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a b s t r a c t
A hybrid approach based on neural networks and genetic algorithms was employed to develop 
a novel multi-objective procedure. Acid Blue 74 (AB74) removal by granular activated carbon/
electrocoagulation (GAC/EC) coupling operated in alternating pulse current mode was inves-
tigated. Five independent variables, namely current density, GAC dose, initial pH value, initial 
AB74 concentration and GAC/EC time, were investigated. The dependent variables, that is, total 
organic carbon (TOC) removal efficiency, unit energy demand, and unit electrode material demands 
(Fe or Al), were considered. Six optimization cases are discussed by assuming different constraints. 
The optimal conditions for three imposed values of removal efficiency (80%, 90% and 97%) within 
the experimental region and at the highest level of GAC dose were analyzed. Under optimal 
conditions, 97% TOC removal efficiency was obtained for 0.2 g/L of dye solution by applying a 
current density of 86.9 A/m2 for only 18.83 min and adding a GAC dose of 0.88 g/L.

Keywords:  Electrocoagulation (EC); Coupling process; Multi-objective optimization; Acid Blue 74; 
Alternating pulse current; Neural networks-genetic algorithms (NN-GA)

1. Introduction

Due to their high toxicity, textile wastewaters are 
strictly regulated and have to be treated before being 
discharged into the environment [1]. Dyes are one of 
the most important classes of pollutants. A textile dye-
stuff commonly used for dyeing cotton and wool fabrics 
[2], polyester fibers, and denim [3] is indigo carmine. To 
remove indigo carmine from wastewater, various methods 
such as adsorption [4], biological [2] and photochemical [5] 
techniques have been used. Precipitation-based processes 
are among the most appropriate and economical tech-
niques [6]. Electrocoagulation (EC) is a well-known eco-
friendly, simple, and efficient method for the treatment of 
dye-containing wastewater [7–11]. Although the electrical 

operational costs of EC related to energy and electrode 
material consumption are crucial to evaluate the feasibility 
of a process, only a few studies have addressed the eco-
nomical aspect of the EC technique [12].

The possibility of enhancing conventional EC systems 
by means of granular activated carbon (GAC) was recently 
suggested [13,14]. It has been proved that hybrid EC/GAC 
sorption systems are a more efficient and faster separation 
technique than conventional EC [13,14]. However, since 
electrocoagulation is a very complex process, modeling 
this process by means of statistical methods is preferred 
to an analytical modeling approach. Applied statistical 
mathematical approaches to EC over a wide parameter 
range have been shown to be more reliable for the design 
and scale-up of electrocoagulation reactors [15]. The rate 
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of reaction in this kind of system is a non-linear function 
of temperature, current density, time, electrode type, etc. 
For all these reasons, the ability of neural networks (NN) 
and genetic algorithms (GA) to recognize and reproduce 
cause–effect relationships through training, for multiple 
input-output systems, could be employed to describe this 
process.

GAs are a search and optimization tool that is increas-
ingly applied in scientific problems because it does not 
require any information about the search space, only an 
objective function that assigns a value to any solution. 
One choice for an optimization problem with a single or 
multiple targets that are often contrary is relatively com-
plicated in the context of a precise mathematical model 
and high saved time resources requirements. This matter 
can be approached with scalar [16] or vector [17] objective 
functions. The combination of a GA and a NN involves 
procedures to identify the regions in the search domain 
[18]. Usually, the best data solutions given by GAs are 
implemented to optimize the uncertain baseline data 
obtained from NNs. The global optimum is a pseudo-global 
(deterministic) optimum and the closest solution of the 
pseudo-global optimum can be analyzed by the user.

In addition to increasing efficiency by reducing the cal-
culation time, a hybrid procedure is not based on a specific 
mathematical structure, leading to a much simpler imple-
mentation. Hybrid search algorithms do not depend on the 
definition of the objective function and the characteristic 
quality of model predictions, but rather on a quantitative 
measure of the system, which can be used as a criterion in 
performance evaluation solutions [19].

If the process mechanisms are not fully known, conven-
tional methods are not suitable. Many different situations 
are reported in the literature, considering single or multiple 
objective problems [20–23].

The present paper provides data concerning the 
removal of aqueous dye solutions by EC/GAC coupling. 
The experimental design also aimed at the development 
of a novel method for the quantitative assessment of the 
EC/GAC coupling process, and determination of the opti-
mal electro-coagulant dose. The main goal was to com-
bine in a novel manner a hybrid structure between a NN 
model and a GA so as to develop an efficient and effective 
multi- objective optimization procedure. Accurate results 
obtained for both modeling and optimizations, experimen-
tally validated, prove the efficiency of the methodology. 
We have considered in the optimization approach the elec-
trode material consumption, which is a very important cost 
factor for this method. In fact, the cost of electrode material 
consumed is up to ten times that of energy. Also, a detailed 
discussion on six different optimization cases and treat-
ment costs has been provided. The cheapness feature of 
EC/GAC system is quantified.

2. Experimental

2.1. Materials

Acid Blue 74, with the commercial name indigo car-
mine, is a toxic indigoid dye named according to I.U.P.A.C. 
3,3’-dioxo-2,2’-bis-indolyden-5,5’-disulfonic acid disodium 
salt (C16H8O8N2S2Na2). Its molecular structure is presented by 

the study of Secula et al. [14]. It has a molecular weight of 
466.36 g/mol, a color index number of 73015 and a maximum 
light absorption at 612 nm.

The GAC material used in this study was of commercial 
type L27 (Jacobi Carbons, France). Before use, the adsor-
bent was washed several times with water and then dried 
at 120°C for 24 h to remove residual acidity due to the acti-
vation protocol. The textural and chemical characteristics 
of this adsorbent material are described by the study of 
Secula et al. [14].

Solutions of Acid Blue 74 of 1 L volume were prepared 
before each experimental run by dissolving precisely- 
weighed amounts of dye (Sigma-Aldrich) in ultra-purified 
water (resistivity of 18.2 MW/cm at 25°C). NaCl (A.R. Lach-
Ner, Neratovice, Czech Republic) was used as background 
electrolyte.

To ensure a proper conductivity, 1.5 g of NaCl was dis-
solved in 1 L of synthetic dye solution. In prior work Secula 
et al. [24], it was determined that this is the optimal concen-
tration of supporting electrolyte.

2.2. Procedure and analyses

EC experimental tests were conducted in a two-
plane electrode cell. Based on our prior studies [24], it 
was established that a combined Al–Fe electrode con-
figuration achieves the best performance for Acid Blue 
74 removal as the obtained flocks are more stable and 
the separation is enhanced. A thorough analysis of the 
formed sludge during EC treatment of IC aqueous solu-
tions was provided in our prior study [25]. Due to cer-
tain advantages such as electrode “self-cleaning” [25], 
removal efficiency [26] and lower energy consumption, 
the EC reactor was operated in alternating pulse current 
(APC) mode. The experimental set-up and procedures 
were described by the study of Secula et al. [14]. For the 
present study (Fig. 1), the electrodes were connected to 
an automatic polarity changer connected in the electrical 
circuit composed of the EC cell and a direct current (DC) 
power supply (IT6322, 0–30 V; 0–3 A; ITECH, Nanjing,  
China).

By means of APC, a contaminated cathode was trans-
formed into a soluble anode, and then cleaned through 
anodic dissolution (allowing the accurate dosing of Al 
and Fe ions, respectively). Fig. 2 shows how the cell volt-
age varies when operated in APC mode. In this operating 
regime, the polarity of the electrodes was changed every 
5 min thus favoring the “self-cleaning” of the electrodes. A 
VC530 VOLTCRAFT Data Logger Multimeter, connected to 
a PC, was used to measure the cell voltage with one read-
ing per second. Solution pH and electrical conductivity 
were measured by means of a PC-connected C863 Consort 
multi-parameter analyzer.

The electrodes were weighed before and after EC by 
means of an Acculab ATL-224-I analytical digital balance 
(accuracy 0.1 mg) to estimate the amount of dissolved mate-
rial. All the runs were performed at a room temperature of 
25°C ± 1°C.

A volume of approximately 3 mL of sample was taken, 
allowed to settle, filtrated by means of Whatman 0.45 μm fil-
ters, and then analyzed.
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The removal efficiency was determined in terms of 
total organic carbon (TOC). TOC analysis was performed 
through combustion of samples at 680°C using a Multi N/C 
2100/2100S Analytik Jena Analyzer.

2.3. Determination of responses

The TOC removal efficiency Y (%) was calculated using 
Eq. (1):

Y i t

i

=
−

×
TOC TOC

TOC
100  (1)

where TOCi is the total organic content before treatment 
(mg/L), and TOCt is the total organic content after t minutes 
of treatment (mg/L).

The consumption of electrical energy and electrode 
material represents the main cost of the electrocoagulation 
technology.

In order to optimize the investigated EC system in rela-
tion to electrical energy consumption, the specific energy 

consumption or unit energy demand (UED, kWh/kg) [27] 
was determined according to Eq. (2):
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where U is the cell voltage, (V), I – current intensity, (A), t –  
time, (h), V – volume of treated solution, (m3), Yt – TOC 
removal efficiency at time t, (%).

The generation of coagulant during the EC process can 
be estimated by means of Faraday’s law [28]. However, 
the values of electrode-mass dissolved were found to be 
considerably higher than those predicted by Faraday’s 
law, especially in the case of aluminum electrodes. This 
is in agreement with data reported in the literature [29]. 
Therefore, in order to determine accurately the amount 
of ion dissolved, a correction factor must be used [30] as 
shown in Eq. (3):
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where UEMDM is the unit electrode material (Al or Fe, 
according to the APC applied) demand, (kg/kg); t – time, (s); 
n – number of electrons involved in the oxidation/reduction 
reaction; F – Faraday’s constant, (C/mol); A – atomic mass 
of electrode material, (g/mol); f – ratio of electrochemical 
dissolution.

Electrical operational costs (EOCs) of the EC dye waste-
water can be calculated by means of Eq. (4) on the basis 
of the amount of energy and materials consumed [30,31]:

EOC EEC EMC UED EEP UEMD EMP
UEMD EMP

Fe Fe

Al Al

= + = ⋅ + ⋅
+ ⋅  (4)

where EOC is the electrical operating cost of TOC removed, 
(€/kg); EEC – electrical energy consumption of dye, (€/kg); 
EEP – electrical energy price, (€/kWh); EMC – electrode 
material cost, (€/kg); EMP – electrode material price, (€/kg).

Fig. 1. Experimental set-up operated in alternative pulsed current (APC) mode. [1-EC cell; 2-magnetic stirrer; 3-direct 
current (DC) power supply; 4-polarity changer; 5-ammeter; 6-data logging voltmeter; 7-multi-parameter analyzer; 8-computer].

Fig. 2. Evolution of voltage during EC conducted under 
alternating rectangular pulse current as measured by means of 
the data logging voltmeter.
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2.4. Soft-computing strategy for modeling and optimization

Genetic algorithms (GAs) are stochastic optimization 
techniques based on an intelligent mechanism that mim-
ics natural selection. The GA starts with an initial set of 
solutions called initial population. Each solution of the 
population is represented by a chromosome (or individ-
ual) that is a point in the searching area. Chromosomes 
are developed through successive iterations, or genera-
tions, by genetic operators (selection, recombination, and 
mutation) that mimic the principles of natural evolution. 
Population size, number of generations, crossover prob-
ability and mutation are the control parameters of GAs. 
The values of these parameters must be specified before 
executing the GA and depend on the nature of the objec-
tive function. To solve the GA, it is important to adjust its 
parameters according to the particular problem addressed, 
so as to obtain good solutions and avoid premature  
convergence.

The selection operator chooses some “good” solutions 
and the recombination operator (crossover) generates 
new solutions, retaining the best characteristics of par-
ents, while the mutation operator enhances diversity 
and seeks a way to avoid local minima [32]. In a GA, 
the fitness function value (optimization of the objective 
function) is adjusted to each individual according to the 
requirements of the task. Generation after generation, new 
individuals, called offspring, are created, and the chromo-
somes of the current population, called parents, forming 
a new population randomly.

To solve a multi-objective function-based vector com-
ponent, a multi-objective problem can be reduced to a 
vector [17] or a scalar format [16]. In optimization prob-
lems operating with scalar functions, two methods can 
be used: (i) considering a single objective and treating the 
other objectives as constraints; (ii) using all the targets in a 
single objective function by using weighting factors.

Both approaches allow the use of simple algorithms, 
but the solution depends on the structure of the prob-
lem. For the first approach, the disadvantage seems to 
lie in the choice of the optimized function and the asso-
ciated constraints. In the second case, assigning values of 
weighting factors, often arbitrarily, is a drawback of the 
method. Furthermore, the aggregation of all the objec-
tives in a single function involves mixing different quan-
tities, such as cost, quality, and environmental effects in 
a common unit. A major disadvantage is that the optimal 
solution of the scaling can be lost if a dual gap in the 
objective function convexity is created [33].

The multi-objective problem deals with more than one 
objective function at a time. The number of constraints must 
be satisfied by a feasible solution. Generally, the optimization 
problem is represented as follows:

minimize/maximize: [f1(x), f2(x), …, fn(x)], n = 1, 2, …, N;

subjected to: gk(x) = 0, k = 1, 2, …, K;

hj(x) ≥ 0, j = 1, 2, …, J;

xi
L ≤ xi ≤ xi

U, i = 1, 2, …, m.

where gk(x) and hj(x) are the problem constraints; solution x  
is a vector from m decision variables: x = (x1, x2, …, xm)T. The 
last set of constraints is called variable bounds, restrict-
ing each decision variable xi to values within a lower xi

L 
and upper xi

U bound [34].
Neural networks (NNs), the dominant paradigm of arti-

ficial intelligence, are signal processing systems composed 
of a large number of interconnected elementary processors 
called artificial neurons or nodes that cooperate together 
to solve specific tasks. A given engineering problem may 
contain a mixture of types of decision variables (numbers, 
symbols, and other structural parameters). Since evolu-
tionary algorithms operate on genetic coding of optimized 
variables, NNs can be used with multiple types of variables.

Like the main evolutionary algorithms, GAs are iterative 
processes by which a population is initialized in a random 
manner and then successively transformed by selection, 
mutation and crossover, until a certain number of iterations 
(generations) or until the completion of another stopping 
criterion.

The main goal of this work is to develop a general 
procedure based on neural networks and a GA which 
could be applied to the complex multi-objective optimiza-
tion problem of an electrocoagulation process applied to 
wastewater treatment. NNs are used as an efficient model-
ing tool and GA as solving method of optimization using a 
multi-objective problem.

3. Results and discussion

Twenty-seven runs were performed in order to estab-
lish the functional relationships between the five inde-
pendent variables (current density, GAC dose, initial pH 
value, initial AB74 concentration and GAC/EC time) and 
the considered responses. For each experimental run, nine 
samples were analyzed at certain durations of the GAC/EC 
coupling process.

The influence of the five factors on the responses was 
first investigated by one-at-a-time experiments. The runs 
consisted in varying a single factor while keeping the oth-
ers constant. Fig. 3 shows the main effects of current den-
sity, GAC dose, and initial concentration of dye, pH and time 
on the TOC removal efficiency, UED, UEMDFe, and UEMDAl 
responses.

Fig. 3a shows the effect of current density on the four 
responses. For a dye concentration of 0.6 g/L, a TOC removal 
efficiency of 95.5% was obtained after 25 min of process-
ing at 75.13 A/m2, pH of 6 and a GAC dose of 1.5 g/L. This 
removal efficiency corresponds to a UED of 7.77 kWh/kg, a 
UEMDFe of 0.92 kg/kg and a UEMDAl of 0.94 kg/kg. A fur-
ther processing up to 35 min led to an insignificant increase 
in removal efficiency, that is, 96.5%. However, the UED 
response increased by 46.6%, while UEMDFe and UEMDAl 
increased by 20.6% and 43.6%, respectively. Hence, under 
these conditions the proper EC/GAC processing time is 
about 25 min.

As shown in our previous work [14], the influence of 
GAC dose is best pinpointed at low values of current den-
sity. The present study aimed at evaluating the influence of 
this factor on a wider range of GAC dose and Fig. 3b shows 
the effect of GAC dose at a relatively high value of current 
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(a) (b) 

(c) (d) 

(e) 
Fig. 3. Variation of the four responses as a function of (a) i (DGAC = 1.5 g/L; Ci = 0.6 g/L; pH = 6; t = 25 min), (b) DGAC 
(i = 75.13 A/m2; Ci = 0.6 g/L; pH = 6; t = 25 min), (c) Ci (i = 75.13 A/m2; DGAC = 1.5 g/L; pH = 6; t = 25 min), (d) pH (i = 75.13 A/m2; 
DGAC = 1.5 g/L; Ci = 0.6 g/L; t = 25 min), and (e) GAC/EC time, t (i = 75.13 A/m2; Ci = 0.6 g/L; DGAC = 1.5 g/L; pH = 6).
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density of 75.1 A/m2. In this case, the positive effect of GAC 
dose on the removal efficiency is obvious up to 1.5 g/L of 
GAC. One has also to take into account that this dose might 
be lower for instance at higher values of current density, 
or might be higher for higher values of initial dye concen-
tration. Due to the synergetic effect of adding GAC in the 
EC system, the specific responses are also positively influ-
enced. Thus, an increase in GAC dose leads to lower con-
sumptions of electrical energy and electrode materials.

By varying the initial concentration of dye, the removal 
efficiency decreased slightly with the increase in dye con-
centration up to 0.6 g/L, while the consumption responses 
decreased strongly. At higher values of dye concentration, 
the removal efficiency decreased significantly and con-
sumption responses remained at almost the same level, as 
shown in Fig. 3c.

In a previous study addressing the removal of AB74 
by conventional EC, carried out in the absence of the 
GAC material, it was shown that the pH has a significant 
effect only at low values of current density and time [24]. 
However, in this earlier study, the pH value ranges from 5 
to 9 was rather limited and it was found that an acid pH 
favored the decolorization process. In the present study, 
although the influence of initial pH was investigated in 
a very wide range, from 2 to 10, by adding 0.1 N NaOH 
or 0.1 N H2SO4 solutions, it was observed that it had no 
significant effect on the responses (Fig. 3d).

Fig. 3e shows that EC/GAC time has a strong effect on 
the responses. As expected, the removal efficiency increased 
strongly with time up to 25 min, while the specific con-
sumption responses pinpoint the presence of a minimum, 
excepting the UEMDFe response. This is due to the fact 
that in the APC mode, during the first 5 min of operation, 
iron-based electrodes play the role of cathode, that is, no 
electrode dissolution takes place.

The amount and appropriateness of the available train-
ing data are important factors for obtaining accurate mod-
els. The experimental data sets used in this work fulfilled 
both criteria: a considerable number of experimental data 
(243 data) were obtained from the EC/GAC coupling pro-
cesses investigated and the chosen conditions cover the 
whole domain of interest (experimental domain).

A MLP (5:10:8:4) – feed-forward neural network using a 
Levenberg–Marquardt learning algorithm with five variables 
as inputs (current density, GAC dose, concentration of Acid 
Blue 74, initial pH and EC time), two hidden layers with 10 
and 18 neurons, respectively, and four output variables (TOC 
removal efficiency of the process, electrical energy, Fe and 
Al doses) and with an average error of 8.37% and a correla-
tion of 0.9731 in the validation stage (with a ratio of 80:20 for 
training and validation, respectively) was designed to model 
the EC process applied on a pollutant (Acid Blue 74). The 
optimization problem is designed to obtain minimum final 
values of unit energy demand, Al and Fe consumption and a 
high efficiency of the process, related to the optimal working 
parameters represented by the inputs of the neural model. 
The optimization procedure was applied separately consider-
ing five objective functions with different degrees of freedom.

GAs were used to determine the optimum opera-
tional conditions leading to the maximum efficiency of the 
electrocoagulation process.

The optimization problem is formulated as follows:
What are the optimal operating parameters (current 

density, GAC, pollutant concentration, pH and time) neces-
sary to obtain the imposed values for YTOC, UEMDFe, UEMDAl 
and UED responses?

In the present case, the optimization problem includes 
the best NN model obtained, MLP (5:10:8:4) represented as:

ANN Inputs   Ci  pH   Outputs   Fe  Al  UEGAC TOC[ : , , , , ; : , , ,i D t Yi DD  
 (5)

The vector of control variables, u, has the components:

u =  current density GAC pollutant concentration pH time, , , ,  
 (6)

An admissible control input u* should be formed in such 
a way that the performance index, J, defined by the following 
equations, is minimized or maximized:
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Based on the preliminary tests and in order to determine 
the performance of GAC/EC process in radically different 
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conditions, and to emphasize the adaptability of this treat-
ment technique to various effluents, the constraints imposed 
on the multi-objective optimization problem are:

u u umin max

current density A/m

GAC g/L

≤ ≤

≤ ≤

≤ ≤

1 37 148 91

0 1 2 9

0

2. .

. .

.22

2 10

2 150

≤ ≤

≤ ≤

≤ ≤

pollutant concentration 1 g/L

pH

time  min

 (14)

Current density was ranged in the interval 1.365–
148.91 A/m2, GAC dose from 0.1 to 2.9 g/L, initial AB74 
concentration from 0.2 to 1 g/L, initial pH from 2 to 10, and 
GAC/EC time from 5 to 45 min.

The GA fitness function is the objective function of the 
optimization problem in many situations [Eqs. (7)–(13)] 
affected by the constraints (14). Optimization results are 
the values of decision variables (time, current density, GAC, 
pH and pollutant concentration) leading to a minimum 
or maximum of the objective function parameters.

The optimization strategy based on an ANN model and 
GA as solving technique is shown schematically in Fig. 4.

The method is based on an iterative calculus per-
formed using GA in order to establish the optimal values 
for decision variables (time, current density, GAC, pH and 
pollutant concentration) that are the inputs for the NN 
model and the optimal weights corresponding to each of 
the four outputs. Applying these inputs, the NN computes 
the final values of Y, UEMDFe, UEMDAl and UED which 
could be compared with the desired value in a few cases 
[Eqs. (4)–(9)]: Yd, UEMDFed, UEMDAld or UEDd) depending 

on the problem addressed. When the two values are iden-
tical or there is a very slight difference between them, the 
task of the optimization, represented by the minimum of 
the objective function, J, is achieved.

Generally, the optimization results are influenced by the 
control parameters of the GA: size of the initial population 
(pop), number of generations (gen), crossover rate (cross) 
and mutation rate (mut). A series of runs were performed 
with different values for these parameters.

In order to select the best GA control parameters, many 
situations were tested with cross values varying between 
0.2 and 2 and mut between 0.001 and 1. The optimized GA 
parameters in order to ensure accurate prediction results 
were: dimension of population = 600, generation = 100, 
cross = 0.9 and mut = 0.03.

Fig. 5 presents several examples corresponding to the 
situation of Eq. (7) correlated with the limits from Eq. (14) 
where the parameter YTOC was maximized and the values of 
UEMDFe, UEMDAl and UED were minimized. In another con-
sidered case, a value for GAC = 2.9 g/L was imposed over the 
studied range as can be seen from Eq. (14), the results are 
shown in Table 1.

One of the main goals of the NN-GA approach was to 
optimize the EC/GAC coupling process. Six optimization 
cases were considered. Table 1 presents the first three cases 
differentiated by the imposed constraint, that is, the TOC 
removal efficiency, for certain values of initial dye concentra-
tion in the entire experimental region investigated.

Due to the significant increase in energy and electrode 
material consumption, a maximum value of 97% was consid-
ered for the TOC removal efficiency. Three different levels of 
TOC removal efficiency were considered 97%, 90% and 80%, 
respectively.

At first glance, for all three cases considered (differ-
ent targeted values of removal efficiency), the importance 
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Fig. 4. Optimization strategy based on ANN-GA.
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of the GAC dose increased with the initial concentration of 
model pollutant. Therefore, higher GAC doses are suitable 
for high-loaded wastewater effluents. The treatment dura-
tion also increased with the initial concentration of model 
pollutant. The initial pH had a marginal influence, with the 
optimal value changing from acidic at low values of ini-
tial concentration to slightly alkaline at the highest value 
of initial concentration. This may be due to an increase in 
the significance of the adsorption process on the overall 
EC/GAC treatment process.

Table 2 shows the results obtained for the multi-objective 
optimization of the EC/GAC coupling process by imposing 
the highest GAC dose.

Imposing the highest value of GAC dose, the obser-
vations corresponding to the optimal values presented in  
Table 1 are still valid for cases #4–6: treatment duration 
increased with the initial concentration of model pollutant, 
and the optimal value of the initial pH changed from acidic 
to alkaline when increasing the initial concentration of pol-
lutant. Moreover, a general, albeit slight, decrease in specific 
energy consumption and electrode materials was obtained.

4. Electrical operating costs

According to the EU economic data collected for 2022, 
the average price of electrical energy for industrial use was 

0.2 €/kWh, whereas the prices of mild steel and aluminum 
were estimated at 1.0 and 2.0 €/kg respectively.

Electrical operational costs (EOCs) consider the costs of 
electrical energy and electrode material consumed in relation 
to the amount of pollutant removed. The EOC values were 
calculated according to Eq. (4).

Comparing the treatment costs of a solution containing 
0.1 g/L AB74, at an equivalent cost per kWh, Tabaraki et al. 
[35] reported estimations of 1.5 €/m3 for Fenton (99% removal 
efficiency) and 1.7 €/m3 for electro-Fenton (98% removal 
efficiency), under optimal operating conditions, in batch 
mode. They also achieved a significantly lower treatment 
cost by means of biosorption process, reporting 0.27 €/m3, 
with the drawback of a removal efficiency of only 30%.

Tanyol et al. [3] conducted an optimization study of IC 
removal (0.02 g/L) by conventional EC using iron electrodes. 
Under optimal conditions, they reported an equivalent cost 
of 1.5 €/m (based on the cost of 0.2 €/kWh) corresponding to 
a value of 82.55% for RE.

According to the local optimum found for case #1, treat-
ing an aqueous solution of 0.2 g/L of dye at 86.9 A/m2, and 
adding 0.88 g/L of GAC dose, a removal efficiency of 97% 
after about 18.83 min was experimentally validated in the 
±1.5% range. This corresponds to an EOC of 0.84 €/m3 of 
pollutant removed. Under these conditions, it is important 
to note that the cost of energy is about 0.38 €/m3.

Table 1
Optimizations performed with different values of GA control parameters

No. Case 
number

Ci i pHi DGAC t YTOC UEMDFe UEMDAl UED EOC Objective 
function × 103

g/L A/m2 – g/L min % kg/kg kg/kg kWh/kg €/m3

1
Case #1

0.2 86.899 4.34 0.884 18.83 97 1.098 1.037 10.169 0.840 0.412
2 0.6 83.652 7.93 2.208 27.57 97 0.687 0.508 5.400 1.428 4.159
3 1 82.779 8.89 2.401 30.67 97 0.544 0.421 4.398 1.599 0.374
4

Case #2
0.2 92.750 2.81 0.931 16.29 90 0.940 1.016 10.01 0.876 3.174

5 0.6 83.850 7.99 2.146 24.67 90 0.603 0.471 5.013 1.266 1.922
6 1 82.620 8.34 2.528 27.42 90 0.536 0.436 4.203 1.399 6.322
7

Case #3
0.2 87.930 4.73 1.147 13.79 80 0.714 0.827 8.739 0.544 8.191

8 0.6 46.350 7.04 2.495 33.20 80 0.475 0.342 2.318 0.821 0.001
9 1 82.380 7.64 2.672 23.75 80 0.514 0.449 3.974 1.168 3.978

Table 2
Optimizations performed with different values of GA control parameters under the constraint of the highest dose of GAC = 2.9 g/L

No Case 
number

Ci i pHi t YTOC UEMDFe UEMDAl UED EOC Objective 
function × 103

g/L A/m2 – min % kg/kg kg/kg kWh/kg €/m3

1
Case #4

0.2 82.884 2.57 18.22 97 1.365 1.582 9.207 1.082 2.280
2 0.6 86.478 7.00 25.53 97 0.792 0.590 5.195 1.464 3.525
3 1 86.183 7.03 27.36 97 0.63 0.525 4.255 1.448 1.003
4

Case #5
0.2 93.091 3.72 14.92 90 1.195 1.503 10.156 0.885 9.143

5 0.6 84.216 7.91 23.19 90 0.704 0.571 4.712 1.317 1.388
6 1 85.175 7.08 25.32 90 0.6 0.514 4.097 1.315 2.441
7

Case #6
0.2 92.151 2.96 12.33 80 0.978 1.472 9.044 0.787 5.845

8 0.6 42.447 5.48 34.21 80 0.543 0.351 2.008 0.804 0.989
9 1 85.459 6.97 22.43 80 0.554 0.509 3.968 1.148 8.570
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Fig. 5. Influence of the four parameters obtained in the conditions of Eq. (8).
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For case #2 and 0.2 g/L of dye and an acid pH value 
of 2.81, a slightly longer treatment duration corresponds 
to an EOC 1.01 €/kg of pollutant removed and 0.88 €/m3.

The most efficient EOC values in relation to the pollutant 
content were obtained for simulated high-loaded effluents. 
Thus, in case#1 and 1 g/L of dye, the EOC was 0.88 €/kg.

The lowest values of EOC in relation to the volume of 
treated effluent were achieved in case#6, targeting a removal 
efficiency not higher than 80%.

In future work the costs of adding GAC to EC systems 
will be considered. The GAC-enhanced EC system will be 
operated continuously. The enhancement of the GAC/EC 
coupling system by means of powder activated carbon will 
also be addressed.

5. Conclusions

This paper presented a new approach of EC-based tech-
niques meant to maximize removal efficiency and minimize 
energy and electrode material consumptions. The main 
goal was to combine in a novel manner a hybrid structure 
between a neural network model and a genetic algorithm 
so as to develop an efficient and effective multi-objective 
optimization procedure.

It was shown that the GAC-enhanced EC process is 
strongly affected by current density, process duration and 
initial dye concentration. The effect of GAC dose on the per-
formance of the coupling process was also highlighted.

TOC removal efficiency and the specific consumptions 
of electrical energy and electrode materials (aluminum and 
iron based) were considered as process responses.

We have considered in the optimization approach the 
electrode material consumption, which proved to be a very 
important cost factor for this treatment method. Several 
optimization case studies were discussed by assuming dif-
ferent constraints. The efficient use of GAC/EC coupling 
provides significant reductions in energy and material 
consumptions.

Thus, maximizing the removal efficiency, it is possible 
to obtain a 97% TOC removal efficiency for a 0.2 g/L of dye 
solution by applying a current density of 86.9 A/m2 for only 
18.83 min and adding a GAC dose of 0.88 g/L. It was deter-
mined that in order to achieve this removal efficiency, specific 
consumptions of energy of 10.17 kWh/kg, iron of 1.098 kg/
kg and aluminum of 1.037 kg/kg are required. According 
to our estimations, these consumptions correspond to a 
total EOC of 0.84 €/m3.
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Table S1
Experimental data

No.  
Crt.

Test i DGAC Ci pHi t YTOC UEMDFe UEMDAl UED

A/m2 g/L g/L – min % kg/kg kg/kg kWh/kg

1 R-1 148.91 1.5 0.6 6 5 10.40 8.71 0.10 4.52
2 R-1 148.91 1.5 0.6 6 10 95.17 5.35 0.92 0.70
3 R-1 148.91 1.5 0.6 6 15 95.50 7.72 0.96 1.20
4 R-1 148.91 1.5 0.6 6 20 96.92 9.99 1.83 1.39
5 R-1 148.91 1.5 0.6 6 25 96.87 12.28 1.90 1.90
6 R-1 148.91 1.5 0.6 6 30 96.89 14.75 2.77 2.11
7 R-1 148.91 1.5 0.6 6 35 96.93 16.93 2.87 2.62
8 R-1 148.91 1.5 0.6 6 40 96.95 19.37 3.73 2.85
9 R-1 148.91 1.5 0.6 6 45 96.96 21.49 3.86 3.37
10 R-1 75.14 1.5 0.6 6 5 7.76 18.42 0.00 2.99
11 R-1 75.14 1.5 0.6 6 10 22.25 13.68 1.94 1.47
12 R-10 75.14 1.5 0.6 6 15 23.81 18.64 1.83 2.37
13 R-10 75.14 1.5 0.6 6 20 95.04 6.35 0.92 0.70
14 R-10 75.14 1.5 0.6 6 25 95.48 7.77 0.92 0.94
15 R-10 75.14 1.5 0.6 6 30 96.91 9.31 1.37 1.03
16 R-10 75.14 1.5 0.6 6 35 96.93 10.73 1.37 1.29
17 R-10 75.14 1.5 0.6 6 40 96.99 12.37 1.84 1.39
18 R-10 75.14 1.5 0.6 6 45 96.99 13.79 1.85 1.65
19 R-11 38.25 0.8 0.4 4 5 10.74 7.67 0.08 2.09
20 R-11 38.25 0.8 0.4 4 10 18.63 9.85 2.17 1.76
21 R-11 38.25 0.8 0.4 4 15 20.88 12.70 2.07 2.66
22 R-11 38.25 0.8 0.4 4 20 62.19 5.85 1.31 1.06
23 R-11 38.25 0.8 0.4 4 25 89.08 5.00 0.97 1.00
24 R-11 38.25 0.8 0.4 4 30 93.83 5.81 1.32 1.07
25 R-11 38.25 0.8 0.4 4 35 94.42 6.64 1.38 1.31
26 R-11 38.25 0.8 0.4 4 40 94.72 7.67 1.76 1.43
27 R-11 38.25 0.8 0.4 4 45 94.73 8.53 1.86 1.68
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No.  
Crt.

Test i DGAC Ci pHi t YTOC UEMDFe UEMDAl UED

A/m2 g/L g/L – min % kg/kg kg/kg kWh/kg

28 R-12 112.02 0.8 0.4 4 5 12.13 44.89 0.00 4.82
29 R-12 112.02 0.8 0.4 4 10 92.18 12.35 1.23 0.88
30 R-12 112.02 0.8 0.4 4 15 92.15 18.12 1.24 1.52
31 R-12 112.02 0.8 0.4 4 20 94.72 23.85 2.42 1.73
32 R-12 112.02 0.8 0.4 4 25 94.69 29.37 2.43 2.37
33 R-12 112.02 0.8 0.4 4 30 94.69 35.50 3.67 2.62
34 R-12 112.02 0.8 0.4 4 35 94.71 41.01 3.69 3.61
35 R-12 112.02 0.8 0.4 4 40 94.71 47.13 4.94 3.53
36 R-12 112.02 0.8 0.4 4 45 94.72 52.64 4.97 4.19
37 R-13 38.25 0.8 0.8 4 5 7.08 0.02 0.00 1.55
38 R-13 38.25 0.8 0.8 4 10 9.10 0.06 2.15 1.73
39 R-13 38.25 0.8 0.8 4 15 15.97 0.04 1.23 1.69
40 R-13 38.25 0.8 0.8 4 20 24.53 0.12 1.61 1.30
41 R-13 38.25 0.8 0.8 4 25 24.95 0.06 1.59 1.73
42 R-13 38.25 0.8 0.8 4 30 58.76 0.18 1.02 0.82
43 R-13 38.25 0.8 0.8 4 35 59.80 0.08 1.01 1.00
44 R-13 38.25 0.8 0.8 4 40 66.42 0.24 1.22 0.98
45 R-13 38.25 0.8 0.8 4 45 66.72 0.10 1.22 1.15
46 R-14 112.02 0.8 0.8 4 5 7.91 35.42 0.00 3.75
47 R-14 112.02 0.8 0.8 4 10 25.43 22.95 2.25 1.62
48 R-14 112.02 0.8 0.8 4 15 27.82 30.71 2.07 2.57
49 R-14 112.02 0.8 0.8 4 20 40.84 28.24 2.83 2.04
50 R-14 112.02 0.8 0.8 4 25 40.36 35.26 2.88 2.82
51 R-14 112.02 0.8 0.8 4 30 95.98 17.93 1.83 1.31
52 R-14 112.02 0.8 0.8 4 35 96.41 20.62 1.83 1.63
53 R-14 112.02 0.8 0.8 4 40 97.06 23.54 2.43 1.75
54 R-14 112.02 0.8 0.8 4 45 96.79 26.32 2.45 2.08
55 R-15 38.25 0.8 0.4 8 5 7.87 10.79 0.01 2.73
56 R-15 38.25 0.8 0.4 8 10 18.99 9.77 2.03 1.63
57 R-15 38.25 0.8 0.4 8 15 20.20 13.31 1.93 2.61
58 R-15 38.25 0.8 0.4 8 20 35.58 10.33 2.19 1.76
59 R-15 38.25 0.8 0.4 8 25 35.81 12.59 2.20 2.37
60 R-15 38.25 0.8 0.4 8 30 94.20 5.85 1.25 1.00
61 R-15 38.25 0.8 0.4 8 35 94.15 6.73 1.27 1.25
62 R-15 38.25 0.8 0.4 8 40 94.77 7.76 1.68 1.35
63 R-15 38.25 0.8 0.4 8 45 94.80 8.64 1.69 1.59
64 R-16 112.02 0.8 0.4 8 5 9.34 61.34 0.43 5.68
65 R-16 112.02 0.8 0.4 8 10 90.73 13.14 1.33 0.78
66 R-16 112.02 0.8 0.4 8 15 92.88 18.76 1.44 1.34
67 R-16 112.02 0.8 0.4 8 20 94.74 24.84 2.58 1.50
68 R-16 112.02 0.8 0.4 8 25 94.69 30.58 2.81 2.08
69 R-16 112.02 0.8 0.4 8 30 94.77 36.91 3.90 2.27
70 R-16 112.02 0.8 0.4 8 35 94.74 42.64 4.23 3.12
71 R-16 112.02 0.8 0.4 8 40 94.79 48.97 5.26 3.06
72 R-16 112.02 0.8 0.4 8 45 94.79 54.70 5.69 3.66
73 R-17 38.25 0.8 0.8 8 5 4.73 9.33 0.00 2.28
74 R-17 38.25 0.8 0.8 8 10 10.49 9.30 1.87 1.47
75 R-17 38.25 0.8 0.8 8 15 12.70 11.10 1.55 2.08
76 R-17 38.25 0.8 0.8 8 20 21.85 8.81 1.81 1.42

Table S1 Continued

(continued)



293M.S. Secula et al. / Desalination and Water Treatment 271 (2022) 281–296

No.  
Crt.

Test i DGAC Ci pHi t YTOC UEMDFe UEMDAl UED

A/m2 g/L g/L – min % kg/kg kg/kg kWh/kg

77 R-17 38.25 0.8 0.8 8 25 25.76 9.15 1.55 1.64
78 R-17 38.25 0.8 0.8 8 30 57.11 5.02 1.05 0.83
79 R-17 38.25 0.8 0.8 8 35 57.48 5.74 1.05 1.02
80 R-17 38.25 0.8 0.8 8 40 65.19 5.85 1.24 0.97
81 R-17 38.25 0.8 0.8 8 45 64.92 6.55 1.25 1.16
82 R-18 112.02 0.8 0.8 8 5 8.08 35.40 0.00 3.70
83 R-18 112.02 0.8 0.8 8 10 50.88 11.69 1.13 0.82
84 R-18 112.02 0.8 0.8 8 15 52.34 16.63 1.11 1.37
85 R-18 112.02 0.8 0.8 8 20 65.62 17.90 1.77 1.28
86 R-18 112.02 0.8 0.8 8 25 65.08 22.26 1.80 1.77
87 R-18 112.02 0.8 0.8 8 30 96.18 18.22 1.83 1.32
88 R-18 112.02 0.8 0.8 8 35 95.59 21.18 1.85 1.66
89 R-18 112.02 0.8 0.8 8 40 96.90 24.01 2.45 1.77
90 R-18 112.02 0.8 0.8 8 45 96.77 26.83 2.47 2.10
91 R-19 38.25 2.2 0.4 4 5 14.59 6.11 0.00 1.41
92 R-19 38.25 2.2 0.4 4 10 20.37 9.64 1.88 1.42
93 R-19 38.25 2.2 0.4 4 15 26.18 10.85 1.47 1.90
94 R-19 38.25 2.2 0.4 4 20 36.48 10.63 2.12 1.60
95 R-19 38.25 2.2 0.4 4 25 37.97 12.52 2.04 2.10
96 R-19 38.25 2.2 0.4 4 30 94.40 6.14 1.24 0.94
97 R-19 38.25 2.2 0.4 4 35 94.21 7.08 1.25 1.17
98 R-19 38.25 2.2 0.4 4 40 94.82 8.15 1.66 1.26
99 R-19 38.25 2.2 0.4 4 45 94.83 9.08 1.67 1.49
100 R-2 1.37 1.5 0.6 6 5 2.89 0.00 0.01 0.15
101 R-2 1.37 1.5 0.6 6 10 3.71 0.11 0.23 0.17
102 R-2 1.37 1.5 0.6 6 15 4.90 0.09 0.19 0.22
103 R-2 1.37 1.5 0.6 6 20 6.30 0.13 0.27 0.20
104 R-2 1.37 1.5 0.6 6 25 9.53 0.09 0.20 0.18
105 R-2 1.37 1.5 0.6 6 30 9.09 0.14 0.28 0.21
106 R-2 1.37 1.5 0.6 6 35 10.00 0.14 0.28 0.24
107 R-2 1.37 1.5 0.6 6 40 10.90 0.16 0.32 0.23
108 R-2 1.37 1.5 0.6 6 45 12.02 0.15 0.31 0.25
109 R-20 112.02 2.2 0.4 4 5 20.80 27.75 0.00 2.56
110 R-20 112.02 2.2 0.4 4 10 92.62 13.01 1.20 0.77
111 R-20 112.02 2.2 0.4 4 15 93.92 18.88 1.19 1.33
112 R-20 112.02 2.2 0.4 4 20 94.85 25.26 2.38 1.51
113 R-20 112.02 2.2 0.4 4 25 94.76 31.19 2.39 2.09
114 R-20 112.02 2.2 0.4 4 30 94.85 37.71 3.60 2.29
115 R-20 112.02 2.2 0.4 4 35 94.85 43.61 3.62 3.14
116 R-20 112.02 2.2 0.4 4 40 94.85 50.15 4.85 3.09
117 R-20 112.02 2.2 0.4 4 45 94.85 56.05 4.88 3.69
118 R-21 38.25 2.2 0.8 4 5 9.83 4.57 0.00 1.07
119 R-21 38.25 2.2 0.8 4 10 13.68 7.29 1.44 1.09
120 R-21 38.25 2.2 0.8 4 15 17.20 8.38 1.15 1.49
121 R-21 38.25 2.2 0.8 4 20 24.60 8.02 1.61 1.22
122 R-21 38.25 2.2 0.8 4 25 52.81 4.58 0.76 0.78
123 R-21 38.25 2.2 0.8 4 30 60.63 4.86 0.99 0.75
124 R-21 38.25 2.2 0.8 4 35 61.89 5.48 0.98 0.92
125 R-21 38.25 2.2 0.8 4 40 94.64 4.15 0.86 0.65
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No.  
Crt.

Test i DGAC Ci pHi t YTOC UEMDFe UEMDAl UED

A/m2 g/L g/L – min % kg/kg kg/kg kWh/kg

126 R-21 38.25 2.2 0.8 4 45 94.60 4.63 0.86 0.77
127 R-21 112.02 2.2 0.8 4 5 12.46 22.70 0.00 2.38
128 R-22 112.02 2.2 0.8 4 10 56.61 10.37 1.02 0.73
129 R-22 112.02 2.2 0.8 4 15 59.25 14.53 0.98 1.20
130 R-22 112.02 2.2 0.8 4 20 95.80 12.15 1.22 0.87
131 R-22 112.02 2.2 0.8 4 25 96.55 14.89 1.21 1.18
132 R-22 112.02 2.2 0.8 4 30 97.25 17.90 1.81 1.29
133 R-22 112.02 2.2 0.8 4 35 69.26 29.06 2.56 2.27
134 R-22 112.02 2.2 0.8 4 40 97.33 23.79 2.44 1.74
135 R-22 112.02 2.2 0.8 4 45 97.30 26.58 2.46 2.07
136 R-23 38.25 2.2 0.4 8 5 13.88 6.21 0.00 1.50
137 R-23 38.25 2.2 0.4 8 10 21.35 8.91 1.79 1.39
138 R-23 38.25 2.2 0.4 8 15 26.81 10.32 1.44 1.90
139 R-23 38.25 2.2 0.4 8 20 36.04 10.51 2.15 1.66
140 R-23 38.25 2.2 0.4 8 25 90.01 5.18 0.86 0.91
141 R-23 38.25 2.2 0.4 8 30 94.74 6.01 1.24 0.96
142 R-23 38.25 2.2 0.4 8 35 94.77 6.93 1.24 1.19
143 R-23 38.25 2.2 0.4 8 40 94.82 8.02 1.67 1.29
144 R-23 38.25 2.2 0.4 8 45 94.82 8.92 1.68 1.53
145 R-24 112.02 2.2 0.4 8 5 16.33 35.68 0.18 3.22
146 R-24 112.02 2.2 0.4 8 10 90.32 13.47 1.31 0.77
147 R-24 112.02 2.2 0.4 8 15 92.63 19.33 1.38 1.33
148 R-24 112.02 2.2 0.4 8 20 94.51 25.57 2.53 1.48
149 R-24 112.02 2.2 0.4 8 25 94.80 31.43 2.69 2.05
150 R-24 112.02 2.2 0.4 8 30 94.81 38.03 3.82 2.24
151 R-24 112.02 2.2 0.4 8 35 94.81 43.97 4.06 3.08
152 R-24 112.02 2.2 0.4 8 40 94.81 50.58 5.14 3.02
153 R-24 112.02 2.2 0.4 8 45 94.81 56.51 5.45 3.61
154 R-25 38.25 2.2 0.8 8 5 7.57 5.79 0.00 1.40
155 R-25 38.25 2.2 0.8 8 10 12.67 7.70 1.54 1.18
156 R-25 38.25 2.2 0.8 8 15 16.29 8.67 1.21 1.58
157 R-25 38.25 2.2 0.8 8 20 24.16 8.00 1.63 1.25
158 R-25 38.25 2.2 0.8 8 25 52.31 4.53 0.76 0.79
159 R-25 38.25 2.2 0.8 8 30 60.27 4.79 0.99 0.76
160 R-25 38.25 2.2 0.8 8 35 61.00 5.44 0.99 0.93
161 R-25 38.25 2.2 0.8 8 40 94.39 4.07 0.85 0.65
162 R-25 38.25 2.2 0.8 8 45 94.50 4.53 0.86 0.77
163 R-26 112.02 2.2 0.8 8 5 10.11 28.54 0.00 2.95
164 R-26 112.02 2.2 0.8 8 10 55.58 10.79 1.03 0.75
165 R-26 112.02 2.2 0.8 8 15 57.97 15.17 0.99 1.24
166 R-26 112.02 2.2 0.8 8 20 96.03 12.36 1.21 0.87
167 R-26 112.02 2.2 0.8 8 25 96.30 15.22 1.21 1.19
168 R-26 112.02 2.2 0.8 8 30 97.21 18.24 1.81 1.31
169 R-26 112.02 2.2 0.8 8 35 97.18 21.10 1.82 1.63
170 R-26 112.02 2.2 0.8 8 40 97.33 24.23 2.43 1.76
171 R-26 112.02 2.2 0.8 8 45 97.30 27.08 2.45 2.09
172 R-27 75.14 1.5 0.6 6 5 8.13 19.83 0.00 2.81
173 R-27 75.14 1.5 0.6 6 10 51.81 6.60 0.84 0.62
174 R-27 75.14 1.5 0.6 6 15 54.06 9.24 0.81 1.02
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No.  
Crt.

Test i DGAC Ci pHi t YTOC UEMDFe UEMDAl UED

A/m2 g/L g/L – min % kg/kg kg/kg kWh/kg

175 R-27 75.14 1.5 0.6 6 20 95.01 7.14 0.92 0.68
176 R-27 75.14 1.5 0.6 6 25 95.79 8.73 0.92 0.92
177 R-27 75.14 1.5 0.6 6 30 96.93 10.48 1.37 1.01
178 R-27 75.14 1.5 0.6 6 35 96.91 12.10 1.38 1.26
179 R-27 75.14 1.5 0.6 6 40 97.00 13.94 1.85 1.36
180 R-27 75.14 1.5 0.6 6 45 96.99 15.56 1.86 1.61
181 R-3 75.14 0.1 0.6 6 5 14.05 10.61 0.00 1.68
182 R-3 75.14 0.1 0.6 6 10 49.84 6.39 0.87 0.67
183 R-3 75.14 0.1 0.6 6 15 51.37 9.05 0.84 1.12
184 R-3 75.14 0.1 0.6 6 20 63.37 9.95 1.38 1.07
185 R-3 75.14 0.1 0.6 6 25 78.33 9.89 1.12 1.17
186 R-3 75.14 0.1 0.6 6 30 96.54 9.75 1.37 1.06
187 R-3 75.14 0.1 0.6 6 35 96.21 11.27 1.38 1.32
188 R-3 75.14 0.1 0.6 6 40 96.89 12.91 1.84 1.42
189 R-3 75.14 0.1 0.6 6 45 96.76 14.41 1.85 1.69
190 R-4 75.14 1.5 0.2 6 5 85.76 7.48 0.00 1.06
191 R-4 75.14 1.5 0.2 6 10 87.67 15.44 2.02 1.43
192 R-4 75.14 1.5 0.2 6 15 87.80 22.53 2.03 2.48
193 R-4 75.14 1.5 0.2 6 20 87.82 30.61 4.07 2.89
194 R-4 75.14 1.5 0.2 6 25 87.83 37.65 4.09 3.96
195 R-4 75.14 1.5 0.2 6 30 87.82 45.67 6.17 4.38
196 R-4 75.14 1.5 0.2 6 35 87.83 52.99 6.20 6.03
197 R-4 75.14 1.5 0.2 6 40 87.83 61.09 8.31 5.90
198 R-4 75.14 1.5 0.2 6 45 87.83 68.21 8.35 7.01
199 R-5 75.14 2.9 0.6 6 5 11.60 12.63 0.00 1.87
200 R-5 75.14 2.9 0.6 6 10 52.76 5.94 0.82 0.56
201 R-5 75.14 2.9 0.6 6 15 57.18 8.05 0.77 0.90
202 R-5 75.14 2.9 0.6 6 20 96.46 6.52 0.91 0.62
203 R-5 75.14 2.9 0.6 6 25 96.58 8.04 0.92 0.85
204 R-5 75.14 2.9 0.6 6 30 97.01 9.75 1.38 0.93
205 R-5 75.14 2.9 0.6 6 35 97.01 11.27 1.39 1.17
206 R-5 75.14 2.9 0.6 6 40 97.01 13.02 1.85 1.26
207 R-5 75.14 2.9 0.6 6 45 97.01 14.55 1.86 1.50
208 R-6 75.14 1.5 0.6 2 5 9.30 10.60 0.00 3.15
209 R-6 75.14 1.5 0.6 2 10 25.23 9.32 1.72 1.50
210 R-6 75.14 1.5 0.6 2 15 61.21 6.00 0.71 0.99
211 R-6 75.14 1.5 0.6 2 20 94.32 5.48 0.93 0.74
212 R-6 75.14 1.5 0.6 2 25 94.96 6.80 0.93 0.98
213 R-6 75.14 1.5 0.6 2 30 95.37 8.34 1.39 1.07
214 R-6 75.14 1.5 0.6 2 35 95.94 9.62 1.39 1.31
215 R-6 75.14 1.5 0.6 2 40 96.11 11.17 1.86 1.40
216 R-6 75.14 1.5 0.6 2 45 96.43 12.45 1.86 1.65
217 R-7 75.14 1.5 0.6 10 5 4.85 32.36 0.00 4.95
218 R-7 75.14 1.5 0.6 10 10 48.30 6.85 0.91 0.71
219 R-7 75.14 1.5 0.6 10 15 51.51 9.31 0.85 1.14
220 R-7 75.14 1.5 0.6 10 20 93.64 6.94 0.94 0.74
221 R-7 75.14 1.5 0.6 10 25 93.70 8.50 0.95 1.00
222 R-7 75.14 1.5 0.6 10 30 96.34 10.03 1.39 1.09
223 R-7 75.14 1.5 0.6 10 35 96.42 11.54 1.40 1.35
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No.  
Crt.

Test i DGAC Ci pHi t YTOC UEMDFe UEMDAl UED

A/m2 g/L g/L – min % kg/kg kg/kg kWh/kg
224 R-7 75.14 1.5 0.6 10 40 96.69 13.26 1.87 1.46
225 R-7 75.14 1.5 0.6 10 45 96.64 14.79 1.88 1.73
226 R-8 75.14 1.5 1 6 5 10.19 12.30 0.00 1.79
227 R-8 75.14 1.5 1 6 10 18.02 14.77 1.93 1.42
228 R-8 75.14 1.5 1 6 15 21.78 17.76 1.61 2.03
229 R-8 75.14 1.5 1 6 20 58.55 8.97 1.20 0.88
230 R-8 75.14 1.5 1 6 25 59.96 10.76 1.18 1.18
231 R-8 75.14 1.5 1 6 30 80.85 9.69 1.32 0.97
232 R-8 75.14 1.5 1 6 35 81.40 11.11 1.32 1.20
233 R-8 75.14 1.5 1 6 40 96.41 10.82 1.49 1.09
234 R-8 75.14 1.5 1 6 45 96.17 12.11 1.50 1.30
235 R-9 75.14 1.5 0.6 6 5 7.51 20.91 0.00 3.16
236 R-9 75.14 1.5 0.6 6 10 21.93 15.16 1.98 1.54
237 R-9 75.14 1.5 0.6 6 15 24.15 20.08 1.81 2.40
238 R-9 75.14 1.5 0.6 6 20 94.98 6.94 0.92 0.72
239 R-9 75.14 1.5 0.6 6 25 95.99 8.44 0.92 0.97
240 R-9 75.14 1.5 0.6 6 30 96.88 10.14 1.37 1.07
241 R-9 75.14 1.5 0.6 6 35 96.88 11.68 1.38 1.32
242 R-9 75.14 1.5 0.6 6 40 96.95 13.43 1.85 1.44
243 R-9 75.14 1.5 0.6 6 45 96.97 14.94 1.86 1.70

Table S1 Continued


	_Hlk109815870

