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a b s t r a c t
The Bougous dam was built as an option for managing the organoleptic and sanitary quality degra-
dation problems of another dam called Mexa during the harmful algae blooms (HAB) period. The 
latter is connected to the drinking water production station. Water discharge from Bougous into 
Mexa allows the strong musty odors, earthy taste and cyanotoxin concentrations released from 
the waters of Mexa to dilute. The overall objective of this study is the biomonitoring of Bougous 
waters through: (i) identification and count of the cyanobacterial populations hosted in its waters, 
(ii) determination of its alert levels according to the WHO recommendations, and (iii) determina-
tion of global algal biomass through chlorophyll ‘a’ dosage and hence evaluation of the trophic  
state of the dam. For this, Bougous dam was sampled monthly from January to August 2018 
in six different stations (S1, S2, S3a, S3b, S3c, S4). Cyanobacteria identification was based on 
microscopic observation of the morphological characters. Determination of cell densities was 
done using “Nageotte cell”. Microscopic examination results revealed the presence of eight cya-
nobacterial genera belonging to five orders represented by Microcystis aeruginosa, Microcystis 
novacekii, Chroococcus limneticus, Dolichospermum planctonicum (Anabaena), Planktothrix isothrix, 
Oscillatoria limosa, Spirulina platensis, Pseudanabaena limnetica, Merismopedia minutissima and 
Limnothrix mirabilis.Five genera among them are recognized as potentially toxic cyanobacteria. 
The calculations of the average density showed the dominance of the genus Microcystis and 
that the highest density (6,041 cells/mL) was registered in the station S3b in July. This allowed 
the classification of the dam in the alert level 1 only in July and August in stations S3b and 
S2, respectively. The maximum content of Chl ‘a’ was 13, 22 µg/L recorded in July. Bougous 
was classified as mesotrophic all along our study period and eutrophic in April and July. In 
conclusion, the quality of Bougous is satisfying but the presence of potentially toxic cyano-
bacterial genera can pose health risks for Bougous water users. Therefore, it is necessary to 
establish a monitoring program for this reservoir as well as for all the other dams used for 
drinking water production in order to control any risk.
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1. Introduction

Currently, drinking water production and water resources 
preservation are the challenges of the 21st century [1] be- 
cause of the actual industrial development, agricultural, 
urban activities, population increase and economic growth. 
All of these activities require an increasing demand for 
water [2,3]. Global warming and the accentuated eutro-
phication of ecosystems have strongly contributed to the 
increase in the frequency of harmful algae blooms (HAB) 
in reservoir waters intended for drinking water production 
all over the world [4]. The production of HAB participates 
in the modification of the phytoplankton biomass in these 
reservoirs; hence the need to monitor and assess the trophic 
state of these water bodies has increased. There are differ-
ent methods for the evaluation of the trophic state among 
them the chlorophyll ‘a’ dosage is used. In recent years, sev-
eral independent studies have been carried out, noting the 
importance of Chl ‘a’ in the classification of the trophic state 
of water reservoirs [5–7]. Reported that the concept of tro-
phic status monitoring is used in monitoring programs for 
cyanobacteria in reservoirs intended for the production of 
drinking water, the HAB represent a serious threat to the 
public and the environmental health following the release of 
several cyanotoxins acting on different target organs (liver 
and nervous system) [8–11]. Many cases of poisoning, intox-
ication [12] and also animal and human deaths linked to 
HAB have been recorded worldwide [13–18].

In addition, the high cyanobacterial biomass has often 
been associated with the green coloration of the water, 
which has always generated heavy economic losses such 
as: the organoleptic degradation of drinking water follow-
ing the production of secondary metabolites (geosmin, 
2-methylisoborneol, β-cyclocitral), filters clogging in drink-
ing water treatment plants, excess organic matter and an 
increased activated carbon bills [19,20]. These disturbances 
of the organoleptic quality in reservoirs are observed much 
more during summer when the water level in the reservoirs 
decreases following the phenomenon of evaporation. Bakker 
and Hilt [21] explored a less-known management option to 

reduce cyanobacterial biomass in reservoirs water just by 
increasing the water levels in them, provided that the incom-
ing water of the contaminated reservoir is in good quality. 
In Algeria, especially in the North-Eastern region, several 
studies have confirmed the presence of HAB in reservoirs 
intended for the drinking water production [22–30].

Bougous dam is a new water body, built in the same 
region (North-Eastern Algeria) to compensate for the reduc-
tion in drinking and industrial water supply capacity of 
another dam located downstream of Bougous called Mexa. 
Since only Mexa is connected to the station of drinking water 
treatment, Bougous was built with the aim of diluting the 
water of Mexa by a direct water release in order to reduce the 
musty odors and the earthy taste as well as the heavy loads 
of cyanotoxins released from the waters of Mexa during the 
HAB period. As a result, Mexa managers no longer order the 
stoppage of the water distribution, which has often caused 
heavy economic losses and dissatisfaction of the consumer.

The goal of this study is the biomonitoring of raw water 
from Bougous dam through: first of all, the identification 
and counting of cyanobacteria; second, the determination 
of alert levels according to the World Health Organization 
(WHO) recommendations and third, the determination of 
the global algal biomass through the chlorophyll ‘a’ (Chl ‘a’) 
dosage and the evaluation of the trophic state of the dam.

2. Materials and methods

2.1. Study area and sample collection

Bougous dam is located in the North-Eastern Algeria 
under a sub-humid climate 20 km east of the Province of 
El Tarf (36°41’57.97”N/8°25’15.14”E), 6 km upstream of 
Mexa dam and was constructed on the Oued Bougous 
(Fig. 1). The construction of this dam was carried out over 
the period from 2005 to 2010; thus, the first water charge 
was in February 2010. This water body occupies a surface 
of 2.26 km² and a height of 71.4 m. The total volume of 
Bougous reservoir is 66 million/m³ and the nominal water 
level is about 139 m [31].
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Fig. 1. Geographic localization of Bougous dam area with the position of the sampling stations.
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Bougous dam is not connected directly with the water 
treatment station, it discharges by direct release in the Mexa 
dam and the latter is the one connected to the treatment sta-
tion. Bougous dam is used to complete the deficit of Mexa to 
provide drinking water.

In this study, a monthly follow-up was performed for 
the first time in this important water body from January 
to August 2018. Water samples were taken from six dif-
ferent stations (S1, S2, S3a, S3b, S3c and S4) based on the 
accessibility and the direction of the prevailing winds.  
Samples S1, S2, S3a and S4 were collected from the sub-sur-
face stations. While samples S3b and S3c were collected 
from different depths (Fig. 1) according to the protocol by 
Treyture et al. [32]. The detailed description of characteristics 
of these sampling stations is explained in Table 1.

2.2. Study of cyanobacteria

Water samples collected for the inventory analyses were 
examined with an optical microscope (Carl Zeiss model) 
equipped with a digital uEye32 camera; thus, cyanobacte-
ria identification was done based on the observation of the 
morphological and the anatomical characters defined based 
on the literature [33–36]. The quantification of cyanobac-
teria cells was carried out in a Nageotte chamber accord-
ing to the Brient et al.’s [37] protocol, where 100 mL of each 
sample was filtered through a polycarbonate filter. The fil-
ter surface was rinsed to collect all the individuals with 
1 mL of the same sample. 50 µL of this sub-sample was 
injected into the Nageotte cell, which presents a grill of 40 
bands. The number of bands retained for the calculation 
of cell densities is that on which there are 40 individuals. 
The density results were expressed in “cells/mL”.

The determination of alert levels is done with reference 
to the WHO decision standards relating to Alert Levels 
Frameworks for drinking water [38].

2.3. Trophic state evaluation

The chlorophyll ‘a’ concentrations provides a strong 
indication of eutrophication status. This parameter is also a 
good indicator of the overall algal biomass, so it gives infor-
mation about the primary production (all phytoplanktons 
including cyanobacteria) in an aquatic ecosystem [33]. In 
our study, the Chl ‘a’ assay was performed for the six sam-
pling stations (S1, S2, S3a, S3b, S3c and S4) using the SCOR/
UNESCO trichromatic method described by Aminot and 

Kerouel [39] based on the extraction and dissolution of the 
chlorophyll pigments after filtration on a Whatman GF/C 
filter in 90% acetone. The reading is done at three differ-
ent wavelengths (663; 645; 630 nm) and the 750 nm wave 
is for the turbidity control of the test. The Chl ‘a’ concen-
tration was determined from the average of the results 
recorded in the six stations and was expressed in µg/L. 
Evaluation of the trophic state of the Bougous dam during 
our study period is based on the standards established by 
Galvez-Cloutier et al. [40], where it defines four classes 
of trophic state: oligotrophic if [Chla] µg/L < 2.5 µg/L; 
mesotrophic: 2.5 > [Chla] µg/L < 8 µg/L; eutrophic: 8 > [Chla] 
µg/L <25 µg/L; hyper-eutrophic: [Chla] µg/L > 25 µg/L.

3. Results and discussion

3.1. Diversity of cyanobacteria

Microscopic examination results revealed the presence 
of eight cyanobacterial genera belonging to five orders: 
Chroococcales represented by Microcystis aeruginosa (Kützing, 
1846), Microcystis novacekii (Compère, 1974) and Chroococcus 
limneticus (Lemmermann, 1898), Nostocales represented by 
the genus Dolichospermum planctonicum (Anabaena) (Wacklin 
et al. 2009), Oscillatoriales [Planktothrix isothrix (Komarek 
and Komarokova, 2004) and Oscillatoria limosa (Agardh and 
Gomont, 1892)], Synechococcales [Pseudanabaena limnetica 
(Komárek, 1974), Merismopedia minutissima (Lemmermann, 
1898), and Limnothrix mirabilis (Anagostidis, 2001)] and 
Spirulinales represented by Spirulina platensis (Geitler, 1925) 
(Tables 2 and 3). According to the literature, five of the eight 
genera found are recognized as potentially toxic [38], In gen-
eral, three different forms of cyanobacteria were identified, 
filamentous forms (D. planctonicum, Planktothrix isothrix, 
O. limosa, S. platensis, Pseudanabaena limnetica and L. mira-
bilis) were present during the whole period, while colonial 
forms (Microcystis aeruginosa and Merismopedia minutis-
sima) and unicellular form (C. limneticus) were present in 
the period from June to August.

Two orders, Chroococcales and Synechococcales were 
present during the period from June to July. Nostocales were 
present in July and August. Meanwhile, Oscillatoriales were 
present in January, April and July but the order Spirulinales 
was present only in July. The months of February, 
March and May were exempt of cyanobacteria.

The results are similar to those reported by Saoudi 
et al. [22], where they identified the same genera with the 

Table 1
Characteristics of the six sampling stations in Bougous dam

Station Coordinates Depth Characteristics

S1 36°42’3.18”N 8°24’56.75E” Sub-surface Exposed to the wind with a rocky nature
S2 36°42’18.76”N 8°25’7.34”E Sub-surface Sheltered from the wind with a rocky nature
S3a 36°42’12.70”N 8°25’8.39”E Sub-surface Exposed to the wind and, in the center of the dam, 

near to the tower of the water intake
S3b 36°42’12.70”N 8°25’8.39”E 3 m deep Wind does interfere when it is higher than 30 km/h
S3c 36°42’12.70”N 8°25’8.39”E 6 m deep Wind does interfere when it is higher than 30 km/h
S4 36°42’22.52”N 8°25’44.06”E Sub-surface Exposed to the wind with a clay nature
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exception of the genus Dolichospermum (Anabaena), which 
was detected for the first time in this area of the Oued Kebir 
watershed (upstream part of the Mafrag catchment area). 
The presence of a nitrogen-fixing type testifies the low 
concentration of this element in the waters of Bougous [41].

The dominance of the order Chroococcales reflects a sta-
ble dynamism of the water column of Bougous in summer 
unlike the Oscillatoriales, which resists turbulence [41–43]. 
While the presence of Synechococcales, Nostocales and 
Spirulinales was always associated with a lower water level 
and high temperatures [44,45].

The five potentially toxic genera identified in Bougous 
(Microcystis sp., D. planctonicum, Planktothrix isothrix, O. limosa 
and Pseudanabaena limnetica) have always been associated 
with the presence of cyanotoxins in the world [46–50] and in 
Algeria [22,23,26–28,51].

The highest diversity was recorded in the stations 
located on the surface (S1, S2, S4) during the months of July 
and August. In station S1, the following genera were iden-
tified Microcystis aeruginosa, Microcystis novacekii, C. lim-
neticus, Merismopedia minutissima, Pseudanabaena limnetica, 
D. planctonicum and S. platensis). In station S2, the identified 
genera were Planktothrix, Microcystis aeruginosa, C. limneticus, 
Pseudanabaena limnetica, D. planctonicum and S. platensis while 
station S4 hosted the genera Planktothrix isothrix, C. limne-
ticus, Merismopedia minutissima, Pseudanabaena limnetica, 
D. planctonicum and L. Mirabilis. Whereas the lowest revealed 
diversity was recorded in the station S3c also in July and 
August (Fig. 2).

The majority of the genera that were identified in this 
study were reported by other authors in the Mediterranean 
basin (Spain, Italy, France, etc.) [16]. In the literature 
review, in Italia, the presence of four genera similar to the 
one identified in this study was reported [16]: Microcystis, 
Planktothrix, Anabaena and Oscillatoria. Also Mariani et al. 
[50] in their study on four reservoirs in Northern Sardinia 
(Italy) highlighted the remarkable seasonal variations of 
the cyanobacterial community with the presence of some 
toxic genera, which is in perfect agreement with our results. 
Our results are also in agreement with what was identified 
in the Spanish reservoirs where Hurtado et al. [52] noted 
the presence of Merismopedia and Planktothrix. Comparing 
our results with those of Vieira-Lanero et al.’s [53], it was 

noticed that Dolichospermum (Anabaena) was more dominant 
in the Spanish reservoirs (38.49%) than Microcystis (34.13%) 
contrary to our observation in Bougous, where it was 
Microcystis aeruginosa, which dominated.

3.2. Cyanobacteria density

From the quantitative point of view, the monthly vari-
ation of the censused orders in Bougous showed the dom-
inance of the order Chrococcales with 2,013 cells/mL (88%) 
in July followed by the order Nostocales with 141 cells/mL 
(7%). The Oscillatoriales came in third position with 79 cells/
mL (3%) and finally it was found that the Synechococcales 
and Spirulinales with 35 cells/mL (2%) (Fig. 3).

The average distribution of the identified cyanobacte-
rial genera (Fig. 4) illustrates the clear dominance of the 
genus Microcystis aeruginosa with 314 cells/mL followed 
by the genus D. planctonicum with 18 cells/mL, the genus 
Planktothrix isothrix with 11 cells/mL, Pseudanabaena limnet-
ica with 5 cells/mL, S. platensis with 4 cells/mL, C. limneticus 
and Merismopedia minutissima with 2 cells/mL and finally 
L. mirabilis with 1 cells/mL.

The spatio-temporal variation of all the cyanobacteria 
identified in Bougous (Fig. 5) shows a fluctuation in the dis-
tribution of cyanobacteria from one station to another and 
from one month to another, the results are in perfect agree-
ment with those of Mariani et al. [50]. The most populated 
station was S3b (6,061 cells/mL) located at – 3 m followed 
by, S2 (2,967 cells/mL), station S1 (695 cells/mL), station S4 
(222 cells/mL), station S3c at – 6 m (139 cells/mL) and lastly, 
station S3a (sub-surface) with 61 cells/mL.

According to Fig. 5, the highest density was detected 
in the months of July and August, while the month of 
June harbored the lowest density. However, the months of 
February, March and May were exempt of cyanobacteria.

In reference to the alert levels, standards accepted by 
the WHO (vigilance level: 100–1.000 cells/mL; alert level 1: 
1.000–10.000 cells/mL; alert level 2: 10.000–100.000 cells/mL) 
for the supply of drinking water [38], the densities noted 
in this water body correspond to those required for the 
level of vigilance from January to June 2018. Alert level 1 
was reached only in July and August. Alert level 2 was not 
reached during our study period (January–August 2018).

Table 2
Cyanobacteria taxa identified in Bougous reservoir during the study period

Taxa

Planktothrix isothrix (Komarek et Komarokova, 2004)
Oscillatoria limosa (Agardh et Gomont, 1892)
Merismopedia minutissima (Lemmermann, 1898)
Pseudanabaena limnetica (Komárek, 1974)
Chroococcus limneticus (Lemmermann, 1898)
Microcystis novacekii (Compère, 1974)
Microcystis aeruginosa (Kützing, 1846)
Spirulina platensis (Geitler, 1925)
Limnothrix mirabilis (Anagostidis, 2001)
Dolichospermum planctonicum (Anabaena) (Wacklin et al. 2009)
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The results generated are different from those found 
in Mexa, where Saoudi et al. [22] reported that the level of 
vigilance exceeded from January until June. The alert level 
1 was reached from July to September and the alert level 
2 was reached in October. This comparison allows us to 
conclude that Bougous quality is much better than that of 
Mexa, so, Bougous waters can be used to dilute (by direct 
releases) the waters of Mexa during the HAB period [21]. 
Also the comparison of the results with those of Boufligha 
et al. [27] carried out on the Guenitra dam located in the 
same climatic stage (sub-humid) as Bougous confirmed that 
Bougous was in better quality because Boufligha et al. [27] 

reported that the level of vigilance was reached in January, 
alert level 1 from February to December and alert level 2  
in November.

Most of the listed genera in Bougous (Microcystis aeru-
ginosa, M. novacekii, C. limneticus, O. limosa, Planktothrix 
isothrix, Merismopedia minutissima, Pseudanabaena limnet-
ica, L. mirabilis, D. planctonicum and S. platensis) are plank-
tonic with gas vesicles, which gives them an advantage 
over other cyanobacteria, which do not have them. These 
vesicles allow the cyanobacteria to control their buoy-
ancy in order to have access to the nutrients (N, P, Fe, etc.) 
from the sediments, and they can store them [54–56]. This 
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Fig. 2. Spatio-temporal diversity distribution of cyanobacteria in Bougous reservoir 2018.
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interpretation explains the high densities recorded in the 
S3b station located at –3 m depth, hence the interest of mak-
ing vertical profiles in a biomonitoring program of a water 
body. Similar results were reported by authors [22,51,57] 
who worked on the same study area.

The dominance of Microcystis aeruginosa in Bougous 
waters may be due to environmental factors favorable for 
the development of this genus as well as to the form of 
this cyanobacterium, which is characterized by colonies of 
large cell volumes and a thick mucilaginous sheath, which 
gives Microcystis a great selective power compared with 
other cyanobacterial genera. This sheath allows Microcystis 
individuals to stick and attach to each other by forming a 
shield against predators and/or hydrodynamic conditions 
(wind, precipitation, water currents) [58,59]. The results 
are in agreement with the majority of works carried out 
on drinking water production dams in the Mediterranean 
basin and also in Algeria, which reported the domi-
nance of the genus Microcystis [22,24,25,27,28,57,60–63].

Cyanobacteria counting results during the year 2018 
confirmed their presence in Bougous waters and that 
this distribution was seasonal with peaks in the summer 
period (Fig. 5), these high densities can be explained by the 

sensitivity of cyanobacteria to environmental variations, in 
particular to the temperature, which can affect the nutri-
ent dynamics, which provides a favorable situation for 
the cyanobacterial taxa that are capable of regulating their 
buoyancy such as Microcystis. The stability of the water col-
umn also plays a role in the distribution of cyanobacteria 
in a water body [64–67]. The results are in agreement with 
several works that have dealt with the influence of envi-
ronmental parameters on the distribution and the domi-
nance of cyanobacteria in public reservoirs [64,67–70].

3.3. Evaluation of the trophic state

The average content of the Chl ‘a’ value recorded showed 
a monthly variation. It oscillated from 1 to 13.22 µg/L 
with a peak of 13.22 µg/L in July (Fig. 6)

The comparison of cell densities and the chlorophyll ‘a’ 
contents (Fig. 6) shows that there is a concordance between 
these two parameters only in July. This can be explained by 
the fact that chlorophyll ‘a’ is an indicator of global algal 
biomass, so the content recorded in the absence of cyano-
bacteria (from January to June) may be due to other phy-
toplanktonic classes such as Chlorophyceae. In addition, 
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Fig. 6. Cyanobacterial densities variation with the chlorophyll ‘a’ content during the study period (Bougous dam 2018).

Table 3
Monthly distribution of cyanobacteria

Cyanobacteria orders Cyanobacteria genus Jan. Feb. Mar. Apr. May Jun. Jul. Aug.

Chroococcales
Microcystis aeruginosa 
Microcystis novacekii

– – – – – + + –

Chroococcus limneticus – – – – – + + –

Oscillatoriales
Oscillatoria limosa – – – + – – – –
Planktothrix isothrix + – – – – – + –

Synechococcales
Merismopedia minutissima – – – – – + + –
Pseudanabaena limnetica – – – – – + + +
Limnothrix mirabilis – – – – – + – –

Nostocales Dolichospermum 
planctonicum

– – – – – – + +

Spirulinales Spirulina platensis – – – – – – + –
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Chl ‘a’ concentrations in association with cyanobacterial 
densities can be a tool for assessing the trophic status of 
an aquatic ecosystem [71]. These two parameters can also 
be used to determine the alert levels in a water body 
intended for the drinking water production [52].

The results generated are dissimilar with those gener-
ated by studies [22,25–27], which showed that there were 
strong correlations between cyanobacterial densities and 
Chl ‘a’.

According to the chlorophyll ‘a’ concentration standard 
revealed by Galvez-Cloutier et al. [40], the trophic profile 
of Bougous dam was generally mesotrophic (5 months/8) 
and it was eutrophic only in April and July. The oligo-
trophic status was only observed in March (Table 4). The 
passage from the mesotrophic to eutrophic state can be 
explained by an imbalance resulting from an enrich-
ment of the environment by nutrients, mainly nitrogen 
and phosphorus [72]. This imbalance can also be favored 
by climate change, particularly in the southern part of the 
Mediterranean [50–73]. Several works [62,74–77] have shown 
that the eutrophic environment favors the development of 
potentially toxic cyanobacteria, hence the need for annual 
monitoring of water bodies intended for drinking water  
production.

4. Conclusion

In conclusion, biomonitoring of Bougous waters has 
shown that the quality of this water body is satisfying with 
reference to WHO standards relating to alert levels frame-
works for drinking water, the cell density of the potentially 
toxic cyanobacteria identified and its mesotrophic state. So 
Bougous waters can be used as an option for management 
of Mexa waters in order to reduce cyanobacteria biomass 
and consequently the problems of the organoleptic and san-
itary quality degradation of the latter during HAB periods. 
But the presence of potentially toxic cyanobacteria in the 
waters of Bougous obliges us to keep it under surveillance 
by developing management and regular biomonitoring 
programs. These programs are also recommended for all 
water bodies intended for the drinking water production.
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