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a b s t r a c t
Paper-recycling mills are serious environmental threats due to their high water consumption and 
highly polluted wastewater. Particles are the most common issue of paper-recycling wastewater, 
and their removal is of particular interest for recycling. Rotating dissolved air flotation (RDAF) 
is a system for separating particles, and the mixing zone of this system, where particles collide 
with air bubbles, is the most important part. As a widely used system in various industries, RDAF 
has rarely been investigated in the literature in terms of its optimization and efficiency improve-
ment. In general, RDAF processes are basically the same as those of conventional dissolved air 
flotation (DAF) systems; thus the results of RDAF can be applied to other DAF systems. In this 
work, the mixing zone of a full-scale RDAF for the paper-recycling mill wastewater treatment was 
investigated to predict particle-bubble collision efficiency, consisting of both particle-bubble trans-
port and attachment, and the diameter of the formed particles in different turbulence conditions. 
ANSYS CFX R18.0, mathematical modeling, and experimental analysis were simultaneously con-
ducted in this research. Based on experimental operation, four scenarios including flow rates and 
the discharge condition of effluent into the mixing zone were studied. Bubbles with sizes of 60, 
80, and 100 µm, the turbulences were calculated. The obtained particle-bubble collision efficiencies 
indicated the diameter of output particles ranged from 50 to 300 µm. Also, the static light scat-
tering test was performed to determine the particle sizes. The modeling and experimental results 
both showed that the collision efficiency was higher with the production of larger particles when 
valves #3 and #4 were opened in the mixing zone.

Keywords:  Bubble-particle; Collision efficiency; Modeling; Paper-recycling wastewater; Particle size; 
Rotating dissolved air flotation
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1. Introduction

The wastewater of paper-recycling mills includes very 
fine pulp and paper particles. Collision and separation of 
particles in paper-recycling mills are important from the 
environmental and economic aspects. Rotating dissolved 
air flotation (RDAF), known as “Krofta”, is a widely used 
system for paper-recycling wastewater treatment that con-
sists of a circular tank with a rotating paddle for cumu-
lating the particles [1,2]. The optimization of RDAF, sim-
ilar to other DAFs, can be discussed in terms of reaching 
a more efficient bubble-particle collision and coagulation 
[3], obtaining higher-quality wastewater and better particle 
removal [4–6], and using new pieces of equipment replac-
ing old ones [7]. The collision of particles and their attach-
ment to one another to form a greater floc is the basis of 
flocculation [8–10]. Several research works show the sig-
nificant role of the air bubbles’ behavior and concentration 
and their collisions with particles in optimization [11–17]. 
Computational fluid dynamics has been used as a proper 
tool to simulate the behavior of single- or multi-phase flows 
[18–21]. This technique has been extensively employed for 
the simulation of the interactions of fluid phases in DAF 
[22–25]. Also, k–ε is a model for turbulence that has the 
most applications and gives results that are more consis-
tent with test results [26,27]. On the other hand, another 
approach for the simulation of bubble-particle interaction 
and particle size in DAF is mathematical modeling [28–30]. 
A study on paper-recycling wastewater showed that the 
intensity of turbulence is effective on particle removal effi-
ciency [31–33]. Moreover, micro turbulences affect particle 
flotation more significantly [34–36]. Also, tank hydrody-
namic conditions and flotation rates in DAF interact and 
affect the particle removal efficiency [37–41]. Based on a 
decade of experimental operation, it was observed that 
with the change of flow conditions (scenario), the particle 
removal efficiency changes in the separation zone. Particle 
removal efficiency can depend on the particle diameter in 
paper-recycling wastewater. The function of the separation 
zone depends directly on the performance of the mixing 
zone. Therefore, the most important purpose of this study 

was to investigate the collision-attachment between parti-
cles and bubbles, namely the particle-bubble collision effi-
ciency, caused by turbulence changes in the mixing zone. 
To address this subject, the mixing zone of a full-scale 
RDAF used for paper-recycling mill wastewater treat-
ment in Mazandaran, Iran, was investigated using ANSYS 
CFX R18.0, mathematical modeling, and experiments.

2. Materials and methods

Here, a full-scale RDAF applied for treating the waste-
water of a paper-recycling mill in Rangin Kaghaz-e-Khazar 
Co., Mazandaran, Iran, was considered. RDAF consists of a 
set of discharge valves and a skimmer that rotate together 
in an iron tank in the form of a donut. The outer diameter 
and height of this donut-shaped tank are 4 m, and 60 cm, 
respectively. Four discharge valves, 8 cm in diameter and 
30 cm in height, with specified spacing, discharge the waste-
water and compressed air (bubbles) into the second mixing 
zone. The main wastewater transfer pipe is divided into four 
discharge valves, namely valve #1, #2, #3, and #4, in order. 
Fig. 1 schematically shows an RDAF together with the inlet 
and outlet and meshing. Air bubbles are provided in this 
system by using a compressor to supply a portion of the 
wastewater to an air-saturator unit and then inject it into 
the main pipe. Different situations for the wastewater dis-
charge into the RDAF’s mixing zone are shown in Table 1. 
Scenarios were selected from a decade of experimental oper-
ation, based on the observation that with the opening and 

Table 1
Different scenarios for the discharge of wastewater into the mix-
ing zone

Opened valves Total flow rate (L/s) Velocity in valves (m/s)

1,2,3,4 6.15 0.415
1,2,3,4 (normal) 7.7 0.514
1,2 7.7 1.01
3,4 7.7 1.01

(a) (b) 

Fig. 1. (a) RDAF schematic of inlet and outlet and (b) meshing.
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closing of the valves, the effluents will be darker or brighter, 
as stated by the operator. Finding the cause of this issue 
became the base of this study. Four scenarios including flow 
rates and the discharge condition of effluent into the mixing 
zone were studied. Fig. 2 shows a schematic illustration of 
the RDAF, in which the black line from the air injection point 
to the mixing zone shows the study domain, which is the 
particle collision zone. The mixing zone in this study con-
sists of two parts: from the air injection point in the main 
pipe to the outlet of valves and from the outlet of valves to 
baffles. After the passing of flow through the iron bars, the 
flow enters the separation zone in which particles float and 
become separated from the wastewater. The approach used 
in this research consists of three parts. In the first part, by 
using equations for the particle-bubble collision in the main 
pipe based on mass balance, the particle-bubble collision 
efficiency model was obtained. In the second part, ANSYS 
CFX R18.0 software was employed to simulate the model 
and obtain some of its parameters. The developed RDAF 
mesh in ANSYS CFX consisted of 317076 grids. A transient 
flow with a time step of 0.05 was taken into account. The 
third part involved particle analysis to experimentally val-
idate the model and ANSYS CFX results. The particle size 
test was performed extensively for the three scenarios by the 
static light scattering (SLS) to determine the particle sizes. 
Sampling was performed at three different points in the 
RDAF: after the valves, the baffles (second mixing zone), 
and the collector (output), respectively. For further investi-
gation, two samples were taken at slow and rapid rotating 
speeds of the valves. The rotating time was 480 s at a slow 
speed and 80 s at a rapid speed. After transferring the col-
lected samples to the laboratory, based on standard time 
intervals for analysis, the tests were conducted [42].

2.1. Mathematical model

The general equation for the particle growth rate (Nij) 
in terms of a second-order particle-bubble collision rate 

between particles with i and j sizes is as follows [1,19,43]. 
Particle-bubble collision efficiency in this study includes 
particle-bubble transported and attachment.

N nnij ij ij i j� � �  (1)

where Nij is the overall particle growth rate, bij is the collision 
mechanism, αij is the collision efficiency factor (0 < αij < 1), 
and ninj is the particle collision rate. Mass balance is consid-
ered as the plug flow, and dispersion is neglected [44,45]. 
The flow rate Q + Qr is constant, and the particle balance 
statement is expressed by Eq. (2) [1]:
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In steady-state, the particle-bubble collision efficiency of 
the mixing zone is obtained as follows [1]:
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Perkinetic frequency is expressed as Eq. (4), in which kB 
is the Boltzmann constant, T is the absolute temperature, 
and µ is the fluid viscosity [1,19].
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Orthokinetic aggregation in isotropic turbulence is 
expressed as Eq. (5), where ε is the average energy dissipa-
tion rate, and ϑ is the kinematic viscosity of the fluid [1,19].

Fig. 2. Schematic illustration of the main pipe and four valves in RDAF.
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In conclusion, the general equation for particle-bub-
ble collision efficiency of in the mixing zone is obtained as 
follows Eq. (6) [1,19]:
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2.2. Experimental data

Particle-bubble collision efficiency variables were 
obtained according to the following equations based on 
experimental data. These variables include the mass concen-
tration in released air (Cb) and the saturator air concentration 
that can be expressed as the bubble number concentration 
(nb) or the bubble volume concentration (φb) [12].
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According to the operating scenarios of RDAF under 
study, the system is operated at two recycling flow rates: 
0.48 and 0.38. Saturated air concentrations at these two rates 
are calculated as follows:
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The air pressure operation in saturation is 3.5–4.5 bar, 
and according to the recycling flow rates, the diameter 
of the air bubbles is in the range of 60 to 100 µm. In this 
study, bubbles with diameters of 60, 80, and 100 µm were 
considered [1,4,12]. Thus, the number of bubbles at two 
recycling flow rates is calculated.
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In a fully developed pipe flow, the turbulence intensity 
(T.I) at the core can be calculated with Eq. (10). The length 
scale and energy dissipation rate are estimated using Eq. (11) 
[46,47].
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where Cµ is 0.09.
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where ε1 = 3.3 × 10–4 m2/s3; ε2 = 5.73 × 10–4 m2/s3.
These data were used for determining the particle-bubble 

collision efficiency in the mixing zone.

2.3. ANSYS CFX R18.0

To simulate fluid flow, a widely used tool is ANSYS CFX 
R18.0 software, which solves fluid flow equations in a region 
with boundary conditions. The standard k–ε two-equation 
model is the most frequently used turbulence model for 
solving flow problems Eqs. (12) and (13). This model was 
employed in ANSYS CFX R18.0 [47].

�
�

�
�
�

�
�
�

�
�
�

�
�

��
t
k

x
kU

x
k
x

G
i

i
j

t

k j
k� � � � � � �

�

�
��

�

�
��

�

�
�
�



�
�
�
� 
  (12)

�
�

��
�
�

��
�
�

�
�
�

��
�

�

�t x
U

x x
C
k
G

i
i

j

t

j
k� � � � � � �

�

�
��

�

�
��

�

�
�
�



�
�
�
� 
1 CC

k2

2

�
�  (13)

2.4. The k–ε model

In the k–ε model, ε is the eddy dissipation rate of tur-
bulence, at which the velocity fluctuations dissipate, and k 
is the turbulence kinetic energy defined as the variance of 
velocity fluctuations. By using this model, two new variables 
are added to the equations. Therefore, the continuity equa-
tion is expressed as Eq. (14) [47],
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and the momentum equation is expressed as Eq. (15) [47]:
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where SM is the body forces sum, and µeff is the effective vis-
cosity that takes the turbulence into account is expressed 
as Eq. (16) [47]:

� � �eff � � t  (16)

where µt is the viscosity of turbulence expressed as 
Eq. (17) [47]:
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3. Results and discussion

3.1. ANSYS CFX R18.0

Hydrodynamic parameters, including flow velocity in 
the mixing zone, as well as turbulence, were obtained by 
CFX R18.0. Fig. 3 shows the water velocity contours in the 

mixing zone in the first, second, third, and fourth operation 
scenarios.

Moreover, Fig. 4 shows the water turbulence in the mix-
ing zone in each scenario. The velocities and turbulences 
obtained by ANSYS CFX were put in Eq. (6) and compared 
with experimental data.

3.2. Bubble-particle collision efficiency

The results indicated that the values of perkinetic fre-
quency were very small; thus, its effect on the efficiencies 
could be ignored. Also, orthokinetic frequency was calcu-
lated as a function of turbulence, particle size, and bubble 
size in the valves and inserted in the collision efficiency 
model. In order to better evaluate the collision efficien-
cies, in all scenarios, the particle size is in the range of 50 
to 300 µm. Fig. 5a shows the collision efficiency in the first 
scenario. In this case, the average length of the pipe was 
calculated as 1.8 m, the water velocity as 0.54 m/s, and the 
turbulence intensity as 0.00033 m2/s3. When the bubble 
size decreased from 100 to 60 µm, the efficiency reached 
approximately 100%. Particle collision efficiency for parti-
cles larger than 200 µm was close to 100%. Fig. 5b shows 
the collision efficiency in the second scenario. In this case, 
the average length of the pipe was obtained as 1.8 m, the 
water velocity as 0.68 m/s, and the turbulence intensity as 

 

(a)                                                                                            (b) 

(c)                                                                                             (d) 

 Fig. 3. Velocity in the pipe mixing zone when valves (a) 1#, 2#, 3#, 4#, (b) 1#, 2#, 3#, 4# (normal operation), (c) 1# and 2#, and 
(d) 3# and 4# are open.
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0.00057 m2/s3. Particle collision efficiency of 100% for par-
ticles larger than 190 µm was obtained. When the bubble 
size decreased from 100 to 60 µm, an optimum efficiency 
of 100% was obtained. Fig. 5c shows the collision efficiency 
in the third scenario. In this case, the average length of the 
pipe was calculated as 1.77 m, water velocity as 0.68 m/s, 
and turbulence intensity as 0.00057 m2/s3. Particle colli-
sion efficiency for particles larger than 180 µm was close 
to 100%. By decreasing the bubble size from 80 to 60 µm, 
efficiency of 100% was reached. In addition, Fig. 5d shows 
the collision efficiency in the fourth scenario. In this sce-
nario, the average length of the pipe was calculated as 
2.3 m, water velocity as 0.68 m/s, and turbulence inten-
sity as 0.00057 m2/s3. Particle collision efficiency for parti-
cles larger than 180 µm was close to 100%. The optimum 
particle size for 100% efficiency is 140 µm.

Edzwald and Haarhoff [1] proposed two good and poor 
coagulation factors and considered them in the modeling. In 
the first scenario in the mixing zone, shown in Fig. 6a, it is 
seen that at a good coagulation factor, (α = 0.5), a retention 
time of 5 s, and turbulence intensity of 0.0003 m2/s3, the effi-
ciency is 65% for particles with a diameter of 50 µm, and by 
increasing the particle diameter, the efficiency approaches 
100%. However, at a poor coagulation factor (α = 0.05), for 

particles with a diameter of 50 µm, the efficiency is 10%, 
and for particles with a diameter of up to 300 µm, the effi-
ciency is 40%. After exiting the valves, the air bubbles 
expanded and discharged into the atmosphere.

Furthermore, in the second scenario shown in Fig. 6b, it 
is seen that at good coagulation (α = 0.5), a retention time of 
4 s, and turbulence intensity of 0.00035 m2/s3, the efficiency 
is 75% for particles with a diameter of 50 µm. Moreover, by 
increasing the particle diameter, the efficiency approaches 
100%. However, for a poor coagulation factor (α = 0.05), 
the efficiency is 5% for 50 µm particles, while the parti-
cle-bubble collision efficiency is 85% for particles with a 
diameter of up to 300 µm.

In Fig. 6c showing the third scenario, it is seen that at a 
good coagulation factor (α = 0.5), a retention time of 2 s, and 
a turbulence intensity of 0.0004 m2/s3, the efficiency is 55% 
for particles with a diameter of 50 µm, and as the particle 
diameter increases, the efficiency gradually reaches 100%. 
For a poor coagulation factor (α = 0.05), the efficiency is 8% 
for particles with a diameter of 50 µm, while the efficiency 
is 65% for particles up to 300 µm. Fig. 6d corresponding to 
the fourth scenario shows that at a good coagulation factor 
(α = 0.5), a retention time of 2 s, and a turbulence intensity 
of 0.00065 m2/s3, the efficiency is 65% for particles with a 

 
Fig. 4. Turbulence in the pipe mixing zone when: (a) 1#, 2#, 3#, 4#, (b) 1#, 2#, 3#, 4# (normal operation), (c) 1# and 2#, and 
(d) 3# and 4# are open.
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diameter of 50 µm, and as the particle size increases, the 
efficiency approaches 100% with a sharper gradient. In 
addition, for poor coagulation (α = 0.05), the efficiency is 
10% for particles with a diameter of 50 µm, while it is 75% 
for particles of up to 300 µm in diameter. By combining 
the efficiencies in the pipe and mixing zone, the particle 
collision efficiency for each of the four modes of opera-
tion is 100%; however, in the second and fourth scenarios, 
according to hydrodynamic conditions, the production of 
particles is greater.

3.3. Particle size distribution test

The particle size test was performed in three scenar-
ios out of the four scenarios except for the first scenario by 
the SLS method [42]. Sample points were selected at five 
points, including after valves, baffles, collector, slow rotat-
ing, and rapid rotating. The aim was to experimentally 
obtain particle size according to different turbulence and 
hydrodynamic conditions.

Three operating scenarios, except for the first scenario, 
were evaluated in the previous stage. To better compare 
the turbulence effect on the collision efficiency and size 

distribution of particles in the effluent, the particle size of the 
raw wastewater was determined as the basis for comparison 
with the subsequent changes. In the first scenario, valves #1 
and #2 were opened. According to the measurements, the 
particle distribution was in the range of 0.283–399 µm. The 
obtained relative volume and diameter of the particles are 
the most important data of the particle size distribution. 
Fig. 7 shows that among the various operating modes, the 
rapid rotating mode can produce particles larger in diam-
eter than the raw particles up to 563 µm, so this operating 
mode is recommended for higher operational efficiency. 
In other operating modes, turbulence may break down the 
particle to particles smaller compared with those in raw  
wastewater.

In the second scenario, valves #3 and #4 were opened. 
Fig. 8 shows that among the various operating modes, the 
slow rotating and after baffle modes can produce particles 
larger in diameter than the raw particles up to 1,124.7 µm; 
thus, these operating modes are recommended for higher 
operational efficiency. In this scenario, the operating modes 
often produce larger particle sizes than the raw wastewater 
particles, and there is a relatively uniform continuity and 
stability compared to the previous mode.

Fig. 5. Collision efficiency in the pipe mixing zone when valves (a) 1#, 2#, 3#, 4#, (b) 1#, 2#, 3#, 4# (normal operation), (c) 1# and 2#, 
and (d) 3# and 4# are open.
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Fig. 7. Particle diameter when valves #1 and #2 are in operation.

 

Fig. 6. Collision efficiency in the mixing zone when valves (a) 1#, 2#, 3#, 4#, (b) 1#, 2#, 3#, 4# (normal operation), (c) 1# and 2#, and 
(d) 3# and 4# are open.
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In the last operation scenario, all the four valves were 
opened and considered with normal flow. Fig. 9 shows that 
the particle size increases to 720 µm in the post-valve and 
baffle modes. Especially after the baffle, the particle diameter 
continues to increase but decreases until the collector. This 
reduction in particle size may be due to turbulence within 
the separation zone. In comparison, among the three exper-
imental scenarios presented, the second scenario resulted 
in the production of larger particle sizes up to several times 
the particle size of the raw wastewater with a higher cor-
relation to the experimental modes. Therefore, this sce-
nario can better increase RDAF system efficiency in terms 
of particle size and particle removal efficiencies.

4. Conclusions

In this study, particle collision efficiency was inves-
tigated using ANSYS CFX R18.0, mathematical model-
ing, and experimental analysis to predict the effect of 
turbulence on collisions in the mixing zone of an indus-
trial RDAF in Rangin Kaghaz-e-Khazar Co., Iran. As dis-
cussed in the paper, the particle-bubble collision efficiency 
is based on transport and attachment and do not depend 
on the geometry in DAF systems (circular and rectangu-
lar). Thus, the results of this research can be extended to 
all DAF systems. According to the SLS test, a particle size 
range of 50–300 µm was considered. Four scenarios at two 

Fig. 8. Particle diameter when valves #3 and #4 are in operation.
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mixing zones were considered for RDAF operation. The 
first mixing zone was the particle-bubble collision inside 
the pipe. In the first case, for the corresponding hydrody-
namic conditions, the collision efficiency of particles with 
a diameter greater than 200 µm was 100%. In the second 
case, for particles larger than 190 µm, the particle collision 
efficiency was 100%. In the third case, the particle diame-
ter was 180 µm, and in the fourth case, the optimal particle 
diameter was 140 µm. In the next mixing zone, four scenar-
ios were examined. In all the four scenarios, for particles 
with a diameter of 50 µm and above and poor coagulation 
conditions, the efficiency of particle-bubble collisions was 
higher than 10%. By increasing the particle diameter up to 
300 µm, the particle-bubble collision efficiency in the sec-
ond mixing zone reached 40% to 80%, which was in the 
weak coagulation state. In addition, the collision efficiencies 
were higher for coagulations with higher alpha values.

The particle size distribution test was performed for the 
three scenarios by the SLS method. Sampling was conducted 
at five points. SLS test was performed for two purposes: 
detecting particle size in raw wastewater and validating of 
experimental and mathematical models. Based on that, the 
particle size was considered from 0.283 to around 300 µm 
with different relative volumes. Of the four scenarios con-
sidered in the previous section, three operating scenarios 
were considered in this section, except the first scenario. 
The highest particle diameters were related to the scenario 
in which valves 3 and 4 were open and valves 1 and 2 were 
closed, and the hydrodynamic conditions related to those 
particles were up to 1,120 µm in diameter. Conversely, 
when valves 1 and 2 were open, the maximum output 
particle diameter was 563 µm.
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Symbols

A — Area
C — Concentration
CFD — Computational fluid dynamics
D — Diameter
dt — Time step
e — Efficiency
Ecz — Contact zone efficiency
K — Coefficient
kB — Boltzmann constant
L — Length
L — Length scale
Lcz — Length of contact zone
Nij — Overall particle growth rate
n — Number
PSD — Particle size distribution
Q — Flow rate
Qr — Recycle flow
R — Radius
r — Recycle ratio
RDAF — Rotating dissolved air flotation
Re — Reynolds
SLS — Static light scattering
SM — Body forces sum
T — Absolute temperature
T.I — Turbulence intensity
U — Velocity

Greek

ρ — Density
µ — Dynamic viscosity
ʋ — Kinematic viscosity
K — Turbulence kinetic energy
ε — Turbulence eddy dissipation rate
σk — Constant
φb — Bubble volume concentration
Cb — Bubble concentration
Cµ — Constant
αij — Collision efficiency factor
bij — Collision mechanism
bperkinetic — Perkinetic frequency
borthokinetic — Orthokinetic frequency

Subscripts

b — Bubble
p — Particle
i — Bubble; X direction
j — Particle; Y direction
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