Boosting hydrogen gas production and mitigation of fluorescein dye on the surface of S-scheme $g-C_3N_4/SnO_2$ heterojunction

Hisham S.M. Abd-Rabboh^a, A.H. Galal^{b,c}, Abanoob M. Basely^b, Fatma M. Helmy^b, M.A. Ahmed^{b,*}

^aChemistry Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia, email: hsalah@hotmail.com ^bDepartment of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt, Tel. +20 103979568; Fax +20 224831836; emails: abdelhay71@hotmail.com (M.A. Ahmed), Abanoob@yahoo.com (A.M. Basely), Fatma100@hotmail.com (F.M. Helmy)

Faculty of Engineering, The British University, Cairo, Egypt, email: hamadagalal2103033@gmail.com

Received 6 January 2022; Accepted 14 May 2022

ABSTRACT

In this research work, a highly efficient step S-scheme g-C₃N₄/SnO₂ heterojunctions containing various concentration of g-C₃N₄ 0–20 wt.% are controllable designed through sonochemical process for generation of hydrogen gas and decomposition of anionic fluorescein dye into eco-friendly species. Spheroid mesoporous SnO₂ nanoparticles were manipulated by controlled sol–gel process. In ultrasonic bath of intensity 150 W, a step S-scheme heterojunctions were constructed by mixing various proportions of g-C₃N₄ and SnO₂ nanoparticles. The change in the physicochemical properties are recorded by high-resolution transmission electron microscopy, X-ray diffraction, N₂ adsorption–desorption isotherm, X-ray photoelectron spectroscopy (XPS), diffuse reflectance spectroscopy and photoluminescence spectroscopy (PL). With introducing 10 wt.% g-C₃N₄, the removal of fluorescein dye reach 92% and hydrogen gas evolution rate is 6.56 mmol/g h which is tenfold higher than that of pristine SnO₂. The shifting in XPS peaks of Sn⁴⁺ and reduction of PL intensity of the nanocomposite reveal the successful generation of g-C₃N₄/SnO₂ heterojunction. The charge carriers transportation proceeds through step S-scheme mechanism that generate an internal electric fields at the interface boundary between the two semiconductors. The durability of this novel nanocomposite can be deduced from the achievement of 86% of photocatalyst reactivity after six consecutive cycles.

Keywords: Novel g-C₃N₄/SnO₂ nanosheets; Successful dye mitigation; Exceptional hydrogen generation; Massive charge carriers

1. Introduction

The development of low cost and non-toxic photocatalyst is recent challenge for solving energy and environmental problems [1–4]. The generation of hydrogen gas under solar radiations as a zero pollution green energy fuel with strong renewability is hot topics in eliminating the dangerous emissions of fuel resources [5–10]. Among various efficient semiconductors, SnO₂ nanoparticles with unexpected physical and chemical stability has fascinated extensive scientific hotspot field due to its low cost, high surface area, distinct mesoporous structure and strong optical properties compared with well-known metal oxide semiconductors as CeO₂, ZnO and TiO₂. Dilemma, the low charge recombination efficiency and weak redox properties reduces the photocatalytic power of SnO₂ nanoparticles

^{*} Corresponding author.

^{1944-3994/1944-3986 © 2022} Desalination Publications. All rights reserved.

and direct its photocatalytic reactivity to UV region only. Heterojunctions of two appropriate semiconductors displays many benefits over single semiconductor as light harvesting, improving the efficiency of the charge carriers separation and enhancing the oxidative and reductive power of the reactive species. Recently, low-cost $g-C_2N_4$ is a potential photocatalyst under visible light radiations due to its narrow band gap energy and simple preparation route [11-19]. However, the low surface area, poor efficiency of the charge carriers separation and the low van der Waals interactions among the conjugated planes restrict electron coupling together which reduces the photocatalytic efficiency. Coupling g-C₃N₄ with SnO₂ nanoparticles is recently hot topics for generation of heterojunction with exceptional photocatalytic reactivity [20-25]. Van et al. [20] prepare $g-C_3N_4$ heterojunction by thermal treatment for SnCl₄ and melamine and the results indicate that the novel nanocomposite exhibit a between efficiency in removal of rhodamine B dye. The charge carriers transportation between $g-C_{2}N_{4}$ and promising semiconductors are discussed based on type II heterojunction or charge carriers recombination through direct Z-scheme and step S-scheme [26-33]. Step S-scheme mechanism is most probable pathway for charge carriers transportation that involves the production of internal electric field by recombination of positive hole and negative electrons with low redox potential and preserve the charge carriers with strong redox potential for effective oxidation and reduction processes [34-40]. A few researchers have been concerned on fabricating g-C₃N₄/SnO₂ heterojunction for photocatalytic process [41-48]. The previous researches involve hydrothermal, precipitation, microwave or solid state reaction for construction of g-C₃N₄/SnO₂ heterojunctions. Dilemma, these routes are accompanied with irregular dispersion of the nanoparticles, poor chemical interaction and production of pores constrains that hinders the transportation of reactants molecules. Sonochemistry route is green and low cost operation that generates acoustic cavitation and microjets preventing the particle aggregation and reduces the particle size. The generation of step S-scheme g-C₃N₄/SnO₂ heterojunctions through sonochemical route for photocatalytic purposes is not investigated until now. The selection of the appropriate proportions of $g-C_3N_4$ in the solid sample is primary key for enhancing the photocatalytic reactivity. The previous research synthesis g-C₃N₄/SnO₂ with high proportion of $g-C_3N_4$ that reach 50 wt.%. This high proportion of g-C₂N₄ reduces largely the solid surface area, destroy the pore structure and affect the excellent optical properties of SnO₂. In our research, we select an appropriate amount of $g-C_3N_4$ (10 wt.%) that enhances the photocatalytic properties of SnO₂ without affecting its physicochemical properties. The as-synthesized heterojunctions were analyzed by X-ray photoelectron spectroscopy (XPS), X-ray diffraction, high-resolution transmission electron microscopy (HRTEM), diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy (PL) and Brunauer-Emmett-Teller (BET). The photocatalytic performance of the bare and the hybrid nanocomposites was explored by following the decomposition of fluorescein dye degradation and the photocatalytic hydrogen production as clean renewable energy. The mechanism of charge transportation

is investigated and deliberated using trapping scavenger experiments and PL studied of terephthalic acid.

2. Material

Isopropanol terephthalic acid, ammonium oxalate, ammonia solution, urea, absolute ethanol, stannic chloride pentahydrate, ammonia solution, methanol, fluorescein dye and benzoquinone were collected from Sigma-Aldrich Company with purity = 99%.

2.1. Synthesis of g- C_3N_4 nanoparticles

2.1.1. Synthesis of $g-C_3N_4$ nanoparticles

Typically, 35 g of microcrystalline urea were calcined at 560°C with rate 2°C/min and left for 7 h in covered aluminum crucible. The calcined solid after cooling to 30°C was purify with ethanol (99%) and grinding with solid mortar. The final generated g-C₃N₄ nanosheets are characterized with their brilliant brownish yellow color assigned to successful route for synthesis of g-C₃N₄.

2.1.2. Preparation of SnO₂ nanoparticles

SnO₂ nanoparticles are usually well synthesized by controlled sol–gel technology [48,49]. Typically, 3 g of pluronic template dissolved in 100 mL ethylene glycol added to a solution containing 17 g SnCl₄·5H₂O dissolved in 120 mL ethylene glycol. Afterwhile, the mixture was subjected to constant stirring for 12 h. Ammonia solution of concentration 2 M was added dropwise to the above mixture with constant stirring until the pH of solution is maintained at pH = 9. Then, the sol was left for another 5 h with constant stirring. Finally, ultrasonic bath with intensity 150 W was applied to sol mixture for 1 h. The colloidal mixture was left for 10 h followed by filtration and washed with bi-distilled water to mitigate chloride ions. Then, the gel mixture was dried at 90°C for 24 h. The dried solid was calcined at 450°C with rate 2°C/min for 5 h.

2.1.3. Preparation of g- C_3N_4/SnO_2 heterojunctions

In high performance ultrasonic bath with 150 W intensity, a calculated amount of $g-C_3N_4$ nanosheets and SnO_2 nanoparticles are mixed together in distilled water by different proportions to generate heterojunctions with 5, 10, 15 and 20 w/w% $g-C_3N_4$ decorating pristine tin oxide. The pristine specimens are denoted as $g-C_3N_4$ and SnO_2 and the heterojunctions denoted as SnCN5, SnCN10, SnCN15 and SnCN20 referred to the hybrid nanoparticles containing 5, 10, 15 and 20 wt.% of $g-C_3N_4$ contents.

2.2. Material characterization

The heterojunction crystalline phases were explored by P'Analytical X'PERT MPD diffractometer purchased from the United States. The pore structure and surface area analysis were recorded by adsorption isotherms of N₂ gas. XPS analysis for estimation of oxidation state and elemental compositions was carried out by K-ALPHA Themo Fisher Scientific, USA technique with monochromatic X-ray Al K α radiation from 10 to 1,350 eV. Transmission electron microscope with high resolution were detected by HRTEM JEOL 6340. The reflectance and the band gap energy of the solid specimens were recorded by JASCO spectrometer (V-570) from United States. The mitigation of anionic fluorescein dye under 300 W intensity solar simulator is taken as photocatalytic reaction model to elaborate the removal tendency of the as-synthesized heterojunction. Typically, 100 mL of the anionic dye was mixed with 0.1 g of the photocatalyst with constant stirring for 1 h to reach adsorption-desorption equilibrium that depend on the affinity of the solid surface to attract the dye molecules through adsorption process. Afterwhile, the mixture was irradiated with xenon lamp of 300 W intensity for 2 h to investigate the photocatalytic kinetic rate. At each interval time, 3 mL of the solution is separated, centrifuged and the color intensity is recorded by UV-Visible spectrophotometer. The generation of 2-hydroxy terephthalic acid is taken as indicator for concentration of Hydroxyl radicals. The concentration of H_2 gas evolved under 300 W Xenon lamp as light source was recorded by dispersing various specimens of the heterojunctions into 180 mL of methanol solution. 600 µL gaseous products were taken and analyzed by gas chromatography for various interval times of hydrogen production process.

3. Results and discussion

3.1. Physicochemical characterization

The diffraction pattern of the as-synthesized photocatalysts are recorded in Fig. 1a. The well-known crystalline peaks at $2\theta = 26.7^{\circ}$, 34.4° , 37.5° , 51.7° , 54.9° , 58.4° , 61.8° and 65.1° are referred to SnO_2 tetragonal structure. On the other hand, the prevailing diffraction peaks produced at 13.2° and 27.59° are related to (100) and (002) diffraction planes, respectively which are consistent to g- C_3N_4 (JCPDS no. 87–1526). The main characteristics diffraction peaks of g- C_3N_4 are emerged in the nanocomposites under the strong

Fig. 1. (a) X-ray diffraction of $SnO_{2'}$ g-C₃N₄, SnCN5, SnCN10, SnCN15 and SnCN20, (b) N₂ adsorption–desorption isotherm of $SnO_{2'}$ g-C₃N₄ and SnCN10, and (c) pore size distribution curve of $SnO_{2'}$ g-C₃N₄ and SnCN10.

crystalline peaks of SnO₂, however, the two peaks for the sample SnCN20 are very broad that embedded the diffraction peaks of both SnO_2 and $g-C_3N_4$, this phenomenon is in agreement with previous results of Wu et al. [47] and Van et al. [20] who report that the crystalline peaks of $g-C_3N_4$ commence to appear when the concentration of g-C₃N₄ to SnO₂ is 1:1 by wt.%. The crystalline dimensions estimated by Debye-Scherrer equation is 49, 54, 36, 28, 22 and 15 nm for SnO₂, g-C₃N₄, SnCN5, SnCN10, SnCN15 and SnCN20, respectively. Among incorporation of g-C₃N₄, the crystalline dimensions are strongly depressed due to diffusion of g-C₃N₄ nanosheets between SnO₂ nanoparticles. The adsorption-desorption isotherms of nitrogen at 77 K on pristine SnO₂, g-C₃N₄ and SnCN10 heterojunction (Fig. 1b) are classified as Type IV adsorption-desorption isotherms according to IUPAC classifications with H1 hysteresis loop. H1 hysteresis loop referred to open porous matrix that explains the construction of definite mesoporous heterojunctions with cylindrical pore structure. This cylindrical pore structure is recommended to facilitate the transportation of reactants molecules without existence of any pore restrictions that increases the rate of the photocatalytic processes. The surface area of SnO₂, g-C₃N₄ and SnCN10 nanoparticles calculated from BET equation in its normal range of applicability are 103, 78 and 67 m^2/g . The BJH pore size distribution curve is constructed on ${\rm SnO}_{\rm 2'}~{\rm g-C_3N_4}$ and SnCN10 nanoparticles indicating that the pore diameter is 38.4, 46.5 and 38.8 nm revealing the predominant mesoporous structure of the pristine and the nanocomposite solid sample.

Sample	Particle size (nm)	Surface area (m²/g)	Pore diameter (nm)	Band gap energy (eV)
SnO ₂	49	103	38.2	3.15
$g-C_3N_4$	54	78	45.6	2.58
SnCN10	28	67	38.8	2.79

The elemental composition of SnO₂ (Fig. 2a and b) and $g-C_3N_4/SnO_2$ heterojunction containing 10 wt.% $g-C_3N_4$ (Fig. 2c-f) was elaborated by XPS analysis that records the high purity of the as-synthesized nanocomposites. The asymmetric O 1s with binding energy 531.28 eV in SnO₂ and 530.8 eV in the nanocomposites is assigned to oxygen species. The Sn 3d spectrum illustrates a broad peaks at binding energies of 487.1 and 495.1 eV, referred to Sn $3d_{5/2}$ and Sn 3d_{3/2} oxidation states, respectively. These two bands are shifted to 487.5 and 495.6 in the nanocomposite specimens. This shift in the value of binding energy to high value supports the strong chemical interactions between g-C₂N₄ and SnO₂ and formation of successful heterojunction. The orbit splitting separation between the two peaks is 7.8 eV revealing Sn⁴⁺ production. The existence of C 1s is elaborated by production of two peaks at 284.85 and 287.22 eV assigned to C-C and C-N or C-(N)₃ group of g-C₃N_{4/} respectively. The two peaks at 398.47 eV and 404.12 eV are referred to (C-N-C) and N-(C)₂, respectively. The spheroid structure of SnO₂ and the spongy structure of $g-C_2N_4$ are well discovered by field-emission scanning electron microscopy (Fig. 3a and b), respectively. It is worth-noting to observe the dispersion of SnO₂ nanoparticles on $g-C_2N_4$

sheets for the sample SnCN10 (Fig. 3c). HRTEM for SnO_{γ} g-C₃N₄ and SnCN10 are recorded in Fig. 3d–f. Fig. 3d illustrates the tetragonal structure of SnO₂ with perfect crystallization. However, Fig. 3e represents the sheet structure of graphitic carbon nitride. The distribution of tetragonal SnO_2 on g-C₃N₄ sheets is recorded in Fig. 3f that reveal the successful heterojunction generation between SnO₂ and $g-C_3N_4$ sheets. The crystallinity and the heterojunction generation is further elaborated by SAED analysis (Fig. 3g-i). The diffraction rings recorded at (100) and (002) planes are belongs to $g\text{-}C_{_3}N_{_4}$ crystalline planes. On the other hand, the diffraction rings at (110), (101), (200) and (211) are ascribed to SnO₂ tetragonal crystalline planes. On careful examining Fig. 3i, one can observe the existence of different rings belong to $g-C_3N_4$ and SnO_2 revealing the successful generation of step-S scheme heterojunction. DRS analysis examines the optical properties and the strong absorbability of the solid specimens in the visible region. Fig. 4a displays an absorption band edge at 405 nm referred to SnO₂ intrinsic absorption of SnO₂ and other one at 485 referred to the absorbability of g-C₂N₄ nanosheets in the visible region (Fig. 4a). 3.15, 2.58 and 2.79 are the band gap energy calculated based on Tauc equation for SnO₂, g-C₃N₄ and SnCN10, respectively (Fig. 4b). The conduction and valence band potentials are1.19 and +1.39 eV for g-C₃N₄ and +0.125 and +3.275 eV for SnO₂, respectively. The separation efficiency of the massive charge carrier is elaborated from PL analysis of solid specimens. The remarkable signal at 438 nm assigned to charge transportation between valence and conduction bands. This signal is depressed in the heterojunction compared with pristine sample is attributed to the better charge carriers separation efficiency on coupling SnO_2 with g-C₂N₄.

3.2. Photocatalytic degradation of fluorescein dye

Fluorescein (FLU) dye is exploited in the industry of textile fabric and cosmetics, which produce serious problems on human and animal skins and affected the eco-system. The removal of this toxic dye that spoiled the environmental system is required for environmental purposes. fluorescein dye was selected as primary anionic pollutant model due to the point of zero charge of the nanocomposite measured by zeta potential is (PZC, pH = 6.8) which make surface is very acceptable for anionic dye. Fluorescein dye is extensively used in cosmetics, textile industry and manufacture of food sweets possesses high stability due to the aromatic structure that persist the degradation by biological species. A few research was carried out to examine the photodegradation of this anionic dye under visible light radiations.

The photocatalytic efficiency of the as-synthesized heterojunction was inquired by following the decomposition of fluorescein dye as anionic pollutant model. A weak photocatalytic reactivity in the visible light of pristine SnO_2 and $\text{g-C}_3\text{N}_4$ was attributed to the low efficiency of massive charge carriers separation. All the as-synthesized samples record high decomposition rate influenced by the concentration of $\text{g-C}_3\text{N}_4$ in the nanocomposites (Fig. 5a). Nanocomposites containing 10 wt.% $\text{g-C}_3\text{N}_4$ -record the optimum reactivity that decompose 92% of fluorescein dye compared with 45% decomposition on pristine SnO_2 . The catalytic

Fig. 2. XPS of (a) Sn and (b) O in SnO₂ and (c) Sn, (d) O, (e) C, and (f) N in SnCN10.

decomposition rate depress upon increasing the concentration of $g-C_3N_4$ due to the accumulation of $g-C_3N_4$ nanosheets that inhibit the transportation of charge carriers to dye solution. The photocatalytic dye decomposition follow the pseudo-first-order equation with rate constant 0.0023, 0.0065, 0.0035, 0.0067, 0.026 and 0.0036 for SnO_2 , $g-C_3N_4$, SnCN5, SnCN10, SnCN15 and SnCN20, respectively (Fig. 5b). The production of 2-hydroxy terephthalic acid (Fig. 5c) suggest the generation of hydroxyl groups with concentration being increases with time of visible light exposure for the sample SnCN10. The trapping experiments are carried out to explore the primary species responsible for dye decomposition using isopropanol, AgNO₃, ammonium oxalate and benzoquinone for capture hydroxyl radicals, electron conduction band, positive hole and superoxide radicals, respectively (Fig. 5d). With introducing isopropanol, ammonium oxalate and benzoquinone, the rate of dye decomposition is greatly reduced. AgNO₃ show a negligible effect in dye

Fig. 3. Field-emission scanning electron microscopy of (a) $SnO_{2'}$ (b) $g-C_3N_4$ and (c) SnCN10, HRTEM of (d) $SnO_{2'}$ (e) $g-C_3N_4$ and (f) SnCN10 and SAED of (g) $SnO_{2'}$ (h) $g-C_3N_4$ and (i) SnCN10.

degradation revealing the small effect of electron conduction band in dye degradation. The experimental work have pointed out that the maximum photocatalytic efficiency is recorded for 0.1 g of the photocatalyst followed by a depression in the degradation process due to the pronounced turbidity of the dye solution upon increasing the weight of catalyst (Fig. 5e). These turbidity reduces the light penetration on the photocatalyst surface and decreases the number of radicals produced. The influenced of pH of the solution on the photocatalytic process is illustrated in Fig. 5f that indicate that the maximum reactivity is observed at pH = 6 near the isoelectric point of SnCN10 (PZC, pH = 5.8). At low pH, the interaction between H⁺ and the anionic dye decreases the degradation due to adsorption of large amount of dye on the photocatalyst surface. The adsorption of large number of dye molecules block the active centers and prevent the production of charge carriers and reactive radicals. At high pH, the repulsion between the anionic dye and OH⁻ of the solution reduces the chance for dye distribution near the solid surface to be decomposed by the charge carriers. The influence of initial dye concentration $(1 \times 10^{-5} - 5 \times 10^{-5})$ on the photocatalytic degradation removal was carried under the same reaction conditions (Fig. 5g). The experimental

results indicate the high efficiency of the optimum photocatalyst SnCN10 on removal of 96% of the dye under the various dye concentration. SnCN10 heterojunction displays the same decomposition rate after six consecutive cycles revealing the high stability of the nanocomposite to be involved on industrial scale (Fig. 5h).

Total organic carbon (TOC) analysis was carried out to confirm the degradation of fluorescein dye into eco-friendly species as CO_2 and H_2O . The experimental results proved that TOC depress from 45.3 to 5.8 mg/L confirm the complete dye degradation

3.3. Photocatalytic hydrogen production

The photocatalytic hydrogen production was elaborated on the as-synthesized heterojunctions containing various proportions of $g-C_3N_4$ with methanol as hole trapping species (Fig. 6a). The fast recombination of the massive charge carriers in $g-C_3N_4$ accounts for its weak photocatalytic reactivity. The hydrogen gas concentration generated on $g-C_3N_4$ surface is 0.79 mmol/h g after 2 h of the reaction. The photocatalytic hydrogen evolution rate enhances rapidly with increasing $g-C_3N_4$ compositions and reach 6.77 mmolg⁻¹h⁻¹

Fig. 4. (a) DRS of SnO₂ and g-C₃N₄, (b) Tauc plot of SnO₂ and g-C₃N₄ and (c) PL of SnO₂ and g-C₃N₄ and SnCN10.

for SnCN10 heterojunction. The primary role of $g-C_3N_4$ is concerned with promoting the charge carrier separation efficiency and shifting the specimen reactivity to visible region. The successive deposition of $g-C_3N_4$ layers on SnO₂ nanoparticles inhibit the migration of positive holes to the solution mixture and act as novel recombination centers. The effect of catalyst weight on the photocatalytic hydrogen production for the heterojunction SnCN10 is recorded in Fig. 6b. The photocatalytic reactivity enhances rapidly with increasing weight of photocatalyst up to 1 g/L. Further, increasing in photocatalyst weight turns the solution too cloudy to facilitate the light penetration. The amount of hydrogen gas is sensitive to pH of mixture solution. The amount of hydrogen gas generated on SnCN10 approach a maximum at pH = 7 (Fig. 6c). At pH value lower than 7, methanol protonation is proceed decreasing the concentration of hydrogen gas evolved. On the other hand, at pH higher than 7, a remarkable reduction in H⁺ concentration affect the generation of hydrogen gas. The durability of SnCN10 photocatalyst is

tested by recycling the production of hydrogen for six consecutive cycles. Fig. 6d records the durability of SnCN10 for six consecutive cycles in generating nearly the same concentration of hydrogen gas evolve.

3.4. The mechanism of charge carrier transportation

The mechanism of the massive charge carriers transportation along the interfacial surface between two semiconductors was recorded by different aspects. The electron transportation from more to less conduction band potential and the migration of the positive holes from more to less valence band potential are ascribed to traditional type (II) heterojunction. The removal of the massive charge carriers with low redox potential and the preservation of the charge carriers with high redox potential are attributed to Z-scheme route. Recently, step S-scheme mechanism is more promising in analyzing the charge carrier migration along the interfacial surface between two semiconductors.

Fig. 5. (a) Variation of photodegradation of fluorescein dye over $\text{SnO}_{2'}$ g-C₃N_{4'} SnCN5, SnCN10, SnCN15 and SnCN20 with time of irradiations, (b) pseudo-first-order plot for photocatalytic degradation of fluorescein dye over $\text{SnO}_{2'}$ g-C₃N₄, SnCN5, SnCN10, SnCN15 and SnCN20, (c) PL of terephthalic acid over SnCN10, (d) effect of various scavengers over SnCN10, (e) effect of catalyst weight on the photocatalytic removal of fluorescein dye (%), (f) effect of pH on the photocatalytic removal of fluorescein dye (%), (g) effect of initial concentration of dye on photocatalytic removal of fluorescein dye (%) and (h) regeneration of SnCN10 for six consecutive cycles.

Fig. 6. (a) The influence of amount of $g-C_{3}N_{4}$ on the amount of hydrogen evolved (mmol/g h), (b) effect of catalyst weight on the photocatalytic hydrogen evolution rate (mmol/g h), (c) effect of pH on the photocatalytic hydrogen evolution rate (mmol/g h), and (d) regeneration of SnCN10 for six consecutive cycles.

The electron transportation is more like "Step" that generate an internal electric field due to diffusion of electrons of the reductive photocatalyst to oxidative photocatalyst with formation of electron depletion and accumulation layers. As results of this electron transportation, a negative charge is created on the oxidative photocatalyst and a positive charge is generated on reductive photocatalyst producing internal electric field motion flows from reductive to oxidative photocatalyst which is accompanied by migration of the photogenerated electrons transfer from oxidative to reductive photocatalyst. As a result for this phenomenon, the Fermi level of the oxidative and reductive photocatalyst are aligned to the same level due to direct contact between the two semiconductors through upward and downward shift in the Fermi levels of oxidative and reductive photocatalyst, respectively. At the last stage, the photogenerated

massive charge carriers of lower oxidative and reductive potentials are recombined through electrostatic attraction force. However, the charge carriers with high redox properties are maintained with strong redox power for photocatalytic processes. The charge transportation suggested by S-scheme g-C₃N₄/SnO₂ hybrid photocatalyst is demonstrated in Fig. 7 which indicate the existence of two active visible light absorption centers, being SnO₂ nanoparticles and g-C₃N₄ nanosheets. The electron transportation from $g\text{-}C_{_3}N_{_4}$ to $\text{SnO}_{_2}$ conduction band and the holes transfer from SnO_2 to $g-C_2N_4$ valence band as assumed by type (II) heterojunction features cannot account for generation of hydroxyl radicals with potential of OH⁻/OH[•] = 2.88 eV. Moreover, the conduction band of SnO₂ is +0.125 eV cannot allowed the production of hydrogen gas [$E_{H+/H2}$ = zero]. On the light of step S-scheme mechanism, $g-C_3N_4$ positive

Fig. 7. Scheme for charge migration between SnO₂ and g-C₄N₄ through direct S-scheme and type (II) heterojunction.

holes and SnO₂ negative electrons are sacrificed. The VB positive holes of SnO₂ with potential 3.275 eV are readily generate hydroxyl radicals (OH⁻/OH.) and g-C₂N₄ conduction band electrons with potential -1.10 eV reduces H⁺ and generating hydrogen gas (Fig. 7). The proposed mechanism for step S-scheme mechanism require electron transportation from VB to CB of both $g-C_3N_4$ and SnO₂ energy levels followed by recombination of holes and electrons with low redox potential leaving the charge carriers in the higher valence and conduction bands maintained with strong redox potential (Fig. 7). The charge transportation processes is accompanied by generation of a built-in electric field at the g-C₃N₄/SnO₂ interface, S-scheme interfacial charge transportation require photogenerated electrons transfer from the CB of SnO₂ toward the VB of g-C₃N₄ upon exposure of light. The holes in $g-C_3N_4$ and the electrons in

SnO₂ with weak redox efficiency were sacrificed, and the electrons in g-C₃N₄ and the holes in SnO₂ with enhanced redox ability are preserved and were spatially separated, which together modulate the charge potentials and dynamics to suit the requirement of dual functionality for photocatalytic reduction and oxidation processes. The holes in the VB of SnO₂ activated H₂O for the production of •OH results in oxidation of fluorescein dye. The electron-initiated reactions transfer O₂ by the CB electrons of g-C₃N₄ to produce •O₂–.

3.5. Comparative studies with previous literature

Compared our research results with those reported by other authors following the photocatalytic degradation of organic dye and photocatalytic hydrogen production

Photocatalyst	Preparation	Photodegradation of organic pollutant (%)	Reference
$g-C_3N_4/SnO_2$	Sonochemical	95% of fluorescein dye	Our research
$g-C_3N_4/SnO_2$	Precipitation method	94% of methyl orange dye	[39]
g-C ₃ N ₄ /SnO ₂	Hydrothermal method	85% of methylene blue dye	[46]
$g-C_3N_4/SnO_2$	Freeze dry	88% of rhodamine B dye	[47]
$g-C_3N_4/SnO_2$	Hydrothermal method	90% of indomethacin	[48]
g-C ₃ N ₄ /SnO ₂	Mechanical method	92% of rhodamine B dye	[51]
$g-C_3N_4/SnO_2$	Wet chemical method	90% of rhodamine B dye	[49]
$g-C_3N_4/SnO_2$	Physical mixing method	90% of methyl orange dye	[50]

Table 2

Table 1

Comparative study of photocatalytic hydrogen evolution over g-C₃N₄/SnO₂

Photocatalyst	Preparation method	Amount of hydrogen gas evolved (mmol/h g)	References
g-C ₃ N ₄ /SnO ₂	Sonochemical	6.8	Our research
$Pt/g-C_3N_4/SnO_2$	Hydrothermal	1.06	[52]
$0D/2D SnO_2/g-C_3N_4$	Step polymerization	1.38	[53]

Table 3

Nomenclature of the as-synthesized samples

Sample	Nomenclature
Tin oxide	SnO ₂
Graphitic carbon nitride	CN
Tin oxide + 5 wt.% graphitic carbon nitride	SnCN5
Tin oxide + 10 wt.% graphitic carbon nitride	SnCN10
Tin oxide + 15 wt.% graphitic carbon nitride	SnCN15
Tin oxide + 20 wt.% graphitic carbon nitride	SnCN20

Table 4

Nomenclature of the as-synthesized samples

Sample	Nomenclature
Tin oxide	SnO ₂
Graphitic carbon nitride	CN
Tin oxide + 5wt %Graphitic carbon nitride	SnCN5
Tin oxide + 10wt %Graphitic carbon nitride	SnCN10
Tin oxide + 15wt %Graphitic carbon nitride	SnCN15
Tin oxide + 20wt %Graphitic carbon nitride	SnCN20

[39–47], our heterojunction with composition 10% g- $C_{3}N_{4}$ and 90% SnO, exhibit an exceptional reactivity in decompose 90% of fluorescein dye and produce hydrogen gas with rate 6.77 mmol h⁻¹ g⁻¹ (Tables 2 and 3). The nomenclature for the as-synthesized samples is illustrated in Table 4.

4. Conclusions

A synergetic effect between g-C₃N₄ sheets and SnO₂ nanoparticles generate a successful step- S-scheme heterojunction with exceptional reactivity in decompose fluorescein

dye and produce a considerable amount of hydrogen gas. The adjusted band gap energy levels of SnO₂ and g-C₃N₄ facilitate the separation of the photo-generated carriers and boosting the efficiency of interfacial charge transfer. The photocatalytic nanocomposites were generated by ultrasonic route with 150 W intensity. Heterojunction containing 10 wt.% of $g-C_3N_4$ exhibits the optimum reactivity in photocatalytic degradation of fluorescein dye and production of hydrogen gas. PL and scavengers trapping experiments reveals that the charge migration proceeds adopting step S-scheme mechanism. Thoroughly, step-S scheme mechanism, the holes and electrons with low redox potential are scarified. On the other hand, the holes and electrons with high redox potential are maintained with strong redox power for fluorescein dye degradation and strong reducing power for production of hydrogen gas. The durability of the optimal specimen SnCN10 exhibit a better stability after six consecutive cycles of either photocatalytic decomposition of fluorescein dye and hydrogen gas evolution.

Acknowledgment

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through the Research Group Program under grant number RGP.1/286/42.

References

- M.A. Ahmed, N. Al-Zaqri, A. Alsalme, A.H. Glal, M. Esa, Rapid [1] photocatalytic degradation of RhB dye and photocatalytic hydrogen production on novel curcumin/SnO, nanocomposites through direct Z-scheme mechanism, J. Mater. Sci. - Mater. Electron., 31 (2020) 19188-19203
- M.A. Ahmed, A. Fahmy, M.G. Abuzaid, E.M. Hashem, Fabrication of novel AgIO₄/SnO₂ heterojunction for [2] photocatalytic hydrogen production through direct Z-scheme

mechanism, J. Photochem. Photobiol., A, 400 (2020) 112660, doi: 10.1016/j.jphotochem.2020.112660.

- [3] Z.M. Abou-Gamra, M.A. Ahmed, M.A. Hamza, Investigation of commercial PbCrO₄/TiO₂ for photodegradation of rhodamine B in aqueous solution by visible light, Nanotechnol. Environ. Eng., 2 (2017) 12, doi: 10.1007/s41204-017-0024-9.
- [4] A.H. Galal, M.G. Elmahgary, M.A. Ahmed, Construction of novel AgIO₄/ZnO/graphene direct Z-scheme heterojunctions for exceptional photocatalytic hydrogen gas production, Nanotechnol. Environ. Eng., 6 (2020) 5, doi: 10.1007/s41204-020-00096-8.
- [5] X. Liu, Y.X. Zhao, X.F. Yang, Q.Q. Liu, X.H. Yu, Y.Y. Li, H. Tang, T.R. Zhang, Porous Ni₃P₄ as a promising cocatalyst for boosting the photocatalytic hydrogen evolution reaction performance, Appl. Catal., B, 275 (2020) 119144, doi: 10.1016/j. apcatb.2020.119144.
- [6] C. Prasad, H. Tang, Q.Q. Liu, I. Bahadur, S. Karlapudi, Y.J. Jiang, A latest overview on photocatalytic application of g-C₃N₄ based nanostructured materials for hydrogen production, Int. J. Hydrogen Energy, 45 (2020) 337–379.
- [7] M.A. Ahmed, Z.M. Abou-Gamra, M.A. ALshakhanbeh, H. Medien, Control synthesis of metallic gold nanoparticles homogeneously distributed on hexagonal ZnO nanoparticles for photocatalytic degradation of methylene blue dye, Environ. Nanotechnol. Monit. Manage., 12 (2019) 100217, doi: 10.1016/j. enmm.2019.100217.
- [8] H.N. Wang, Z.Q. Lv, J. Zhang, Y. Xiang, S.F. Lu, The effect of functional groups on the electrocatalytic activity of carbon nanotubes with different wall numbers toward carbohydrazide oxidation reaction, Chem.-An Asian J., 15 (2020) 3456–3461.
- [9] F.A. Fouad, M.A. Ahmed, M.S. Antonious, M.F. Abdel-Messih, Synthesis of an efficient, stable and recyclable AgVO₃/ ZnO nanocomposites with mixed crystalline phases for photocatalytic removal of rhodamine B dye, J. Mater. Sci. -Mater. Electron., 31 (2020) 12355–12371.
- [10] H.S.M. Abd-Rabboh, M. Benaissa, M.A. Ahmed, K.F. Fawy, M.S. Hamdy, Facile synthesis of spherical Au/TiO₂ nanoparticles by sol-gel method using Tween 80 for photocatalytic decolourization of Malachite Green dye, Mater. Res. Express, 6 (2019) 025028.
- [11] W.H. Niu, K. Marcus, L. Zhou, Z. Li, L. Shi, K. Liang, Y. Yang, Enhancing electron transfer and electrocatalytic activity on crystalline carbon-conjugated g-C₃N₄, ACS Catal., 8 (2018) 1926–1931.
- [12] H.J. Yu, L. Shang, T. Bian, R. Shi, G.I.N. Waterhouse, Y.F. Zhao, C. Zhou, L.-Z. Wu, C.-H. Tung, T.R. Zhang, Nitrogen-doped porous carbon nanosheets templated from g-C₃N₄ as metal-free electrocatalysts for efficient oxygen reduction reaction, Adv. Mater., 28 (2016) 5080–5086.
- [13] S.B. Tian, Z.Y. Wang, W.B. Gong, W.X. Chen, Q.C. Feng, Q. Xu, C. Chen, C. Chen, Q. Peng, L. Gu, H.J. Zhao, P. Hu, D.S. Wang, Y.D. Li, Temperature-controlled selectivity of hydrogenation and hydrodeoxygenation in the conversion of biomass molecule by the Ru1/mpg-C₃N₄ catalyst, J. Am. Chem. Soc., 140 (2018) 11161–11164.
- [14] H. Liu, X.Y. Liu, W.W. Yang, M.Q. Shen, S. Geng, C. Yu, B. Shen, Y.S. Yu, Photocatalytic dehydrogenation of formic acid promoted by superior PdAg@g-C₃N₄ Mott-Schottky heterojunction, J. Mater. Chem. A, 7 (2019) 2022–2026.
- [15] C.M. Li, Y.H. Du, D.P. Wang, S.M. Yin, W.G. Tu, Z. Chen, M. Kraft, G. Chen, R. Xu, Unique P-Co-N surface bonding states constructed on g-C₃N₄ nanosheets for drastically enhanced photocatalytic activity of H₂ evolution, Adv. Funct. Mater., 27 (2017) 1604328, doi: 10.1002/adfm.201604328.
- [16] C.M. Li, Y. Xu, W.G. Tu, G. Chen, R. Xu, Metal-free photocatalysts for various applications in energy conversion and environmental purification, Green Chem., 19 (2017) 882–899.
- [17] M. Mousavi, A. Habibi-Yangjeh, S.R. Pouran, Review on magnetically separable graphitic carbon nitride-based nanocomposites as promising visible-light-driven photocatalysts, J. Mater. Sci. - Mater. Electron., 29 (2018) 1719–1747.
- [18] N. Al-Zaqri, A. Alsalme, M.A. Ahmed, A.H. Galal, Construction of novel direct Z-scheme AgIO₄-g-C₃N₄ heterojunction for

photocatalytic hydrogen production and photodegradation of fluorescein dye, Diamond Relat. Mater., 109 (2020) 108071, doi: 10.1016/j.diamond.2020.108071.

- [19] H.S.M. Abd-Rabboh, A.H. Galal, R.A. Aziz, M.A. Ahmed, A novel BiVO₃/SnO₂ step S-scheme nano-heterojunction for an enhanced visible light photocatalytic degradation of amaranth dye and hydrogen production, RSC Adv., 11 (2021) 29507–29518.
- [20] K.N. Van, H.T. Huu, V.N.N. Thi, T.L.L. Thi, D.H. Truong, T.T. Truong, N.N. Dao, V. Vo, D.L. Tran, Y. Vasseghian, Facile construction of S-scheme SnO₂/g-C₃N₄ photocatalyst for improved photoactivity, Chemosphere, 289 (2022) 133120, doi: 10.1016/j.chemosphere.2021.133120.
- [21] A. Zada, M. Humayun, F. Raziq, X.L. Zhang, Y. Qu, L.L. Bai, C.L. Qin, L.Q. Jing, H.G. Fu, Exceptional visible-light-driven cocatalyst-free photocatalytic activity of g-C₃N₄ by welldesigned nanocomposites with plasmonic Au and SnO₂, Adv. Energy Mater., 6 (2016) 1601190, doi: 10.1002/aenm.201601190.
- [22] R. Yin, Q.Z. Luo, D.S. Wang, H.T. Sun, Y.Y. Li, X.Y. Li, J. An, SnO₂/ g-C₃N₄ photocatalyst with enhanced visible-light photocatalytic activity, J. Mater. Sci., 49 (2014) 6067–6073.
- [23] Y.P. Zang, L.P. Li, X.G. Li, R. Lin, G.S. Li, Synergistic collaboration of g-C₃N₄/SnO₂ composites for enhanced visible-light photocatalytic activity, Chem. Eng. J., 246 (2014) 277–286.
 [24] A. Zada, M. Khan, M.N. Qureshi, S.-y. Liu, R.D. Wang,
- [24] A. Zada, M. Khan, M.N. Qureshi, S.-y. Liu, R.D. Wang, Accelerating photocatalytic hydrogen production and pollutant degradation by functionalizing g-C₃N₄ with SnO₂, Front. Chem., 7 (2019) 941, doi: 10.3389/fchem.2019.00941.
- [25] K.X. Zhu, Y. Lv, J. Liu, W.J. Wang, C.P. Wang, S.M. Li, P. Wang, M. Zhang, A. Meng, Z.J. Li, Facile fabrication of g-C₃N₄/ SnO₂ composites and ball milling treatment for enhanced photocatalytic performance, J. Alloys Compd., 802 (2019) 13–18.
- [26] H.S.M. Abd-Rabboh, M. Benaissa, M.S. Hamdy, M.A. Ahmed, M. Glal, Synthesis of an efficient, and recyclable mesoporous BiVO₄/TiO₂ direct Z-scheme heterojunction by sonochemical route for photocatalytic hydrogen production and photodegradation of rhodamine B dye in the visible region, Opt. Mater., 114 (2021) 110761, doi: 10.1016/j.optmat.2020.110761.
- [27] R. Abdel-Aziz, M.A. Ahmed, M.F. Abdel-Messih, A novel UV and visible light driven photocatalyst AgIO₄/ZnO nanoparticles with highly enhanced photocatalytic performance for removal of rhodamine B and indigo carmine dye, J. Photochem. Photobiol., A, 389 (2020) 112245, doi: 10.1016/j.jphotochem.2019.112245.
- [28] M.A. Ahmed, M.F. Abdel-Messih, E.H. Ismail, Facile synthesis of novel microporous CdSe/SiO₂ nanocomposites selective for removal of methylene blue dye by tandem adsorption and photocatalytic process, J. Mater. Sci. - Mater. Electron., 30 (2019) 17527–17539.
- [29] M.F. Abdel Messih, A.E. Shalan, M.F. Sanad, M.A. Ahmed, Facile approach to prepare ZnO@SiO₂ nanomaterials for photocatalytic degradation of some organic pollutant models, J. Mater. Sci. - Mater. Electron., 30 (2019) 1491–1499.
- [30] Q.L. Xu, L.Y. Zhang, B. Cheng, J.J. Fan, J.G. Yu, S-scheme heterojunction photocatalyst, Chem, 6 (2020) 1543–1559.
- [31] S. Wageh, A.A. Al-Ghamdi, R. Jafer, X. Li, P. Zhang, A new heterojunction in photocatalysis: S-scheme heterojunction, Chin. J. Catal., 42 (2021) 667–669.
- [32] A. Alsalme, A.H. Galal, E.F. El-Sherbeny, A. Soltan, M.F. Abdel-Messih, M.A. Ahmed, Fabrication of S-scheme TiO₂/g-C₃N₄ nanocomposites for generation of hydrogen gas and removal of fluorescein dye, Diamond Relat. Mater., 122 (2022) 108819, doi: 10.1016/j.diamond.2022.108819.
- [33] A.Y. Meng, B. Cheng, H.Y. Tan, J.J. Fan, C.L. Su, J.G. Yu, TiO₂/ polydopamine S-scheme heterojunction photocatalyst with enhanced CO₂-reduction selectivity, Appl. Catal., B, 289 (2021) 120039, doi: 10.1016/j.apcatb.2021.120039.
- [34] Y.X. Xiao, Z. Ji, C. Zou, Y.Q. Xu, R. Wang, J. Wu, G.L. Liu, P. He, Q. Wang, T. Jia, Construction of CeO /BiOI S-scheme heterojunction for photocatalytic removal of elemental mercury, Appl. Surf. Sci., 556 (2021) 149767, doi: 10.1016/j. apsusc.2021.149767.
- [35] H.N. Ge, F.Y. Xu, B. Cheng, J.G. Yu, W.K. Ho, S-scheme heterojunction TiO₂/CdS Nanocomposites fibers as H₂-production photocatalyst, ChemCatChem, 11 (2019) 6301–6309.

124

- [36] Q.Q. Li, W.L. Zhao, Z.C. Zhai, K.X. Ren, T.Y. Wang, H. Guan, H.F. Shi, 2D/2D Bi₂MoO₆/g-C₃N₄ S-scheme heterojunction photocatalyst with enhanced visible-light activity by Au loading, J. Mater. Sci. Technol., 56 (2020) 216–226.
- [37] S. Jiang, J. Cao, M. Guo, D.D. Cao, X.M. Jia, H.L. Lin, S.F. Chen, Novel S-scheme WO₃/RP composite with outstanding overall water splitting activity for H₂ and O₂ evolution under visible light, Appl. Surf. Sci., 558 (2021) 149882, doi: 10.1016/j. apsusc.2021.149882.
- [38] X.F. Zhang, Y. Zhang, X.B. Jia, N. Zhang, R. Xia, X.J. Zhang, Z.W. Wang, M.Q. Yu, In situ fabrication of a novel S-scheme heterojunction photocatalyts Bi₂O₃/P-C₃N₄ to enhance levofloxacin removal from water, Sep. Purif. Technol., 268 (2021) 118691, doi: 10.1016/j.seppur.2021.118691.
- [39] Q.Q. Liu, X.D. He, J.J. Peng, X.H. Yu, H. Tang, J. Zhang, Hotelectron-assisted S-scheme heterojunction of tungsten oxide/ graphitic carbon nitride for broad-spectrum photocatalytic H₂ generation, Chin. J. Catal., 42 (2021) 1478–1487.
 [40] K. Zhang, D.Q. Li, Q.Y. Tian, H.Y. Cao, F. Orudzhev, I.A. Zvereva,
- [40] K. Zhang, D.Q. Li, Q.Y. Tian, H.Y. Cao, F. Orudzhev, I.A. Zvereva, J.K. Xu, C.Y. Wang, Recyclable 0D/2D ZnFe₂O₄/Bi₅FeTi₃O₁₅ S-scheme heterojunction with bismuth decoration for enhanced visible-light-driven tetracycline photodegradation, Ceram. Int., 47 (2021) 17109–17119.
- [41] S.S. Wu, X. Yu, J.L. Zhang, Y.M. Zhang, Y. Zhu, M.S. Zhu, Construction of BiOCl/CuBi₂O₄ S-scheme heterojunction with oxygen vacancy for enhanced photocatalytic diclofenac degradation and nitric oxide removal, Chem. Eng. J., 411 (2021) 128555, doi: 10.1016/j.cej.2021.128555.
- [42] Q. Wang, Y.M. Lin, P.Y. Li, M.T. Ma, V. Maheskumar, Z.Y. Jiang, R.Q. Zhang, An efficient Z-scheme (Cr, B) codoped g-C₃N₄/ BiVO₄ photocatalyst for water splitting: a hybrid DFT study, Int. J. Hydrogen Energy, 46 (2021) 247–261.
- [43] J. Singh, P. Kumari, S. Basu, Degradation of toxic industrial dyes using SnO₂/g-C₃N₄ nanocomposites: role of mass ratio on photocatalytic activity, J. Photochem. Photobiol., A, 371 (2019) 136–143.
- [44] V.V. Pham, D.-Q. Mai, D.-P. Bui, T.V. Man, B.C. Zhu, L.Y. Zhang, J. Sangkaworn, J. Tantirungrotechai, V. Reutrakul, T.M. Cao, Emerging 2D/0D g-C₃N₄/SnO₂ S-scheme photocatalyst: new generation architectural structure of heterojunctions toward visible-light-driven NO degradation, Environ. Pollut., 286 (2021) 117510, doi: 10.1016/j.envpol.2021.117510.

- [45] B. Babu, M.Y. Cho, C. Byon, J. Shim, Sunlight-driven photocatalytic activity of SnO₂ QDs-g-C₃N₄ nanolayers, Mater. Lett., 212 (2018) 327–331.
- [46] A. Mohammad, M.E. Khan, M.R. Karim, M.H. Cho, Synergistically effective and highly visible light responsive SnO₂-g-C₃N₄ nanostructures for improved photocatalytic and photoelectrochemical performance, Appl. Surf. Sci., 495 (2019) 143432, doi: 10.1016/j.apsusc.2019.07.174.
- [47] P. Prausa, L. Svoboda, R. Dvorský, M. Reli, Nanocomposites of SnO₂ and g-C₃N₄: preparation, characterization and photocatalysis under visible LED irradiation, Ceram. Int., 44 (2018) 3837–3846.
- [48] D.G. Li, J.X. Huang, R.B. Li, P. Chen, D. Chen, M.X. Cai, H.J. Liu, Y.P. Feng, W.Y. Lv, G.G. Liu, Synthesis of a carbon dots modified g-C₃N₄/SnO₂ Z-scheme photocatalyst with superior photocatalytic activity for PPCPs degradation under visible light irradiation, J. Hazard. Mater., 401 (2021) 123257, doi: 10.1016/j.jhazmat.2020.123257.
- [49] J. Singh, P. Kumari, S. Basu, Degradation of toxic industrial dyes using SnO₂/g-C₃N₄ nanocomposites: role of mass ratio on photocatalytic activity, J. Photochem. Photobiol., A, 371 (2018) 136–143.
- [50] Y.P. Zang, L.P. Li, X.G. Li, R. Lin, G.S. Li, Synergistic collaboration of g-C₃N₄/SnO₂ composites for enhanced visiblelight photocatalytic activity, Chem. Eng. J., 246 (2014) 277–286.
- [51] Y.M. He, L.H. Zhang, M.H. Fan, X.X. Wang, M.L. Walbridge, Q.Y. Nong, Y. Wu, L.H. Zhao, Z-scheme SnO₂₋₁/g-C₃N₄ composite as an efficient photocatalyst for dye degradation and photocatalytic CO₂ reduction, Sol. Energy Mater. Sol. Cells, 137 (2015) 175–184.
- [52] X.K. Wang, M.R. Xue, X.Q. Li, L.X. Qin, S.-Z. Kang, Boosting the photocatalytic H₂ production performance and stability of C₃N₄ nanosheets via the synergistic effect between SnO₂ nanoparticles and Pt nanoclusters, Inorg. Chem. Commun., 133 (2021) 108976, doi: 10.1016/j.inoche.2021.108976.
- [53] H.H. Wu, S.Y. Yu, Y. Wang, J. Han, L. Wang, N. Song, H.J. Dong, C.M. Li, A facile one-step strategy to construct 0D/2D SnO₂/g-C₃N₄ heterojunction photocatalyst for high-efficiency hydrogen production performance from water splitting, Int. J. Hydrogen Energy, 45 (2020) 30142–30152.