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a b s t r a c t
Raw oily effluents were treated using integrated membrane system followed by modelling devel-
opment approach for membrane fouling prediction using artificial neural network (ANN). This 
work confirmed that relatively low dosage of TiO2 (0.5 g/L) has more competitive outcome than 
higher dosages even when it was applied to various oily samples having different characteris-
tics namely petroleum refinery effluent, canola oil effluent, and restaurant effluent. It was then 
chosen to be integrated with UF membrane. The effects of certain operating conditions, feed char-
acteristics, and membrane flux decline were further assessed. In the last section, ANN was devel-
oped to optimize and predict membrane flux. Seven variables including feed characteristics, time, 
trans-membrane pressure (TMP), permeate volume, cross flow velocity (CFV), COD, and TOC 
concentration were used as input data. Permeate flux was then applied as output. This work then 
found that the R value was confidently high (0.99188) for total data comprising training, valida-
tion, and test data implying high correlation between targets and output. Other key findings have 
connection to permeate volume and COD concentration acting as the most influential input data, 
while TOC played less role on output prediction.
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1. Introduction

The disposal of untreated industrial effluents to open 
water has shown harmful effects on both environment 
and human health, therefore, the application of wastewa-
ter treatment at the first stage is inevitable [1]. Membrane 
technology has gained an increasing interest for water pol-
lution control due to simple equipment, time-efficient, and 
high organic and inorganic residues removal efficiency [2,3].

However, fouling still remains as the most challenging 
problem of membrane usage. The application of pre-treat-
ment stage, periodic surface cleaning, additive blending, 

and the adjustment of operating condition then have been 
choices available for fouling mitigation [4–7]. Among those 
options, membrane integration to certain pre-treatment 
techniques has been proven effective to lower fouling rate 
to some degree [4,8–11]. Although the increasing interest 
has been devoted to the integrated system of membrane 
with other techniques, the integration system itself has 
not been evaluated for all types of effluent characteristics, 
pre-treatment options, and membrane specification.

Apart from membrane development, advanced oxida-
tion processes (AOPs) that link to homogeneous mecha-
nisms such as Fenton and photo-Fenton, and heterogeneous 
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ways like photo-catalytic degradation involving semicon-
ductors [12] have also been promising alternatives for min-
eralising organic compounds where hydroxyl radicals (•OH) 
production could improve the effluents quality [13,14]. 
Photocatalytic degradation involving TiO2 and UV light 
seems relatively reliable [4,15]. Therefore, implementing 
photo-catalytic degradation as membrane pre-treatment 
could be a way of widening photocatalytic application 
and improving membrane feed quality before entering 
the system.

For better calculation and prediction, mathematical 
models and computational fluid dynamics as simulation 
for optimizing membrane performance have to be included. 
However, some factors such as fouling complexity in nature, 
simplification processes of operating condition and varying 
feeds characteristics could be specific challenges [16,17]. 
They then need to be adjusted for obtaining functional 
dynamic formula [18]. Therefore, considering the challeng-
ing process, a machine learning algorithm named artifi-
cial neural networks (ANN) can be a great alternative tool 
showing superiority in processing of non-linear and com-
plex datasets with dependable outcome to predict fouling 
as well as reduce the chance of severe fouling rate [19,20]. 
It involves several processing units called neurons hav-
ing layers along with the network with selected variables 
as input data. In this system, experimental data would be 
used as a comparison to develop network structure through 
training process [18,21,22].

Based on literature, the implementation of ANN model-
ling in water pollution control has been conducted despite 
under limited circumstances. To begin with, a study applied 
ANN to predict the change of Cr(VI) concentration using 
electrokinetic treatment from synthetic and real wastewa-
ter and it confirmed the model versatility [23]. The next 
study regarding micellar enhanced UF membrane for tar-
geting mercury removal from effluent also proposed ANN 
modelling as a competitive option [19]. Other study also 
implemented ANN consisting of a single hidden layer for 
characterising synthetic hypersaline wastewater treated 
using UF-membrane sequencing batch reactor [24]. Some 
studies have also reported the outcome of filtering bovine 
serum albumin solutions under pulsating conditions [25,26]. 
They led to a perception that this machine learning was a 
promising tool for prediction and optimization purposes. 
Eventually, the rate of flux decline in ceramic UF mem-
branes treating polyethylene glycol solution was analysed 
by comparing a well-known Hermia pore blocking models 
and ANN [27]. By involving several operating parameters 
such as time and dynamic fouling as inputs, the study then 
reported that ANN could generate comparable simulations 
to Hermia’s models.

However, the application of ANN models in membrane 
fouling still has limited application. While some studies 
tended to more focus on constant pressurised operation 
using bioreactors or flat membranes [28], others have limited 
discussion related to the type of input/output data, mem-
brane characteristics and training/validation/test dataset 
[19,27,29,30].

To fill those gaps, a wider variety of sample, pre-treat-
ment type and membrane characteristics as well as the 
ratios of ANN dataset have to be explored. This study then 

investigated the efficiency of TiO2/UV light as pre-treatment 
stage for treating different raw oily effluents derived from 
various industries namely petroleum refinery effluent, 
canola oil effluent, and restaurant effluent. To the best of 
our knowledge, there was no similar work available in lit-
erature related to the patterns of this work. In this report, 
fouling prediction on tubular UF membrane and the opti-
mization of the integrated system using ANN simulation 
were properly conducted by considering the effect of seven 
factors chosen as input data. The input dataset were feeds 
characteristics, time, trans-membrane pressure (TMP), per-
meate volume, cross flow velocity (CFV), chemical oxy-
gen demand (COD), and total organic carbon (TOC), while 
permeate flux acted as the output. Ultimately, ANN model 
was developed and trained to evaluate its accuracy.

2. Material and method

2.1. Membrane material and analytical procedure

Commercially available tubular PVDF based-UF mem-
branes (a molecular weight cut-off of 100 kDa and surface 
area of 0.024 m2) and a membrane holder made of 316 
stainless steel produced by Xylem, UK, were used in the 
experimental work. Chemicals such as Al2(SO3)4, Na2SO4, 
n-Hexane, TiO2, H2O2, ZnO, NaOH pellets and H2SO4 
were purchased from Sigma-Aldrich. Dry ice/dried carbon 
used for oil analysis was purchased from BOC, Australia. 
Ultrapure water from Ibis Technology, Australia, was used 
in all experiments.

The measurement of total organic carbon (TOC) in each 
sample was conducted using TOC Analyser (Shimadzu TOC-
VCPH). In this process, before injecting the sample into the 
TOC system, the effluents around 15 mL each were filtered 
by PTFE 0.45 μm membrane filter to separate any catalyst 
particles.

Furthermore, chemical oxygen demand (COD) was eval-
uated using HACH DRB200 reactor, DR890 colorimeter, and 
HACH COD reagent vials with concentration range within 
0–1500 mg/L purchased from Rowe Scientific. Australia. 
The procedure was adapted based on the handbook pro-
vided by manufacturer. The mg/L result can be defined 
as the mg of O2 consumed per litre of sample. The sample 
was heated for 2 h with a strong oxidising agent namely 
potassium dichromate leading to reducing the dichromate 
ion (Cr2O7

2–) to green chromic ion (Cr3+). Then, the amount 
of Cr3+ produced was further analysed. This COD reagents 
contain silver and mercury ions where silver acts as a cat-
alyst, and mercury plays an important role to complex the 
interference of chloride.

Oil concentration was measured following gravimetric 
method [31]. A measured effluent was firstly transferred 
to a separating funnel. Some sulphuric acid solution then 
was added to the effluent until pH 2 followed by adding 
3 mL of n-hexane. The separating funnel was then mechan-
ically shaken for a few minutes before leaving it to clearly 
form two separate layers. Further, around 10 g of anhy-
drous sodium sulphate was put on Whatman filter paper 
of 180 mm that covered the weighed round bottomed flask 
mouth. The oil layer was collected onto the round bot-
tomed flask. Furthermore, the hexane in oil was separated 
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using rotary evaporator (Butchi Rotavapor R-210 series). 
The round flask containing oil was dried at 103°C followed 
by cooling at room temperature in a desiccator before 
weighing it up using digital mechanism.

Pre-treatment stage was performed by putting measured 
amount of TiO2 into a beaker glass containing the effluent 
equipped with a digital magnetic stirrer. The experiment 
was conducted in the dark for 30 min before UV irradi-
ation for initiating the equilibrium of adsorption before 
UV light exposure [32].

2.2. Feed sample

Raw feed samples used in this work were oily effluents 
obtained from different industrial sources namely petro-
leum refinery effluent (PRE), canola oil effluent (COE) and 
restaurant effluent (RE). While PRE was collected from the 
outlet of the DAF unit of the petroleum refinery wastewa-
ter plant prior to biological treatment pond, COE and RE 
were collected from a canola oil manufacturer and a local 
restaurant, respectively. Effluent samples were filtered using 
a laboratory sieve to remove solid particles greater than 
a millimetre in size. The filtered samples were then char-
acterized for selected parameters (Table 1) before putting 
them in the laboratory fridge.

2.3. Experimental set-up

The establishment of experiment (Fig. 1) was arranged 
by firstly placing the membrane inside a sealed membrane 

holder. Two pieces of UF membrane that were previously 
tested for their homogeneity using de-ionised water were 
used in each run. The effluent was placed in the feed tank. It 
was firstly pre-treated using TiO2 and UV light mode before 
entering UF membrane system. The volume of permeate was 
measured in manual way. The experiments were run in a 
recycle system using controlled peristaltic pump, valves, and 
pH meter for measuring the values of flow rate, pressure, 
and pH, respectively.

2.4. Membrane flux and ANN modelling

Membrane flux can be calculated using the following 
general equation [33,34]:

J V
At

=  (1)

While the removal efficiency of targeted pollutant can be 
analysed through below formula:
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where J, V, A, t, Cp, and Cf are permeation flux (L/m2 h), 
permeate volume (L), membrane area (m2), permeate col-
lection time (h), and targeted pollutant concentration in 
permeate and feed (mg/L), respectively.

For ANN modelling, the algorithm sketches of the 
model development process are presented in Figs. 2 and 
3. The ANN modelling as a nonlinear function sends cer-
tain inputs into output via a training process as depicted 
in Eq. (3) [35]:
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where xi, p, ωji, and bj refer to the input to a neuron, the 
number of input nodes, the corresponding weight from 
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Fig. 1. Schematic diagrams for an integrated photo-catalytic/UF membrane system.

Table 1
Effluent characteristics used in this work

Characteristics Effluent types

PRE COE RE

COD 850 450 1,100
TOC 235 90 350
pH 8.5 9 8
Oil 683 600 1,500
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ith to jth neurons, and bias of the jth neuron, respec-
tively. When a neuron has performed its function well, it 
would pass the output to neurons available in the layer 
to provide feed-forward pathways for output through a 
function of non-linear transference. Input data would be 
selected and divided into training, validation, and test 
datasets for designing the architecture of the working 
network. The inputs and target output are normalized 
between 0 and 1. The next step is creating model design 
and network training using a trial-and-error approach 
by utilizing Neural Network Fitting App of MATLAB® 
2019. This would develop ANN model for predicting 
the flux profile as an output considering input vari-
ables. The final step is conducting model testing where 
the actual input data in the testing datasets are com-
pared to predicted values by the ANN model. The nor-
malization of input and output network follows equation  
below:

′ =
−
−

x
x x
x x

i min

max min

 (4)

where x’, xmax, and xmin are the normalized value of xi, 
maximum and minimum value of xi respectively.

Sigmoidal function that acts as a transfer function can 
be expressed by Eq. (5) [28].
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The learning or training phase consists of adapting the 
weights and the biases of the ANN which are randomly 
defined at the creation of the network. The training phase 
is operated using a well-known learning algorithm named 
Levenberg-Marquardt (LM) improving learning rate 
and back propagation algorithm for obtaining minimum 
mean square errors involving data and fit values (MSE). 
Generally, part of the input database is used to stop the 
learning phase when the minimum MSE of the database 
has reached a minimum value. This enables us to compare 
the predicted output given by the ANN for the same inputs 
with the target outputs measured during the experiment to 
evaluate the performances of the ANN as described in Eq. (6).

Fig. 3. The function fitting ANN structure applied in this study.

Fig. 2. ANN models structure applied in this study.
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where yi,expt, yi,pred and ntrain are the ith experimental value, cor-
responding ANN prediction, and the number of points for 
network learning section, consecutively. The whole experi-
mental database was adjusted for each test, considering the 
input variables of the ANN and their frequency of measure, 
so each input could match its corresponding output. In this 
study, the input database division of a training, a valida-
tion and a test dataset was 0.70, 0.15 and 0.15, respectively, 
for the learning process. Eventually, the whole database 
collected was distributed randomly to the three datasets.

3. Result and discussion

3.1. Effect of TiO2 dosage

It is necessary to select the optimum dosage of TiO2 in 
order to obtain optimum output. The effect of TiO2 dos-
age on the profile of COD and TOC reduction then was 
analysed by applying different catalyst dosages as dis-
played in Figs. 4 and 5. In general, the increasing dosage 
would increase pollutant removal efficiency. Specifically, 
increasing removal values happened sharply at 0.5 and 
1 g/L before slowing down at higher dosage. The reduc-
tion percentage of COD and TOC in PRE increased from 
around 42% to 50%, and from 31.9% to 40%, respectively, 
when TiO2 was added from 0.5 to 1 g/L. This improvement 
has a strong relationship to the increase in active sites pro-
vided by the catalyst resulted in the increasing formation 
of electron-hole pairs and reactive hydroxyl radicals on the  
catalyst surface [36].

Moreover, slower removal efficiencies tend to occur at 
higher dosage (Fig. 5). The removal of COD for both PRE and 

RE at 1.25 g/L of TiO2 dosage, for example, was slightly less 
than those of 1 g/L. This could be considered as the effect 
of particulate agglomeration reducing active sites on TiO2 
surface and, as a consequence, there was limited increase 
in pollutant removal efficiency. Other than that, more cata-
lyst amount of the raw effluents could increase the turbid-
ity level leading to lower amount of sunlight that could be 
adsorbed by active surfaces on the semiconductor [32,36]. 
Since the amount of 0.5 g/L of TiO2 dosage could also obtain 
competitive degradation efficiency to higher values as 
well as feasible economic reason, it was then selected to be 
further integrated with UF membrane system.

3.2. Effect of sample characteristics on flux

To understand the efficacy of integrated method on 
analysing flux profile regarding varying effluent charac-
teristics, raw industrial effluents collected from differ-
ent sources (PRE, COE, and RE) were treated under the 
same operating conditions. Based on Fig. 6, it is clear that 
the increasing initial concentration of TOC, COD, and oil 
in the effluent would lead to lower flux. This may link to 
higher dissolved solid, oil droplets and other organic and 
inorganic pollutant molecules clogging membrane pores 
[37,38]. At higher oil concentration, the steady state flux 
took place faster as concentration polarization and oil 
retention ratio increased [39,40]. This phenomenon could 
be regarded to the higher pollutants concentration in RE 
compared to others leading to lower profile of permeate 
flux in which its fastest permeate decline happened at 
the first 50 min before slowing down.

3.3. Effect of TMP on flux

Figs. 7–9 illustrate membrane permeate flux evolution 
under varying TMP values (1, 2, and 3 bar) while other 
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operating conditions were kept constant. In general, these 
figures emphasis the significance of TMP on permeation 
flux regardless the characteristics of the feeds. Permeate 
flux increases when a greater TMP is implemented. The flux 
improvement at higher pressure has strong correlation 
to the increasing driving force affecting the effect of feed 
viscosity and membrane resistance [37,41–43]. In addi-
tion, at the lowest TMP of 1 bar, all feeds could achieve 
faster steady state condition within the range of around 
60 to 80 min. This pattern relates to the tendency of any 
pollutants to accumulate more on the surface at reduced 
pressure leading to concentration polarisation [43].

By specifically observing each figure, it can be noted that 
RE shows more consistent profile in terms of experiencing 
the biggest flux decline at all TMP values. It experienced 
earlier steady state due to shorter time needed to mem-
brane clogging. In contrast, PRE and COE showed incon-
sistently competitive performance at different TMP points. 
While PRE has slightly higher permeate flux decline (48%) 
than COE (46%) at TMP 3 bar, it yielded lower flux decline 
(32%) than COE (42%) at TMP 1 bar during the whole of 
filtration time. This phenomenon might be caused by the 
nature of the raw effluent. Since they have some particu-
lar contents with different values, both of them could react 
differently to some extent [2,38,44].

3.4. Effect of CFV on flux

Theoretically, the rate of permeation flux is also influ-
enced by feed velocity. Therefore, this work investigated 
different CFV values and feed characteristics as seen in 
Figs. 10–12. Based on the figures, it can be noticed that 
increasing CFV levels increase permeation flux. It may be 
attributed to lower concentration polarisation and higher 
surface shear stress due to increasing velocity and turbu-
lence force [4,34]. The thickness of oil particles and any 
dissolved solids accumulated on a membrane surface 

could be assumed to decrease by an increasing driving 
force at higher velocity. However, the typical pattern of 
each effluent in accordance with CFV effect on flux was 
also distinctive. In terms of total decline, RE still experi-
enced the highest percentage by having 53.7%, 46.7%, and 
48% of permeate flux decline at 400, 500 and 600 ml/min, 
respectively. Furthermore, for both PRE and COE, the 
steady state condition developed faster at CFV of 400 ml/
min or in the first 140 and 110 min, respectively. This could 
be linked to the ease of cake layer formation on membrane 
pores or surface at lower velocity level [41,45]. In contrast, 
RE went through the fastest steady state of permeation 
flux at 500 ml/min in the first 90 min, followed by 400 ml/
min in the first 140 min. This inconsistency might relate 
to the complexity of organic and inorganic compounds in 
RE. Additionally, at CFV of 600 ml/min, all effluents met 
their steady flux at 200 min or more except for RE which 
faced the steepest flux decline at the first 60 min followed 
by regular decline at lower speed.

3.5. Artificial neural network modelling simulation

In this study, several parameters such as feed sample 
characteristics, time, TMP, permeate volume, CFV, COD and 
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TOC concentration were selected as input dataset, while 
permeate flux has a role of the output. The data was taken 
from the experimental work of the integrated TiO2/UV/
UF membrane treating three different raw effluents. Total 
experimental data used for this simulation was 378 rows 
consisting of training data 264, validation data 57, and test 
data 57. The neural network was then trained using 18 epoch 
with 202.73 as its best validation performance. Fig. 13 

illustrates the training and best validation squared error vs. 
epoch which was plotted well.

The regression analysis between network response 
and corresponding target were applied to measure the 
trained network performance. Fig. 14 informs various pro-
files of the network outputs vs. flux experimental data of 
training, validation, test, and total data. The dashed line 
in each figure represents the best linear fit. This solid line 
indicates output equal to target. Moreover, the R value is 
the correlation coefficient between the outputs and tar-
gets which acts as an indicator to assess the conformity 
of the variation in the output defined by the target. After 
simulation process, the R value was found at 0.99188 
confirming that the correlation between targets and out-
puts is extremely high. From this point of view, it can be 
inferred that ANN is a reliable tool to predict the fouling 
phenomena on membrane even for various raw samples 
with less or unpredictable characteristics.

Fig. 15 confirms ANN modelling developed with the 
addition of training database. As displaying in the figure, 
the ANN model could match the experimental data well. 
This result indicates that both database and improved 
model for ANN training are valuably critical for prediction 
accuracy.

Fig. 14. Four types of regression analysis profiles between the corresponding targets and the network response.

Fig. 13. The illustration of ANN training MSE vs. epoch.
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Furthermore, Fig. 16 represents error histogram imply-
ing errors between target and predicted values after train-
ing. It indicates how predicted values are differing from 
the target values. Bins are the number of vertical bars 
observing the graph. In this work, the total error range is 
divided into 20 smaller bins. Y-axis represents the num-
ber of samples from the dataset, which lies in a particu-
lar bin. Zero error separates negative and positive ticks 
where the error sign indicates the direction of the bias. 
In this case, positive error refers to the outputs smaller 
than the targets, while negative one means that the targets 
were larger than the outputs [46].

The ANN modelling was trained to perform certain 
function having complex nature by doing adjustment of 
weights values between elements where each input data 
is given an initial weight. Particular initial values of the 
weight would further significantly influence the final weight 
gained for the trained dataset [26,28]. For better observing 

in the relative effect of input data on the output, a variety 
of weights were assessed using various methods includ-
ing Hinton diagram as can be seen in Fig. 17 [47]. Overall, 
based on the figure, permeate volume and COD concentra-
tion have stronger correlation to output profile. On other 
words, among seven input dataset, permeate volume and 
COD seem to be the most influential parameters in predict-
ing output. In addition, TOC holds the least importance 
parameter to indicate the target.

4. Conclusion

This study found that photo-catalytic degradation 
using TiO2/UV (0.5 g/L) was reliable pre-treatment tech-
nique to improve membrane performance. The pre-treat-
ment could lead to lower fouling rate when treating raw 
oily feeds namely petroleum refinery effluents, canola oil 
effluent, and restaurant effluent. Furthermore, experimental 
data were used to develop the ANN modelling for fouling 
prediction. While feeds characteristics, time, TMP, permeate 
volume, CFV, COD, and TOC concentration were applied 
as input data, permeate flux was used as the output. Some 
key findings were found like the ease of cake layer forma-
tion on membrane pores or surface at lower velocity level 
and the complexity of organic and inorganic compounds of 
RE resulting in more inconsistent fouling rates than that of 
other samples. Moreover, the simulation process has high 
R value (0.99188) for total data comprising training, vali-
dation, and test data indicating strong correlation between 
targets and outputs. Specifically, ANN simulation found 
that permeate volume and COD concentration acted as the 
most influential input data while TOC played less role on 
predicting the output value.
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