rejection by the HL membrane was over 80% at a 
permeate fluoride concentration of 2 × 10–2 mol/L.

Since the separation mechanism of NF membranes 
is very complex, several models have been established to 
illustrate and predict the flux and retention of a variety of 
species under different operating conditions [25]. The most 
applied models are Kedem–Katchalsky [26,27], Spiegler–
Kedem [26–28] and models based on the Nernst–Planck 
equation [29].

In a previous study, Addar et al. [9], used statistical 
model to optimize the fluoride removal process by three 
NF membranes and applied surface response methodology 
(RSM) based on a central composite design (CCD), mini-
mizing the permeate concentration and maximizing the 
fluoride rejection and permeate flux. Optimal conditions 
to obtain water that meets the standards set by WHO of 
the two membranes TR60, NF270 were determined: fluo-
ride concentration in the feed lower than 7 and 5.5 mg/L 
and operating transmembrane pressure (TMP) of 10 and 
13 bars respectively. Whereas, for NF90, the fluoride feed 
concentration has no influence on the fluoride rejection 
and the fluoride contents obtained in the permeate were 
well below the standards. In addition, Tahaikt et al. [18], 
investigated the influence of initial fluoride concentra-
tion on the transfer of fluoride by applying the Spiegler–
Kedem and Kedem–Katchalsky models while neglecting 
electrical interactions and concentration polarization layer. 
The results showed that NF270 and TR60 involved two 
different mechanisms: diffusion and convection with the 
preponderance of diffusion. On the other hand, for NF90, 
the transfer mechanism is close to that of RO.

Other mathematical models can be used to improve the 
understanding of the fluoride transfer in NF membranes 
by taking into account the previously neglected phenom-
ena such as film theory coupled to the Nernst–Planck 
equation which accounts for concentration polarization 
layer splicing. Concentration polarization is a reversible 
phenomenon that takes place when the rejected solutes 
accumulate on the membrane surface, creating a local con-
centration, much higher than that of the feed solution and 
which is very difficult to be experimentally determined. 
This phenomenon has negative effects on membrane per-
formance, including reduced flux and increased membrane 
fouling [30]. As a consequence, there is a need to find an 
alternative way to predict NF process performance by 
exploiting the available data and extending it to unavail-
able data. The extended Nernst–Planck model coupled 
with film theory (NP-FT) and artificial neural networks 
(ANNs) is capable of modeling highly complex and non-
linear systems for NF membranes [25].

The mathematical model used is a coupled model of 
Nernst–Planck equation and the film theory proposed 
by Chaabane et al. [30]. It is a combination of the model 
based on the extended Nernst–Planck equation which is 
widely used in the literature to describe the transport of 
ionic species in membrane separation systems and the 
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film theory equation to describe the mechanism of sol-
ute transfer in the concentration polarization layer [30,31]. 
This model is characterized by three parameters: reflection 
coefficient σ, solute permeability Ps and boundary layer  
thickness δ [32].

ANNs have received a lot of attention, largely due to 
their wide range of applications and the ease with which 
they handle large numbers of applications and complex 
and highly nonlinear data. Once the ANN is trained with 
experimental data, it can be used in a purely predictive 
mode to calculate the dependent variable(s) for any value 
of the input variables. Process modeling is an area in which 
ANNs of various configurations and structures have been 
considered as effective tools [33–35]. On the other hand, 
ANNs provide a more attractive alternative to the classic 
“black box” models for dealing with complex phenom-
ena. ANNs successfully apply to different types of mem-
branes: microfiltration (MF), ultrafiltration (UF) and NF 
[25,35–39]. For instance, Bowen et al. [39] applied ANN to 
provide a means of modeling the performance of the NF 
process, thus used ANN to predict the rejection of single 
salts (NaCl, Na2SO4, MgCl2 and MgSO4) and mixtures of 
these salts at a spiral rolled NF membrane. They found 
good agreement between ANNs predictions and experi-
mental data single salts and mixtures.

In this study, two methodologies, one statistical (ANN) 
and the other mathematical, extended NP-FT are used to 
predict and explain the variation of fluoride rejection as a 
function of permeate flux for three NF membranes (NF90, 
NF270 and TR60) considering four initial concentrations. 
The NP-FT model is used to determine the reflection 
coefficient σ, the solute permeability Ps, and the bound-
ary layer thickness δ, including the concentration polar-
ization phenomenon. While the ANN model is applied to 
provide a means of modeling the performance of the stud-
ied membranes. To compare the predictive power of the 
two models, the values of the determination coefficient 
R2 are calculated for the validity. Finally, a comparison 
between the two models in the fitting of fluoride rejection 
data with the permeate flux is performed.

2. Experimental

2.1. Characteristics of the feed water

The experiments are conducted on groundwater doped 
by NaF at different concentrations. A very slight varia-
tion of pH and conductivity was observed. The analytical 
results of the feed water are presented in Table 1.

2.2. Unit pilot testing

The experiments are performed on an NF/RO pilot 
plant (E 3039) supplied by TIA Company (Technologies 
Industrielles Appliquées, France) shown in Fig. 1. The applied 
TMP can vary in the range of 5–70 bar using manual valves.

The pilot plant is equipped with two identical pressure 
vessel operating in series. Each pressure vessel contains 
one element. The pressure loss is about 2 bar correspond-
ing to 1 bar of each pressure vessel. The two spiral wound 
modules are equipped with two identical commercial 
membranes. The water to be treated is taken from the tank 
by a pump and introduced into the first fissel, the reten-
tate is admitted into the second fissel and the two per-
meates are recovered and mixed.

The washing is carried out by a basic solution of sodium 
hydroxide NaOH at pH between 9 and 10 for 10 min, fol-
lowed by a rinse with water, then a washing with a solution 
of sulfuric acid H2SO4

2– at pH between 3 and 4 for 15 min.
The temperature is kept at 29°C using the heat 

exchanger. Samples of permeate are collected and water 
parameters are determined analytically following standard 
methods previously described [19,42]. The other parame-
ters followed are:

The permeate flux is given by the equation [43,44]:
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where S is the membrane surface area (m2) and Qp the flow 
rate of the permeate (L/h or m3/s).

Table 1
Characteristics of the feed water

Parameters Feed water Moroccan guidelines [40] WHO standards [41]

Temperature (°C) 29 – –
Turbidity, NTU <2 – –
pH 7.41 ± 0.03 6–9.2 6.5–8.5
pHs 7.80 ± 0.05 – –
Electric conductivity, µS/cm 1,492 ± 26 2700 –
Hardness, mg/L CaCO3 440 ± 8 500 500
Alkalinity, mg/L CaCO3 320 ± 10 200 –
Fluoride, mg/L 5–10–15–20 ± 0.6 1.5 1.5
Sulphate, mg/L 116 ± 4 200 200
Nitrate, mg/L 20 ± 0.5 50 50
Chloride, mg/L 560 ± 10 750 250
Sodium, mg/L 246 ± 15 – –
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The recovery rate (Y) is defined as:

Y
Q
Q
p%( ) = ×
0

100  (2)

where Qp is the permeate flow (L/h) and Q0 the feed 
flow (L/h).

Salt rejection (R) is defined as:
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C
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�
��

�

�
���1 100

0

 (3)

where Cp is the solute concentration in permeate (g/L) 
and C0 the solute concentration in the feed water (g/L).

2.3. Characteristics of the membranes

The two spiral wound modules are equipped with two 
identical commercial NF membranes. Table 2 gives the 
characteristics of the membranes used. After the run, the 

membranes are cleaned with alkaline and acidic cleaning 
solutions according to the manufacturer recommendations.

2.4. Application of ANN

The feed-forward, back propagation network (FFBPN) 
model is constructed in this study. In the initial phase, 
the model is trained using the available historical data. If 
the model does not meet expectations, it is then used to 
propagate the process until it reaches the best requirement 
using the Levenberg–Marquardt (LM) backpropagation 
algorithm [46]. The network is composed of three layers, 
namely the input, hidden and output layers. The pro-
posed network has been used by the sigmoid function 
(logsig + tansig) in the hidden layer and the linear function 
(Purelin) in the output layer. The input layer receives the 
input signals from the other source [47]. On the other hand, 
ANN algorithms, programmed in the Matlab toolbox for 
neural networks, are used to predict variation of the flu-
oride rejection as a function of permeate flux for the three 
different NF membranes used in this work. The input data 
of the ANN network are the permeate flux while the output 

 
Fig. 1. Schematic diagram of the NF/RO pilot plant [9]. T: Tank; M: NF module; P: Permeate recirculation; R: Retentate 
recirculation; H: Heat exchanger; 1: High pressure pump; 2: Pressure sensor. 3: Pressure regulation valves.

Table 2
Characteristics of the membranes used

NF270**4040 NF90*4040 TR60*4040

Area (m2) 7.6 7.6 6.8
Salt rejection (%) >97.0% 97% –
Pmax (bar) 41 41 10
Material Polyamide Polyamide Polyamide
Contact angle (°) [45] 27 54 –
Zeta potential (mV) [45]
pH = 3
pH = 12

4.9
–25.6

3.7
–19.4

–
–

- Salt rejection based on the following test conditions 2,000 ppm MgSO4, 77°F (25°C), and 15% recovery rate at the pressure 4.8 bar.
- Salt rejection based on the following test conditions 2,000 ppm NaCl, 77°F (25°C), and 15% recovery rate at the pressure 10 bar.
- Salt rejection based on the following test conditions 2,000 ppm NaCl, 77°F (25°C), and 15% recovery rate at the pressure 15.5 bar.
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is the fluoride rejection which are available for four concen-
trations, 5, 10, 15, and 20 mg/L.

3. Theoretical background of modeling methods

3.1. Extended Nernst–Planck equation coupled with film theory

The model used in this article is described by Chaabane 
et al. [30] and based on the extended Nernst–Planck equa-
tion simplified by Dresner [48], which can be written as 
follows:

J P
dC
dx
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Rearrangement of equation with the electroneutrality 
conditions:

ZC

J C

i i
i

i i
i

=

=

∑
∑

0

0
 (5)

Zi is the ion valence. Give the Kedem–Speigler equation:

J P
dC
dx

J Ci
i

i i i= − + −( )1 σ  (6)

Eq. (6) is integrated over the membrane thickness 
(0 < x < Δx) using the following boundary conditions:

For x = 0, Cm = Cf and for x = ∆x, Cm = Cp.
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Taking into account concentration polarization phe-
nomena which occurs in a boundary layer adjacent to the 
membrane/feed solution interface where the cross-flow 
velocity is essentially laminar and the backward transport 
of the retained solute is by diffusion. The thickness of the 
polarization layer δ can vary from a few microns to hun-
dreds of microns, depending on factors such as the nature 
of the feed solution, module design, cross-flow rate and 
TMP [49,50].

In the steady state, and according to the film theory 
[51–53], the convective transport of solute across the mem-
brane is therefore equivalent to the diffusive back-transport 
of the solute plus that passing with the permeate Jcp the 
following mass balance can be constructed:

J C J C D dc
dxv p v f s� �  (8)

Integration of Eq. (8) over the thickness of the boundary 
layer results in:
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where Q is the mass transfer coefficient.
The observed retention (Robs) of fluoride can be written 

as follows:

R
C
C
p
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0

 (10)

With Eqs. (7) and (9), Robs can be given by:
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Fig. 2 shows this case, assuming no fouling layer is 
present on the membrane/supply interface [54].

3.2. ANN approach

ANNs provide a rich framework for modeling nonlin-
ear phenomena and for solving multivariate regression 
problems [25]. The ANN is a processing system composed 
of neurons (nodes) and connections between them that can 
be used to map input and output data, where the factors 
are called inputs and the response is called target (exper-
imental response) or output (predicted response) [55]. 
According to the theory of universal approximation, a 
functional relationship between an arbitrary number of 
input variables and an arbitrary number of output vari-
ables can be constructed by an ANN with only two lay-
ers (an input layer, a hidden layer and an output layer), 
whose transfer function of the hidden layer is nonlin-
ear and whose transfer function of the output layer is 
purely linear. The transfer functions compute the out-
put of a layer from its net input and contain log-sigmoid 
(logsig), tan-sigmoid (tansig) and pure linear (purlin) 
functions [56,57]. There are several ANN models such 
as the feed-forward model, the multilayer perceptron 
(MLP) and the radial basis function (RBF) [25].

Our study includes the use of FFBPN network due to 
the ability of this method to modeling any function. Fig. 3 
shows the general structure of the FFBPN model. Moreover, 
learning rule FFBPN is used to adjust the weight values 
and threshold values of a system to obtain the minimum 
error [58]. In addition, the input neurons received the 
experimental data and the network provided its outputs 
(ANN simulation data). If the output of the ANN network 
is not equal to the experimentally measured outputs, our 
procedure calculates the mean square error between the 
two values and modified the ANN network weights to 
minimize it. The training data are normalized to the inter-
val [0–1]. Sixty percent of the collected data are used for 
model training, while 30% of the data is equally divided 
for testing and validation, respectively. The model is then 
trained based on Eq. (11) until the total mean square error is 
(or becomes) minimal [58].

x W xJ ji
i

n

i= ∑  (12)
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where xJ is the variable’s new value, xi is the variable’s initial 
value and Wji is the neuron/variable’s weight link value. The 
activation function between the input and the hidden layer 
is (tansig) and log-sigmoid (logsig), as indicated by Eq. (12).

f x e e
e e

f x
e

x x

x x x( ) ( )=
−
+

=
+

−

− −and 1
1

 (13)

The purelin function is used as Eq. (13) between the 
hidden layer and the output layer:

f x x( ) =  (14)

Finally, the reliability of the model is validated with 
a new (unknown) data set and the results are found to be 
satisfactory. The rationale for these steps is discussed in the 
results section.

4. Results and discussion

In previous study [9], RSM statistical method was 
used for optimizing the defluorination operation using 
three membranes (TR60, NF270 and NF90). Furthermore, 
two theoretical models Spiegler–Kedem and Spiegler–
Katchalsky were used to explain the ion transfer across 
these membranes [18]. The objective of this work is to 

test the extended Nernst–Planck model coupled with film 
theory (NP-FT) that accounts for the polarization layer is 
used to determine the phenomenological parameters of 
the models, namely the reflection coefficient σ, the solute 
permeability Ps and δ, the thickness of the boundary layer. 
In addition, the ANN model is also used to predict the 
fluoride rejection as a function of permeate flux. Finally, a 
comparison between the two models will be highlighted.

4.1. Nernst–Planck modeling coupled with film theory

4.1.1. Effect of transmembrane pressure

The variation of the permeate fluoride content and the 
permeate flux (Fig. 4) as a function of TMP is studied in 
batch mode and for a groundwater from the Ben Guerir 
region doped with different fluoride concentrations, already 
published in our previous paper [9,18].

As shown in Fig. 4, the permeate flux increases almost 
linearly with TMP according to Darcy’s law [59]. This flow 
behavior is well established in the literature [9,10,18]. In 
this illustration, the permeate flux follows the following 
order: NF270 > TR60 > NF90. Namely that the permeability 
of solvent water found 5.58 × 10–6; 1.15 × 10–6; 2.49 × 10–6 m3/
m2 s bar for NF270, NF90, TR60 respectively. For all three 
membranes studied, fluoride passage into the permeate 
increases with increasing initial feed fluoride content and 
decreases with increasing TMP, except for NF270, a slight 
increase is observed for TMP above 10 bar.

4.1.2. Parameters of the model

The applied model, NP-FT has been used to study 
the influence of the initial fluoride concentration of the 
feed on the reflection coefficient (σ), the solute permea-
bility (Ps) and the boundary layer thickness (δ) taking into 
account the concentration polarization phenomenon. For 
this aim, a program in Python language has been devel-
oped on the basis of the flowchart (Fig. 5) proposed by 
Chaabane et al. [30]. The results obtained from the model 
simulation are used to plot the curves in the Origin soft-
ware depicted in Fig. 6. The experimental data obtained 
experimentally are indicated by solid symbols, while the 
solid lines represent the function of the model with the 
parameters found by the program. A summary of the cal-
culated model parameters are collected in Table 3.

Fig. 6 shows, for the studied membranes, and for the 
range of initial fluoride concentrations, a good fit of fluoride 
rejection obtained experimentally and by the NP-FT model. 
The obtained R-squared values confirm this accordance.

The calculated reflection coefficients are almost equal 
to unity for NF90. For NF270, the values found exceed 
0.97 which are higher than those found in the paper by 
Tahaikt et al. [18], where the concentration polarization was 
neglected. For TR60, σ is around 0.89 which is almost the 
same value obtained previously by Tahaikt et al. [18]. This 
indicates that the influence of concentration polarization is 
more important for NF270 than for TR60 and NF90. The 
high reflection coefficients indicate that convective trans-
port in the NF90 membrane is almost completely hindered. 
In addition, these results could be explained on the basis of 

 
Fig. 2. Conditions of the boundary layer at the membrane/supply 
interface.

 
Fig. 3. Proposed neural network architecture.
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the steric hindrance mechanism, since NF90 has relatively 
small pores, as shown by atomic force microscopy [25]. 
For TR60 and NF270, both diffusive and convective mech-
anisms are present, but the predominance of diffusion is 
more pronounced for NF270 than for TR60. On the other 
hand the boundary layer thickness for NF270 is 10 times 
larger than that of TR60 which means that NF270 retains 
more fluoride.

The results obtained show that the greater the thick-
ness layer, the lower the permeability. δ is about 10–5 m for 
NF270 and 10–6 m for TR60. On the other hand, the obtained 
δ for NF90 is 10–14 m which is very low or even non-exis-
tent. This explains the order of the solute permeability: 
TR60 > NF270 > NF90. However, the values obtained for 
either δ and Ps are very low.

The formation of the boundary layer is generally due to 
the accumulation of the retained solute on the membrane 
surface, which is a function of the flow of the permeate. 
The lower the concentration of fluoride on the surface of 
the membrane, the lower the thickness of the boundary 
layer. In reality, during NF, other phenomena are involved 

in the formation of the boundary layer, such as the dielec-
tric exclusion effect, the electrical interaction between the 
charged membrane surface and the solvent as well as the 
screen effect, which occurs when the concentration of dif-
ferent ions increases, the counter ions and other retained 
co-ions form films (also called “screen”) near the surface of 
the membrane, which are able to reduce or eliminate the sol-
ute particles [18,30].

The plot of the evolution of Ps and δ (Fig. 7) as a func-
tion of the initial fluoride ion concentration shows how these 
two parameters are influenced slightly by the initial fluo-
ride content for TR60, NF270 and NF90. As shown in Fig. 7, 
the behavior of these two parameters is almost linear. The 
increase of the fluoride content in the raw water causes a 
slight decrease in Ps for NF270 and TR60. On the other hand, 
for NF90, Ps values are very low and a very slight occurs with 
increase of fluoride concentration is observed.

Table 3 gives the estimated parameters of the NP-FT 
model, namely the reflection coefficient (σ), solute permea-
bility (Ps), and boundary layer thickness (δ) considering the 
concentration polarization phenomenon.
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Fig. 4. Effect of TMP on fluoride content and permeate flux for the three membranes [9,18].
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Table 3
Parameters, σ, Ps and δ obtained by the coupled NP-FT model

Membrane Ci (ppm) δ (m) σ Ps R2

TR60

5 1.6 × 10–6 0.890 4.90 × 10–6 0.900
10 1.6 × 10–6 0.897 3.28 × 10–6 0.900
15 1.4 × 10–6 0.900 4 × 10–6 0.800
20 1.4 × 10–6 0.800 2.84 × 10–6 0,880

NF270

5 6.5 × 10–5 0.980 2.24 × 10–6 0.700
10 6.8 × 10–5 0.970 6.68 × 10–7 0.760
15 6.5 × 10–5 0.970 6.14 × 10–7 0.750
20 6 × 10–5 0.980 4.43 × 10–7 0.770

NF90

5 3.4 × 10–14 0.991 5.74 × 10–8 0.720
10 3.8 × 10–14 0.993 4.76 × 10–8 0.700
15 1.0 × 10–14 0.994 6.03 × 10–8 0.810
20 4.2 × 10–14 0.994 6.84 × 10–8 0.818

 
Fig. 5. Program flowchart considering concentration polarization phenomenon.
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4.2. Simulation by ANN

4.2.1. ANN prediction of fluoride rejection 
as a function of permeate flux

The ANN prediction (Fig. 8) of fluoride rejection as a 
function of permeate flux for different initial concentrations 
and for the three NF membranes is performed. The exper-
imental data used in the learning process are indicated by 
solid symbols, while the solid lines represent the best poly-
nomial fit of the ANN prediction.

Fig. 8 shows the ANN predictions for the fluoride 
rejection as a function of permeate flux data for the three 
membranes using different initial fluoride concentra-
tions. It is clear that there is good agreement between the 
ANN prediction and the experimental data for the three 
membranes with very little deviation (slight difference). 
The good prediction by ANN obtained can be explained 
by the fact that the sweatpants used in the learning 

phase are relatively few, and the use of other set-points, 
especially at the level of initial concentration of fluoride 
intermediate, will certainly improve the interpretive 
performance of ANN predictions as shown in previous 
work [25]. The ANN model perfectly describes the fluo-
ride rejection data for TR60, NF270 and NF90 membranes.

4.2.2. Validation of the model ANN

The results obtained for the training, the test, the val-
idation and the global R2 for the training data set, for the 
three membranes are depicted in Fig. 9.

The summaries of the R2 plots during the training, 
testing, and validation stages during the training process 
for the three membranes are shown in Fig. 9. In order to 
evaluate the ANN model, the model is presented with new 
fluoride rejection values that are not used during train-
ing. The fluoride rejection values estimated by the ANN 
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Fig. 6. Experimental and model data of fluoride rejection vs. permeate flux for the three membranes.
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Fig. 8. Experimental and adjustment data by (ANN), fluoride rejection as a function of permeate flux.
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model is then compared to their corresponding actual 
values. An overall R2 value of 1–0.9483–0.9982 is obtained 
for TR60, NF270 and NF90, respectively, showing a per-
fect correlation (output exactly equal to the target). On 
the other hand, for all curves, the points are located very 
close to the straight line and the best-fit equations for 
the training, validation, test, and ensemble subsets have 
mainly a range of slope between 0.97 and 1. These results 

indicate that the trained ANN model could accurately 
simulate the fluoride rejection as a function of permeate 
flux for the NF process dealing with fluoride removal.

4.3. Comparison of the ANN and NP-FT models

The experimental results predicted by both ANN and 
NP-FT models are compared in terms of coefficient of 
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Fig. 9. Network model with training, validation, testing and prediction set for the three TR60, NF270 and NF90 membranes.
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determination (R2). Table 4 shows the results obtained for 
the three membranes. According the results reported in 
Table 4 and the deviation of the predicted response val-
ues from the experimental data for both models illustrated 

in Fig. 10, both models show good and satisfactory R2. 
However, the ANN model reveals a slight superiority over 
the NP-FT model. This slight prediction accuracy can be 
attributed to the general ability of ANNs to approximate 
the nonlinearity of the system [60,61]. In addition, ANNs 
have the advantage of flexibility and the ability to add new 
experimental data to build a more reliable ANN model [62], 
but, they have the disadvantage of providing little infor-
mation about the membrane structures. In contrast the 
applied NP-FT model helps us to understand the transfer 
mechanism in the concentration polarization layer for the 
three membranes studied. In other words, both approaches 
are complementary to improve predictive modeling in the 
membrane system.

The scatter plot of the predicted values of the NP-FT 
and ANN models vs. the actual values for the three tested 
membranes is presented in Fig. 10.

5. Conclusion

In this work, three NF membranes are studied on NaF-
doped groundwater at different fluoride ion concentra-
tions of which the experimental data are correlated and 
analyzed using two models (NP-FT and ANN).
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Fig. 10. Predicted values vs. actual values of ANN and NP-FT models for the three membranes.

Table 4
ANN and NP-FT models comparison

Membrane Ci (ppm) R2

ANN NP-FT model

TR60

5 0.999 0.900
10 0.999 0.900
15 0.999 0.800
20 0.999 0.880

NF270

5 0.819 0.700
10 0.927 0.760
15 0.884 0.750
20 0.845 0.770

NF90

5 0.989 0.720
10 0.999 0.700
15 0.967 0.810
20 0.999 0.818
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According to the NP-FT model, the transfer mecha-
nism of fluoride ions in NF membranes is studied and 
the obtained results show that σ are almost around 
(1–0.97–0.89) for the three membranes (NF90, NF270 and 
TR60) respectively. These values indicate that the trans-
port is diffusive in NF90, while for TR60 and NF270 both 
mechanisms are present, but the predominance of diffu-
sion is more pronounced for NF270 than for TR60. On the 
other hand, the thickness of the boundary layer formed 
by the gradient of fluoride ions is small and is about 
10–5 m for NF270 and 10–6 m for TR60. In addition, the 
value obtained for the NF90 membrane is 10–14 m which, 
is very small, even non-existent. The greater the thick-
ness of the boundary layer, the lower the permeability, 
and the permeability obtained follows the order below:

TR60 > NF270 > NF90 (15)

The ANN model shows a good agreement between 
the ANN prediction and the experimental data for all the 
studied membranes with a very low deviation. In terms 
of comparison between the two models used, the ANN 
model presents a superiority in the prediction of flu-
oride rejection, but this model gives no information 
neither on the mode of transfer, neither on the phenom-
ena which intervenes in this transfer. On the oppo-
site, the NP-FT model gives a good prediction, in addition 
to the determination of the phenomenological parame-
ters to know (the coefficient of reflection σ, the permea-
bility of the solute Ps, and the thickness of the boundary  
layer δ).

Symbols

Pi* — Permeability of ion, m2/s
Ps — Local solute permeability, m2/s
Cf —  Concentration in the membrane surface, 

mg/L
Ci — Concentration of ion, mg/L
Cp — Permeate concentration, mg/L
C0 — Feed concentration solution, mg/L
Ds —  Effective diffusion coefficient of solute, 

m2/s
F — Faraday constant, C/mol
Js — Solute flux, kg/m3/m2 s
Jv — Volume flux, m3/m2 s
Q —  Mass transfer coefficient in the boundary 

layer, m3/m2 s
R — Universal gas constant, J/K mol
Robs — Observed solute retention, %
Rreal — Real solute retention, %
T — Absolute temperature, K
x — Distance variable, m
Zi — Ion valence number

Greek

σ — Reflection coefficient
δ — Thickness of the boundary layer, m
ψ — Electrostatic potential of the system, V
ξ — Error
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