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a b s t r a c t
Major elements in still bottled natural water were analyzed in China. An unsupervised machine 
learning algorithm, principal component analysis (PCA), was used to classify the samples. 
The PCA result suggested four groups to discriminant the chemical composition of the samples. 
By using the labelled data, supervised machine learning methods, random forest, and support vec-
tor classification, were used to train models. The models were then applied on the data obtained 
from literature. To analyze the water–rock interactions of the samples from different groups, 
reverse modeling in the software PHREEQC was implemented.
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1. Introduction

The bottled mineral water is of great importance to 
health hydration and plays a key role in people’s lives 
for their taste, quality, convenience, and healthy consid-
erations. The production and consumption of bottled 
drinking water have increased steadily in the last decades. 
According to the report, China has become the largest 
market in the world. However, the consumption per cap-
ita in China was 32 L/person (8.45 gallons per person) in 
2018, which was lower than the average level of the world, 
44 L/person (11.62 gallons per person). A high increasing 
ratio is expected in the next years.

In the European Union, the bottled water quality is 
regulated by Directive 80/777/EEC and Directive 96/70/
EC, “natural mineral water” is water that is microbiolog-
ically wholesome, “originating in an underground water 
table or deposit and emerging from a spring tapped at 
one or more natural or bore exits”. The US FDA classify 
natural water into spring water, well water, artesian well 
water, and mineral water, etc. The mineral water means 

that comes from an underground source and contains at 
least 250 ppm total dissolved solids. Minerals and trace 
elements must come from the source of the underground 
water, without adding later. In China, natural spring water 
is defined in national standard (GB8537-2018) for drink-
ing natural spring water as the water flowing naturally 
to the surface or derived from an underground formation 
through boreholes, containing some minerals and trace 
elements, and no contaminants in a district where tech-
niques are applied to preventing pollution. The physical 
parameters, including chemical composition, flow, tem-
perature, are relatively stable. One or more parameters of 
Li, Sr, Zn, Se, metasilicate acid, free CO2, total dissolved 
solids (TDS), should satisfy the minimum regulated levels. 
Concentrations of harmful trace elements, organics, and 
microorganisms should not exceed the limiting values.

The compositions of bottled waters result from water–
rock interaction in the underground aquifers. In this 
process, the origin content in the water, geochemical and 
physical parameters of aquifer rock, flow duration, and 
other factors may influence the geochemical content of 
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outflow. Water type, and its content are the expressions 
of the water–rock interaction process, and they also rep-
resent the water quality and its taste. Therefore, research-
ers have investigated the water type and the classifying 
methods all around the world.

Classification of bottled water is not a trivial task, for large 
variety and different usages of natural water. Classically, 
hydrogeochemical parameters were used in young sedimen-
tary environment in the Netherlands [1], chlorinity and alka-
linity were used as the main hydrological factors to classify 
the waters with the main cations and anions as the second-
ary consideration in Netherlands and Turkey [2], sulphate 
and carbonate contents as indicators for possible scaling [3].

With the development of AI algorithm and more 
powerful computers, it became easier to use multivar-
iate techniques to classify water analyses. Examples of 
this approach use principal component analysis (PCA), 
Hierarchical and K-Means clustering [4–9]. In Portugal 
[10], the bottled waters are classified into three groups, 
including high mineralization waters, low mineralization 
waters, and medium mineralization waters from evaporitic 

origin, they are controlled by two types of process, namely 
deep faults circulation in metamorphic and/or magmatic 
environments, and rock dissolution processes. In Italy, 
water parameters were reduced using PCA and grouped 
by clustering analysis, then a classification model was 
built using Discriminant Analysis [11]. In Korea, major ele-
ments and stable isotopes of oxygen, carbon, and hydro-
gen, were successfully used to classify various types of 
bottled water using statistical method [12]. Grošelj et al. 
[13] collected bottled water samples around the Europe 
and trained artificial neural networks using geological ori-
gin as labels. In Nigeria, PCA was used to classify natural 
springs and other drinking water sources [14].

In China, bisphenol analogues and microplastic pollution 
were investigated [15–17]. Zhang et al. [18] collected mineral 
samples and found the water type changed from Ca–HCO3 
face to Ca–Mg–HCO3 from 2011–2015. However, systemat-
ical research of water type and classifying method for the 
bottled water are rare. In this study, 30 randomly selected 
bottled waters were obtained from the public market, 
hydro-geochemical composition of which were measured. 

Table 1
Origin of the samples and label reported data

No. K+ Na+ Ca2+ Mg2+ pH TDS Origin

1 1.4–12.0 4.0–12.0 3.0–5.8 2.1–5.8 80–170 Changbai Mountains, Jilin Province
2 1.5–6.5 5.5–19.5 8.0–25.6 6.6–22.9 7.25–7.90 93.6–230.0 Changbai Mountains, Jilin Province
3 2.4–4.1 1.6–9.9 4–6.9 4–6.8 7.02–7.98 92–162 Changbai Mountains, Jilin Province
4 1.0–6.0 5.0–15.0 2.0–10.0 2.0–9.0 80.0–200.0 Changbai Mountains, Jilin Province
5 1.0–2.5 2.0–6.8 4.0–10.0 1.5–5.0 35–100 Changbai Mountains, Jilin Province
6 0.35–7.0 0.8–20.0 4.0–20.0 0.5–10.0 20.0–100.0 Changbai Mountains, Jilin Province
7 1.0–8.6 3.2–12 2.8–15.5 0.6–7.5 75–160 Foshan, Guangdong Province
8 1.1–4.9 1.8–14.8 0.9–15.6 0.8–10.2 60.5–181.3 Changbai Mountains, Jilin Province
9 0.5–10.0 1.0–15.0 2.0–15.0 0.1–10.0 50.0–180.0 Huizhou, Guangdong Province
10 0.2–1.0 6.5–9.0 20.0–30.0 4.0–9.0 7.0–8.0 50.0–400.0 Changbai Mountains, Jilin Province
11 0.1–0.5 1.0–4.7 45–65 5–11 7.3–8.2 250–360 Hechi, Guangxi Province
12 1.0–5.0 4.0–8.0 0.5–7.9 0.5–5.0 68–160 Yifeng, Jiangxi Province
13 0.5–10.0 3.0–35.0 5.0–40.0 0.5–10.0 40–300 Huangshan, Anhui Province
14 0.5–5.0 1.0–10.0 5.0–35.0 1.0–10.0 60.0–60.0 Yichun, Jiangxi Province
15 ≥35 ≥80 ≥400 ≥50 7.3 ± 0.5 Chunan, Zhejiang Province
16 ≥35 ≥80 ≥400 ≥50 7.3 ± 0.5 Jiande, Zhejiang Province
17 0.6–2.0 4.8–17.4 10.8–32.4 1.5–5.7 120–300 Huzhou, Zhejiang Province
18 0.5–10.0 1.0–25.0 2.0–35.0 0.1–15.0 50.0–250.0 Yuyao, Zhejiang Province
19 5.7 20.9 7 7 106 Nantou, Taiwan Province
20 0.5–5.0 2.0–8.0 3.0–15 0.5–6.0 7.45 ± 0.6 50–300 Luan, Anhui Province
21 0.6–2.0 4.8–17.4 10.8–32.4 1.5–5.7 120–300 Huzhou, Zhejiang Province
22 125.0–280.0 450.0–1,000.0 Kedong, Heilongjiang Province
23 0.1–1.5 100–150 0.5–3.0 8.5 ± 0.5 400–450 Baiquan, Heilongjiang Province
24 0.3–2.0 10.0–20.0 0.2–2.0 0.1–0.4 7.2–7.7 80.0–150.0 Mohe, Heilongjiang Province
25 1.0–2.4 53.0–72.0 15.0–22.0 4.0–6.8 220–580 Leshan, Sichuan Province
26 0.8–1.8 40.0–100.0 10.0–30.0 2.0–4.0 7.8 ± 0.6 200–500 Kedong , Heilongjiang Province
27 1.0–3.0 10–65 30–75 30–60 7.0–8.5 400–850 Qinghai Province
28 ≥80 ≥210 ≥60 Puyang, Henan Province
29 0.1–5 1–80 1.5–15 0.5–5 >40 Dali, Yunnan Province
30 0.1–5.0 1.0–10.0 1.0–10.0 0.1–5.0 Xiamen, Fujian Province
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The objective of this study is composed by three steps: 
First, the geochemical feature of the bottled natural water 
in China are investigated, especially in some key regions; 
Second, waters are classified into several groups using 
the method of multivariate analysis, then the group labels 
were used to train supervised discriminant models; Third, 
water–rock interaction for all groups are then evaluated and 
discussed using the geochemical modeling technology.

2. Materials and methods

2.1. Sampling collection and analysis

30 still bottled water commercially available from super-
markets in China were collected. According to the national 
standards, the bottled water should be filled and sealed at the 
water source, essential information, including the source of 
the water, total dissolved solid and concentrations of import-
ant cations ([K+], [Na+], [Ca2+], [Mg2+]) should be marked. 
Table 1 important data copy shown on the sample bottles as 
a reference for the water test and analysis. Fig. 1 shows the 
original locations where the bottled water collected in prov-
ince scale.

Major ions and physical parameters of water samples 
were measured complied with Chinese Standard Protocols 
in Jiangsu Provincial Coal Geology Research Institute. 
K and Na were analysed by flame atomic absorption spec-
trophotometry (GB 11904-89). Mg and Ca were measured 
using atomic absorption spectrophotometric (GB 11905-89). 
Fe was measured by phenanthroline spectrophotometry (HJ/T 
345-2007). Sulphate and chloride were determined using 
flame atomic absorption spectrophotometry (GB 13196-91) 
and silver nitrate titration (GB 11896-89), respectively. 

Total dissolved solids and hardness were analysed using 
the standard GB/T 8538 method. pH was analysed in the 
laboratory using Glass electrode method (GB/T 6920-86).

2.2. Statistical methods of data analysis

The geochemical composition of a bottled water sam-
ple shows the result changes pattern occurring in the water 
source, which depend on water geochemistry of the aqui-
fers, lifetime of the water, pH changes due to the system’s 
degasification, etc. [19]. The important cations, anions, and 
parameters were measured to classify the water types and 
analyze the water–rock interaction of the water source. 
However, univariate statistical analysis of a large scale of 
data could be cumbersome and cause misunderstanding 
and error in the interpretation. In virtue of the thought 
of machine learning, a distinguish method with higher 
dimensions may get a better result. Based on this founda-
tion, principal component analysis can be applied while 
no labelled parameters can be originally obtained. Instead 
of univariate statistical, the water type was calculated by 
machine learning in a higher dimension space. While the 
samples are labelled, supervised method can be used to 
build discriminant models. In the area of hydro-chemical 
studies, an unsupervised classifying method, principal 
component analysis (PCA) has been widely used to reduce 
dimensions and analyze the relations among the variates 
and samples [20–28]. Shan and Shi [9] reviewed the appli-
cation of multivariate analysis on the source apportionment 
of trace elements in water and source matrix, the PCA is 
one of the widest used methods. Based on the correlation 
matrix, the PCA calculate loadings of all parameters and 
samples on principal components to represent information 

Fig. 1. Original locations of the bottled water in province scale.
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of them. The data dimension may be reduced to three or 
more, depending on the need to present variance of the 
original data [19]. While the axis of coordinates rotated, the 
axis was marked as RCs. Then the matrix with principal 
components in lower dimensions could be clustered.

In our study, the loadings of every drawn show co-ex-
isting pattern of parameters ions, and scores of every 
drawn show the co-existing pattern of samples. The clus-
tering result of loadings show similar pattern among ions 
and parameters. Therefore, the co-existing behavior of 
parameters and ions could be summarized. The clustering 
result of scores show similar and different pattern among 
samples. Therefore, the co-existing behaviour of samples, 
which means types of water samples, could be summarized. 
The clustering method was based on the Gaussian Mixture 
Model (GMM). The GMM algorithm fit all the groups into 
Gaussian distribution, then the probability that all attri-
butes and samples belong to the groups are calculated. 
Comparing with K-means algorithm, the GM Model does 
not divide different group by stiff border but allow some 
mixture of different groups. So, the classifying probability 
to each group can be calculated.

By using the method of PCA and GMM clustering, 
the water samples could be labelled into different groups. 
Then the data could be used to train supervised models. 
In the feature selection step, a random forest algorithm 
implemented to identify the importance of the attributes 
that could classify the samples. Then the selected features 
were used in the supervised model training, in which the 
algorithms of random forest and support vector classifi-
cation were implemented. The models were then applied 
on the data of natural water of China and other countries 
from the literature.

We have applied software R as tool. The packages psych 
and mclust were used to calculate PCA and GM model 
clustering result, the packages Boruta was used to select 
important features in the model, then the package e1071 
was used to train supervised support vector classification 
and, package random Forest for the random forest model, 
respectively.

2.3. Geochemical modelling

Geochemical modelling carried out using the soft-
ware PHREEQC. The following calculation were car-
ried out: (1) speciation and saturation-index calculations; 
(2) batch- reaction and one-dimensional (1D) transport cal-
culations with reversible and irreversible reactions; and 
(3) inverse modelling, which finds sets of mineral and 
gas mole transfers that account for differences in com-
position between waters within specified compositional 
uncertainty limits. The aim of this study was to find the 
water–rock interaction process based on the water content. 
Therefore, the reverse modelling module was used.

3. Result and discussion

3.1. Geochemical analysis

Table 2 and Fig. 2 show concentrations of major ions 
and parameters. Fig. 2a displays profiles of [Na+] + [K+], 
[SiO3

–], and [HCO3
–] + [CO3

2–] of all the 30 water samples. 

[Na+] + [K+] shows roughly two patterns. Four samples had 
concentrations that higher than 80 mg/L, including three 
from Heilongjiang, and one from Sichuan Province. Except 
for the four samples, others had the mean [Na+] + [K+] value 
of 4.74 mg/L. The concentrations of HCO3

– and CO3
2– also 

shows two-type pattern. Six samples had concentrations 
that higher than 200 mg/L. The others had means values of 
59.7 mg/L. According to the correlation calculation, the val-
ues of [Na+] + [K+], TDS, and [HCO3

–] + [CO3
2–] had high cor-

relation indexes, that is, 0.86 between [Na+] + [K+] and TDS, 
0.92 between [HCO3

–] + [CO3
2–] and TDS, and 0.92 between 

[Na+] + [K+] and [HCO3
–] + [CO3

2–], respectively. Mean value 
and standard deviation of [SiO3

–] was 10.43 mg/L and 5.18, 
respectively, with the highest value of 19.10 mg/L.

Fig. 2b displays profiles of [Ca2+] + [Mg2+], [Cl–], and 
[SO4

2–] of all the 30 water samples. This graph shows that 
seven out of thirty samples had concentrations higher 
than 20 mg/L Ca2+, two samples had concentrations 
higher than 10 mg/L Mg2+, two samples had concentrations 
higher than 20 mg/L Cl–, and six samples had concentrat-
ions higher than 20 mg/L SO4

2–.
Higher [Ca2+] was observed in the water sourced 

from Jilin, Guangxi, Jiangxi, Zhejiang, Sichuan, and Tibet 
Provinces, higher [Mg2+] in Jilin and Tibet Provinces, higher 
[Cl–] in Heilongjiang and Tibet Provinces, and higher [SO4

2–] 
in Zhejiang, Taiwan, Sichuan, Heilongjiang, and Tibet 
Provinces, respectively. The correlations indexes between 
[Ca2+] and [Mg2+], and that among [Mg2+], [Cl–], and [SO4

2–] 
were relatively high, suggesting a similar pathway and 
reaction process. On the other hand, the samples with high 
[K+] + [Na+] usually had low [Ca2+] and [Mg2+] values, suggest-
ing different reaction mechanisms.

Fig. 2c displays profiles of [Fe3+] + [NH4
+], and [NO3

–] of 
all the 30 water samples. This graph shows that 23 out of 
30 samples had concentrations lower than 0.1 mg/L Fe3+, 
22 samples had concentrations lower than 1 mg/L NH4

+, two 
samples had concentrations higher than 20 mg/L Cl–, and all sam-
ples had concentrations lower than 0.5 mg/L NO3

–, respectively.

3.2. Classification of bottled water

In this study, PCA was firstly applied to a matrix of con-
centration of nine major ions observed in 30 bottled waters. 
Based on the correlation matrix, the parameters and sam-
ples were projected on three orthogonal (rotated) axes in a 
three-dimensional space. Eigen values of them were 2.82, 
2.34, 1.58, respectively. All the other six Eigenvalues were all 
smaller than one.

The nine parameters were then relocated in a 3D dimen-
sional space based on its loadings on the three axes, then 
the parameters were then clustered using a Gaussian mix-
ture model (GMM), which is shown in Fig. 3a. The 30 sam-
ples were relocated in a 3D dimensional space based on its 
scores on the three axes, then they were clustered using the 
method of GMM, shown in Fig. 3b. Principal component 
loadings of the nine variables are shown in Table 3, and 
the principal component loadings of the 30 bottled waters 
are shown in Table 4.

As shown in Fig. 3a, the nine parameters were classified 
into three groups, the groups I included K+ + Na+, Cl–, SO4

2–, 
and HCO3

–, which are marked in solid circles. The groups II 
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(a)

(b)

(c)

Fig. 2. Concentrations of major ions in water samples.

Table 2
Concentrations of major ions and origins of the water samples

Locations K+ + Na+ Ca2+ Mg2+ Fe3+ Cl– SO4
2– HCO3

– Source location

1 3.06 5.71 5.46 0.10 0.21 1.90 51.26 Jilin
2 5.70 13.89 11.14 0.08 1.54 3.40 107.40 Jilin
3 1.52 6.53 7.53 0.06 0.13 2.15 60.04 Jilin
4 1.31 5.31 7.42 0.07 0.25 1.97 55.16 Jilin
5 1.93 6.53 4.22 0.05 0.00 2.34 43.93 Jilin
6 1.04 5.71 5.20 0.05 0.00 2.42 43.93 Jilin
7 1.84 11.44 3.96 0.04 0.08 1.29 58.58 Guangdong
8 3.31 6.13 5.94 0.08 1.63 3.27 52.23 Jilin
9 2.14 9.40 2.72 0.11 1.96 3.02 42.47 Guangdong

(Continued)
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Locations K+ + Na+ Ca2+ Mg2+ Fe3+ Cl– SO4
2– HCO3

– Source location
10 2.62 25.33 9.41 0.11 3.63 2.90 122.04 Jilin
11 1.43 55.95 9.16 0.09 1.78 5.47 219.67 Guangxi
12 4.83 11.60 4.85 0.08 2.80 3.77 67.37 Jiangxi
13 2.85 11.02 3.96 0.07 1.55 2.35 62.00 Anhui
14 2.37 25.15 5.80 0.07 1.43 1.85 114.72 Jiangxi
15 1.04 14.71 2.72 0.08 2.69 4.68 51.26 Zhejiang
16 0.30 13.89 4.96 0.05 3.46 4.81 56.14 Zhejiang
17 5.89 24.51 5.54 0.05 3.75 19.25 87.87 Zhejiang
18 0.99 15.93 4.20 0.07 4.70 5.24 58.58 Zhejiang
19 1.17 19.44 7.04 0.10 2.54 36.08 48.82 Taiwan
20 2.67 8.82 3.57 0.08 2.38 6.11 40.03 Anhui
21 2.62 21.08 5.54 0.06 4.94 23.63 68.34 Zhejiang
22 240.70 1.09 0.42 0.03 24.54 11.48 550.16 Heilongjiang
23 116.96 0.00 0.07 0.16 0.17 13.44 246.52 Heilongjiang
24 14.67 0.00 0.00 0.08 1.12 1.64 36.61 Heilongjiang
25 88.78 26.55 6.43 0.11 5.22 62.14 245.06 Sichuan
26 108.74 17.15 3.86 0.11 19.76 22.39 277.27 Heilongjiang
27 21.71 40.02 40.13 0.16 50.18 57.78 222.11 Tibet
28 26.24 1.38 0.19 0.09 17.59 10.88 31.73 Henan
29 1.33 7.35 3.22 0.11 1.03 2.40 42.47 Yunnan
30 8.72 0.80 0.19 0.09 1.21 2.49 29.29 Fujian

CO3
2– NO3

– NH4
+ pH TDS CO2 SiO2 COD

1 0.00 0.08 0.25 7.30 112.00 9.40 18.62 0.39
2 0.00 0.18 0.26 7.48 136.00 5.98 9.74 0.47
3 0.00 0.07 0.34 6.95 70.00 12.81 15.63 0.99
4 0.00 0.07 0.29 7.32 54.00 12.81 11.73 0.83
5 0.00 0.15 0.19 7.79 56.00 8.20 9.38 0.72
6 0.00 0.15 0.19 7.91 56.00 7.69 12.77 0.87
7 0.00 0.07 0.20 6.68 116.00 15.38 15.84 0.45
8 0.00 0.01 0.50 7.63 48.00 8.54 9.88 0.06
9 0.00 0.00 0.46 6.06 24.00 23.06 7.21 0.37
10 0.00 0.49 0.22 6.85 116.00 11.96 17.55 0.56
11 0.00 0.22 2.80 7.74 200.00 12.81 13.48 0.60
12 0.00 0.06 1.27 6.60 64.00 13.67 13.52 0.52
13 0.00 0.09 1.91 6.88 64.00 11.96 19.10 0.45
14 0.00 0.00 2.16 6.04 134.00 41.00 17.57 0.22
15 0.00 0.25 0.17 7.29 112.00 4.27 5.60 0.39
16 0.00 0.27 0.09 7.69 28.00 4.27 2.98 0.64
17 0.00 0.00 0.16 6.18 102.00 32.80 11.29 0.75
18 0.00 0.38 0.46 6.23 74.00 23.06 11.31 0.22
19 0.00 0.27 0.44 7.47 82.00 4.27 5.71 0.14
20 0.00 0.26 0.01 7.03 18.00 3.42 5.36 0.99
21 0.00 0.16 2.32 6.13 118.00 25.63 13.27 0.68
22 19.21 0.00 0.56 8.46 562.00 0.00 3.38 0.68
23 24.01 0.00 0.46 8.94 564.00 0.00 3.25 0.49
24 0.00 0.00 0.49 7.11 42.00 8.24 12.32 0.29
25 8.64 0.00 0.50 8.29 354.00 0.00 16.09 0.29
26 12.00 0.09 1.08 8.20 332.00 0.00 7.50 0.82
27 0.00 0.16 0.17 7.94 368.00 15.72 4.22 0.60
28 0.00 0.00 0.50 6.84 36.00 6.83 0.22 0.14
29 0.00 0.00 1.32 7.33 66.00 6.83 11.44 0.68
30 0.00 0.00 2.28 7.16 30.00 5.13 6.87 0.45

Table 2 Continued
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included Ca2+, Mg2+, and NO3
–, which are marked in hollow 

squares. The groups III included Fe3+ and NH4
+, which are 

marked in solid triangles.
The sample classification result is shown in Fig. 3b. Four 

groups had 14, 7, 5, and 4 samples, which are marked in 
solid circles, hollow squares, solid triangles, and crosses, 
respectively. The samples in the group I are listed as first 
14 in Table 1, the group II include the sample No. 15–21, 
the group III include the sample No. 22–26, the group IV 
include the sample No. 27–30. In consideration of water 
sources, the group I include eight from Jilin Province, two 
from Guangdong Province, two from Jiangxi Province, and 
one each from Guangxi and Anhui Province. The group II 
include five from Zhejiang Province, one each from Anhui 
and Taiwan Province, respectively. The group III include 
four from Heilongjiang Province, and one from Sichuan 

Province. The group IV include one each from Tibet, Henan, 
Yunnan, and Fujian Province, respectively.

Water samples show a significant geographical depen-
dency, especially for the Jilin, Zhejiang, and Heilongjiang 
Province, suggesting its identity feature of the water reac-
tion mode in these water source regions. Fig. 4 shows con-
centration profile of major ions in every group. Group I 
and II had lower K+, and Na+ concentrations, and higher 
Ca2+, and Mg2+ concentrations than the group III and IV. 
Group I had higher HCO3

– concentrations than other groups. 
Group 4 had relative higher Fe3+ and lower NO3

– concentra-
tions than other groups.

The four groups of samples were drawn in a piper plot 
(Fig. 5), which are shown using solid circles, hollow cir-
cles, solid stars, and solid triangles, respectively. It can be 
concluded that the group III can be divided from others 
based on the ion composition. According to the classifica-
tion method of Shug Kalev, the water of group III belongs 
to Na–HCO3 type. Group I and II are similar, with a roughly 
distinguishing pattern, which belong to Ca–HCO3 type. 
The group IV dispersive in the piper plot.

3.3. Supervised machine learning model

The supervised machine learning algorithm was used 
based on two premises: a supervised ML method, rather 
than the unsupervised ML method can be used to build a 
model, which is feasible to reuse in some other scenario; 
the supervised ML model usually has higher precise than 
the unsupervised ML model. An important factor that 
constrains the using of supervised ML method is the dif-
ficulty to get labels of observations (samples). In this 
study, the observations had been grouped using a series of 

 
(a)                                                                                        (b) 

Fig. 3. Classification of major ions and samples using PCA.

Table 3
Principal component loadings of the nine variables

RC1 RC1 RC1

K+ + Na+ –0.959 0.144
Ca2+ 0.865
Mg2+ 0.722 –0.270
Fe3+ 0.870
NH4

+ –0.175 0.878
Cl– –0.236 0.744
SO4

2– 0.184 0.852
HCO3

– 0.147 –0.974 0.123
NO3

– 0.695 0.100 –0.176
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unsupervised ML method, and the labels were marked on 
every sample.

Before the supervised ML modeling, two pre-steps were 
needed: selecting the observations and features. The obser-
vations should be those could be distinguished correctly 
and clearly. And some features that contribute the most 
to the distinguishing should be select. The number of the 
features should be suitable to the modelling. A too small 
feature group would miss some part of the variable charac-
teristics, leading to wrong classification. On the other hand, 
too many features would lead to over-fitting problem.

The random forest classification (RFC) is an ensemble 
ML algorithm of multiple classification trees. Compared 
with simple decision trees, RFC runs efficiently on high- 
dimensional space data, and it is more accurate and robust 
to noise. At the same time, this method can handle many 
input variables while assessing the importance of vari-
ables. The RFC draws multiple samples based on the boot-
strap resampling method from the original samples, and 
then constructs the decision trees model for the samples. 

Then the prediction output is obtained by calculating the 
average of all prediction trees. In order to determine the 
importance of cations and anions as distinguish indexes. 
A supervised algorithm, random forest, and a corre-
sponding R package, Boruta, were used.

As the first three groups could be clearly grouped, they 
are used in the machine learning calculation, which sam-
ple number 1–26 in Table 1. The feature selection result is 
shown in Fig. 6. As the result showing, five parameters 
were found to be important, one was found to be medium 
important. This result suggested that the six major ions can 
be used as indexes to build a discriminant model.

Several algorithms could be used in the supervised ML 
model, such as logistic regression, artificial neural network, 
Bayesian network, random forest, support vector classi-
fication, etc. Considering that this task is a multi-group 
classification, and relatively small data size, the algorithm 
random forest and support vector classification were used.

For the RFC, the R package randomForest was used, 
and the Gini index was used to calculate for establishing 
and pruning of every tree. Two important parameters were 
defined, the number of trees in the forest (ntree), and the 
number of the random variables of the split nodes (mtry). 
When the ntree is defined too small, the RFC prediction 
error is large and unstable; on the other hand, too large 
ntree number need more computation time and memory. 
The default setting of the ntree is 500. By repeating oper-
ation, it is found that the model tends to be stable, while 
the ntree achieve 200. The parameter mtry is the number of 
the random variables of the split nodes. A vulgar method to 
determine the mtry is to calculate square root of the number 
of variables. While the number was six, mtry should be set 
to be 2 or 3. After comparison, the mtry value was set to be 2.

The SVC algorithm has superior prediction performance 
in various fields of data modeling for its high accuracy of 
prediction and low probability of over-fitting. When the 
data cannot be classified by linear algorithm, the data is 
calculated using kernel formulas to project the data to a 
higher-dimension space, then the data may be classified by 
hyperplanes. The most popular kernel includes polynomial 
and Radial Basis Function, which were used in this study. 
The R package e1071 was used in the SVC training. When 
using the polynomial kernel, parameters were setting to 
cost = 1, gamma = 1, degree = 2, coef = 1, and parameters 
were setting to cost = 1, gamma = 1, while using the Radial 
Basis Function kernel.

Distinguishing models were built using the six major 
ions under support vector classification algorithm and 
random forest algorithm. In the discriminant model calcu-
lation, the molar equivalents per cent was used. The RFC 
model and SVC models with two types of kernel, polyno-
mial, and radial, could all have got 100% distinguishing 
result. To compare the performance of the three models, 
the root mean square error (RMSE) and the coefficient of 
determination R2 were utilized, which is shown in Table 5. 
The kernel redial means Radial Basis Function was used 
in the SVC training. The result shows that the random 
forest model and polynomial kernelled SVC got better 
performance.

We have applied the models on data obtained from lit-
erature. Table 6 lists the molar equivalents per cent of the 

Table 4
Principal component loadings of the 30 bottled waters

RC1 RC2 RC3

1 0.291 –0.864 0.645
2 0.286 –0.854 –0.675
3 1.015 0.291 –0.140
4 0.990 0.203 –0.523
5 –2.097 –0.566 –1.467
6 0.262 0.630 –0.632
7 0.358 –1.012 –0.334
8 0.417 –0.989 –0.019
9 0.577 –0.710 –0.161
10 0.178 1.549 –0.732
11 0.708 –0.752 –0.164
12 0.312 –0.983 –0.628
13 –1.988 –0.477 –1.036
14 0.034 –0.500 0.177
15 1.138 0.520 –0.201
16 0.234 –0.068 1.122
17 –1.868 –0.495 0.559
18 1.290 2.492 –0.031
19 –1.735 2.828 0.088
20 –1.014 0.622 –0.971
21 –1.513 0.105 –1.048
22 0.221 –0.342 2.059
23 0.839 –0.516 –0.566
24 0.412 –0.761 –0.378
25 –1.357 0.152 3.716
26 1.022 0.631 –0.111
27 0.051 –0.285 0.243
28 0.134 –0.488 0.873
29 0.681 1.489 0.266
30 0.122 –0.850 0.071
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major ions and the discriminant result using the models of 
random forest and radial kernelled SVC.

By using the models, the spring waters were classified 
into three types. Although the model may not be precise to 
distinguish all types of water, the result to classify spring 
water was acceptable. It suggested that the spring water 
undergoes some limited types of water–rock interaction, or 
some types plays important role in the bottled natural water, 
or spring water.

In sight of the model application, the models can be 
compared further. Comparing with the SVC algorithm, 
the random forest shows a better performance on the 
classification of the three groups, and a better feasible in 

model generalization. The SVC gave a good criterion of 
RMSE and R2, but it not suitable for outside of the training 
data, suggesting an over-fitting effect. Comparing with 
the polynomial kernel, the Radial Basis Function shows 
a better performance, the group I and group II can be 
divided successfully. However, the Radial Basis Function 
kernelled SVC was weak to distinguish group III from  
others.

3.4. Water–rock interaction processes

To analyze the water–rock interaction process, reverse 
modeling using PHREEQC was implemented.

 
 

Fig. 4. Boxplot of major ions in every water type.
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Inverse modeling was used to calculate water–rock 
reaction modes by input water geochemistry pre and post 
the reaction unit and rock/mineral content. We selected 

one sample from group I/II/III each (sample 1 to present 
group I, sample 15 to present group II, and sample 13 
to present group III) to present the post-unit water geo-
chemistry. The rock should present high soluble mineral 
and Na/Mg/Ca containing minerals in igneous rocks. 
Therefore, we selected the minerals dolomite, calcite, 
gypsum, halite, quartz, albite, anorthite, akermanite, and 
pyroxene. PHREEQC 3.5.0 and database llnl.dat was used 
to simulate this process. Table 7 shows probable reactions 
according to the water and rock settings.

For group I, the minerals dolomite, gypsum, halite, 
quartz or anorthite, albite dissolved, and minerals aker-
manite and pyroxene precipitated. Group II had similar 
geochemistry characteristics and showed similar reaction 
mode. However, albite showed precipitation tendency, and 
some Ca/Mg containing mineral dissolved. Group III show 
significant higher [Na+] comparing with groups I and II. The 
simulation result showed that Na+ in water released from 
the dissolution of Na-containing mineral, such as albite, 
Ca2+ and Mg2+ tend to precipitate to form mineral such 
as anorthite, akermanite, Pyroxiene, or clay minerals.

In our study, the water samples both from our test and 
literature in group III were originated from Heilongjiang, 
Inner Mongolia, and Xinjiang Provinces. According to the 
geological analysis, they are all located in the Tianshan 
Xing’an orogenic system. The group I and II are located 
Sino-Korean paraplatform or Yangzi paraplatform. Relative 

Table 5
Root mean square error (RMSE) and the coefficient of determination R2 of the discriminant models

RFC (ntree = 200) RFC (ntree = 500) SVC (kernel = polynomial) SVC (kernel = radial)

RMSE 0.099 0.097 0.111 0.254
R2 0.984 0.984 0.980 0.895

Table 6
Molar equivalents % of the major ions and the discriminant result for the literature data

Location K + Na (%) Ca (%) Mg (%) HCO3 (%) Cl (%) SO4 (%) RFC SVC (kernel = radial)

Hebei 13.2 64.9 22.0 49.7 17.7 32.5 2 2
Hebei 10.9 59.3 29.8 75.8 7.8 16.5 2 2
Inner Mongolia 93.4 5.1 1.5 23.1 30.7 46.2 3 2
Inner Mongolia 93.9 5.9 0.2 25.3 29.4 45.3 3 2
Anhui 14.8 59.7 25.6 88.1 6.9 4.9 1 1
Anhui 13.8 60.9 25.3 89.1 5.7 5.2 1 1
Yunnan 23.9 43.2 32.8 92.5 3.3 4.1 1 1
Yunnan 17.2 55.5 27.3 92.4 5.1 2.4 1 1
Xinjiang 70.8 27.6 1.6 9.3 43.4 47.3 3 2
Xinjiang 71.4 24.2 4.4 15.4 42.5 42.1 3 2
Shandong 33.6 44.6 21.8 46.8 26.7 26.6 2 2
Jiangxi 12.3 50.3 37.5 96.1 1.7 2.1 1 1
Qingdao
Shandong

16.1 68.6 15.3 73.1 16.0 10.9 2 2

Qingdao
Shandong

19.7 62.7 17.7 44.3 24.2 31.5 2 2

 

Fig. 5. Piper plot of the water samples.
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different Na, Ca, Mg content in the minerals led to different 
water geochemistry and water–rock interaction between the 
group I and II.

4. Conclusion

To analyze the geochemical composition, their classifi-
cation behavior, and water–rock interaction in the source 
underground aquifers of the bottled water in China, 30 sam-
ples were obtained commercially available in market, then 
the analytical techniques, geochemical analysis, principal 
component analysis, random forest, support vector machine, 
reverse modeling were applied.

In summary, the bottled water can be classified into four 
groups. The samples in Groups I and II show similar geo-
chemical composition with each other, which were Ca–HCO3 
type water. The water source located in the Sino-Korean 
paraplatform or Yangzi paraplatform, which undergo dis-
solution or precipitation of Na/K-containing or Ca/Mg con-
taining mineral in the underground aquifers depending on 
the relative content of Na/K, and Ca/Mg in the igneous min-
erals. The samples in Group III showed significant higher 
[Na+], [K+] than Group I, and total dissolved solid level, these 
water samples were originally collected from Heilongjiang, 
Inner Mongolia, and Xinjiang Provinces. In the sense of geo-
logical plate, they are all included in the Tianshan Xing’an 
orogenic system. The water–rock interaction mode was 
mainly dissolution of Na/K-containing minerals, such as 

albite. The samples in the group IV were relatively dispersive 
in view of geochemical composition.
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[19] M.J. Canto Machado, Águas minerais: Sua exploração 
industrial. jornadas hispano-lusas sobre as águas subterrâneas 
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