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a b s t r a c t
In this study, the genetic algorithm optimized back propagation artificial neural network (GA-BP-
ANN) method is used to predict the cost of a wastewater treatment plant. With biological oxy-
gen demand, design volume, catchment area and treatment degree as input data, the total cost 
and construction cost as output parameters, the cost of a wastewater treatment plant is simu-
lated. Compared with the linear algorithm commonly used before, this method has the follow-
ing advantages: (1) GA-BP-ANN is suitable for small sample analysis and can effectively improve 
the stability of data. (2) Remove the influence of subjectivity and provide better help for decision 
makers. The effectiveness and feasibility of this method are proved theoretically and verified by 
simulation. The results can provide guidance for the design and operation of sewage treatment plants.
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1. Introduction

In the world, wastewater affects the development of 
human beings. The amount of wastewater produced in 
China is among the top in the world, and the ecological 
and economic pressure brought by it is also very obvious. 
In China, the ecological environment damage caused by 
wastewater accounts for more than 1/4 of GDP [1], which 
brings great pressure to economic development and envi-
ronmental restoration. Some scholars collected survey 
data of 467 sewage treatment plants and on-site reports of 
38 sewage treatment plants [2], and found that due to the 
unclear investment budget and other issues in the initial 
stage of design, various indicators did not meet the ideal 

requirements during construction, for example, the length 
of drainage pipe network per capita was insufficient, only 
0.85 m. With the process of urbanization and economic 
development, urban sewage discharge has continued to 
grow, from 33.18 billion tons in 2000 to 57.14 billion tons 
in 2020, according to the data published by the Ministry 
of Housing and Urban Rural Development of China [3]. 
In order to reduce the economic and energy consumption 
during the operation of the WWTP, we should plan in 
advance, select the appropriate cost model and optimize 
the construction of the sewage treatment plant.

The cost model not only reflects the economic charac-
teristics well in the construction cost [4], but also makes a 
scientific and forecast in the operation cost [5], it is widely 
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used in the optimal design of WWTPs and the pricing 
process of wastewater treatment charges. However, the 
design and operation of the WTTP is a complicated sys-
tematic project. The selection of wastewater treatment 
technology has obvious one sidedness, subjectivity and 
uncertainty [6], and involves many data parameters, 
such as inlet and outlet water flow, inlet and outlet water 
quality, treatment degree, service area population, catch-
ment area and local economic development level, which 
are directly related to the construction and operation cost 
of the sewage treatment plant.

Therefore, scholars from all of the world are still explor-
ing the cost model, and have also established some prac-
tical cost models, such as the urban wastewater treatment 
investment and operation cost function model based on the 
data of the first national pollution source census [7], com-
prehensive cost-benefit analysis and life cycle assessment 
[8], the industrial wastewater treatment investment and 
operation cost function considering the difference of waste-
water treatment cost among sub industries [9]. However, 
at present, most cost models of WWTPs in the world are 
modeled in the form of linear function or power exponential 
function. This rigid limitation leads to the addition of too 
many subjective factors in the case of incomplete informa-
tion collection, and there may be a large deviation between 
the predicted or optimized results and the actual cost [10]. 
At present, most WWTPs in China are facing transfor-
mation and upgrading, and the data collection method is 
still relatively backward. Therefore, it is very important to 
establish a model to simulate the cost of sewage treatment 
plants based on uncertainty.

In order to deal with these nonlinear relations and uncer-
tain data more accurately, the combination of neural net-
work and cost model can be used [11]. Some scholars have 
done sufficient research on neural network in predicting 
economic costs. Meng used genetic algorithm to optimize 
back propagation (BP) neural network to predict short-term 
economic scheduling of hydrothermal power generation 
system, which set an example for economic budget [12]. 
Neural network has the advantage of scientific and accurate 
when there is no clear linear relationship and the weight is 
uncertain [13]. When the data of the cost model of sewage 
treatment plant in the planning stage is not complete or the 
function relationship is not clear, it can solve the problem 
well [14]. However, due to the limitations of neural network 
itself, direct training of data may produce large errors, and 
it is easy to fall into local optimal solution. Genetic algo-
rithm, based on natural selection and genetics, can effectively 
search the global optimal solution [15]. Combining genetic 
algorithm with neural network to optimize the weight and 
threshold of back propagation artificial neural network 
(BP-ANN) model can reduce the limitations of neural net-
work and overcome its shortcomings of slow convergence 
speed and easy to fall into local optimal solution [16].

Therefore, this paper aims to develop an accurate cost 
model based on genetic algorithm optimized back propa-
gation artificial neural network (GA-BP-ANN) to solve the 
early investment problem of sewage treatment plant, so as 
to accurately predict the total investment cost (total invest-
ment) and construction cost (plant construction cost). The 
input parameters of the neural network in GA-BP-ANN 

include the maximum inflow flow, treatment degree, 
inflow biological oxygen demand (BOD5) concentration and 
catchment area and the output data are the total cost and 
construction cost.

2. Model establishment

2.1. Artificial neural network

Artificial neural network (ANN) is a nonparametric 
model, which forms a network through interconnected 
mathematical nodes or neurons to model complex func-
tional relationships [17]. The mathematical structure, by 
simulating the calculation method of human brain and ner-
vous system, realizes the approximation of any complex 
nonlinear process related to the input and output of any 
system [18]. At present, a variety of neural networks have 
been used to simulate the biological treatment process of 
wastewater, including back propagation artificial neural 
network (BP-ANN), radial basis function neural network, 
fuzzy neural network, echo state network and deep belief 
network [19]. Among them, BP-ANN involves a large num-
ber of mathematical operations. Its principle is to slightly 
adjust the neural network when errors are found, so as to 
continue to optimize the model [20]. As shown in Fig. 1, 
as the simplest neural network structure, it is composed of 
input layer, hidden layer and output layer. The construc-
tion parameters of sewage treatment plant are transmitted 
from the input layer to the hidden layer. After the param-
eters are adjusted, they are calculated according to the cost 
activation function, and then the cost results are output.

Normally, a neural network consists of some basic nerve 
units (neurons) running in parallel, and the function of the 
network largely depends on the connections between these 
basic nerve units [21]. It is a single computing processor 
with two operators: summation, concatenation and transfer 
function [22,23]. The operators include weight and devi-
ation. The transfer function determines the relationship 
between input and output, and adds nonlinearity and sta-
bility to the network [24]. A single output neural network 
with n hidden layer nodes can be described by Eq. (1) [25].

Y Xn n
n

N

� � �
�
�� �

1
 (1)

where X is the input parameter of the network, Y is the 
output result of the network, ωn is the weight from the nth 
input layer to the output layer, θn(X) is the output value of 
the nth hidden layer, the calculation formula is:
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where µn is the center vector of the nth hidden node, x is 
Euclidean distance between x n� �  and µn, σn is the radius 
of the nth hidden node.

The neural network developed in this paper consists 
of three layers, including an input layer composed of four 
neurons (including total inflow flow, treatment degree, 
BOD5 and ponding area), a hidden layer composed of mul-
tiple neurons (these neurons can be changed in order to 
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obtain the optimal model) and an output layer composed of 
output neurons (i.e., total cost and construction cost). The 
determination method of hidden layer function is deter-
mined by empirical formula [26].

m m m a� � �1 2  (3)

where m is the number of hidden layer nodes, m1 is the 
number of input layers, m2 is the number of output layers, 
a is random number between 0 and 10.

Each network is trained until the network average root 
mean square error difference (RMSE) is the smallest and 
the variance R2 is close to 1. The performance of the neu-
ral network model is measured between the network pre-
dicted value and the input value through R2 and RMSE. 
The calculation method is shown in Eqs. (4) [27] and (5) [28].
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where y  is the average value of y y yi i p
i* *, and  are the pre-

dicted value and actual value of the nth target respectively.
The input and output range of neural network will be 

limited. The application of sample data needs data pre- 
processing before it can be applied to network training. 
When the network whose output is a single sigmoid func-
tion is selected, the output range is [0,1]. The middle region 
of the sigmoid function is sensitive to the change of input, 
and the two ends are slow to the change of input, so the 
input samples need to be compressed. Because different 

dimensions may produce different orders of magnitude, the 
input value can be transformed into a number between 0 
and 1 for normalization. The commonly used proportional 
compression method can be used for compression [29], 
as shown in Eq. (6):
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where T is the transformed data, also known as target data, 
X is the original data (generally 0.2~0.8). Xmax is the maximum 
value of the original data, Xmin is the minimum value of the 
original data, Tmax is the maximum value of the target data, 
and Tmin is the minimum value of the target data.

2.2. Genetic algorithm

Genetic algorithm (GA) is an adaptive heuristic algo-
rithm that guides parameter space coding through random 
technology. It is not only used to optimize the structure of 
large-scale neural network, but also used to extract features 
that can be used for identification and optimal control tasks. 
It has been widely used in the optimization of complex 
space in different scientific fields [30]. Genetic algorithm is 
mainly composed of initialization population, fitness func-
tion, selection function, crossover function, variant func-
tion and output. The best solution is obtained in all possible 
solutions by creating population, selection, crossover and 
mutation operators. The optimization methods include 
calculus, numerical method and random method [31].

At first, genetic algorithm will randomly generate a cer-
tain number of individuals, and generate new individuals 
through heredity, crossover and mutation. Then, accord-
ing to individual fitness, the individuals with high fitness 
will be retained and the individuals with low fitness will 
be eliminated. Therefore, the new individuals inherit the 
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Fig. 1. Structure of neural network.
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excellent traits of the previous generation, which makes 
the algorithm evolve in the direction of the better solu-
tion of the problem, and finally find the optimal solution. 
It can be roughly divided into the following two stages [32].

2.2.1. Initialize population

The initial population is a certain number of optimal 
individuals generated from random numbers. The opti-
mal individuals are selected in the iteration, and the final 
total number of individuals meets the needs of the initial 
population [33]. For the research of this paper, the order of 
each item is not limited, and the position can be changed 
from the data set.

2.2.2. Evolution process of genetic algorithm

The selection operation is to select some individuals 
in the population to reproduce a new generation. A sin-
gle solution is selected through a fitness based process, 
where a more suitable solution is more likely to be selected 
(measured by the fitness function). There are different 
selection methods, such as random uniform, residual, uni-
form, linear shift, roulette and championship [34]. This 
paper adopts roulette selection method, and the selection 
probability of each element is directly proportional to its 
fitness value. Roulette is one of the most common selec-
tion methods, and it is also an effective selection method. 
The roulette selection method assigns a roulette to each 
individual, and the size of the roulette is proportional to 
the fitness of the individual. The more appropriate a com-
ponent is, the larger the wheel blade it gets. In order to 
select an individual for selection, rotate the roulette wheel. 

At the place where the roulette stops, the corresponding 
sliced individual is caught as an individual living in future 
generations. The fitness function uses the inverse of the 
overall mean square deviation of the actual output and 
the predicted output plus one, as shown in Eq. (7).
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where Y is the actual output, Y’ is the predicted output, 
and mse () is the mean square deviation of the data.

The purpose of mutation in genetic algorithm is to gen-
erate new individuals by changing all or part of the genes 
of the selected individuals in the population, so as to avoid 
the algorithm falling into local solutions. Mutation operator 
is one of the strategies used to ensure the variability within 
the population and design space exploration. Mutation 
is applied to the offspring produced by crossover, and 
its mutation probability is usually assigned a lower value.

2.3. Genetic algorithm optimization of back propagation 
neural network

In order to overcome the limitations of ANN and avoid 
poor training effect and falling into local optimal solution, 
this paper combines neural network and genetic algorithm, 
uses the variability of genetic algorithm to improve the 
global search ability, and optimizes back propagation artifi-
cial neural network based on genetic algorithm to apply it 
to the cost model research of sewage treatment plant. The 
specific flow of GA-BP-ANN is shown in Fig. 2. Its struc-
ture is similar to the process of neural network prediction 
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method. First, determine the network topology. Second, 
genetic algorithm is introduced into the training process 
of the network to calculate the weight and threshold. Then 
sample training is carried out and the optimal solution  
is output.

3. Case study

3.1. Data sources

The model is built according to the statistical data of 26 
sewage treatment plants in Taiwan, China province [35], 
as shown in Supplemental Material S1. The basic statisti-
cal data include design water volume A1, treatment degree 
A2 (primary, secondary and advanced treatment), influ-
ent BOD5 concentration A3 and ponding area A4; The cost 
obtained from the basic data includes the total cost Y1 and 
the construction cost Y2.

The establishment of a linear model usually requires 
a good degree of correlation between various data [36], so 
it is difficult to collect the data required by the traditional 
cost model of sewage treatment plant, while the neural 
network can predict the total cost and construction cost 
of sewage treatment plant according to the intrinsic cor-
relation of data itself. Can be applied to sewage treatment 
plant data with the same requirements at different times.

The correlation analysis of the collected data shows that 
the correlation between the data is not strong, as shown 
by the scatter location of the correlation data distribu-
tion graph and the R2 of each two sets of data. As shown  

in Fig. 3, the closer the variance is to 1, the better the cor-
relation is. The best R2 is 0.70098 in the correlation analysis 
of catchment area and total flow, and the worst is –0.00796 
in the correlation analysis of inlet BOD5 and catchment area. 
The R2 of other data are all below 0.35 and far less than 1. 
Because the correlation between input data is not strong, 
so the linear algorithm cannot be used to establish a good 
prediction model, but the genetic algorithm is used to 
optimize the neural network to avoid this problem.

3.2. Model parameter setting

The basic parameters of the neural network are set 
as follows: the number of epochs are 4000 times, the rate 
of training is 0.25, the target accuracy is 0.0001, and the 
momentum constant is 0.7. The momentum adaptive adjust-
ment network with a 4-7-2 three-layer structure is adopted. 
The transfer function from the input layer to the hidden 
layer is Log-sigmoid function, the linear function from the 
hidden layer to the output layer is ‘purelin’, and the faster 
‘train1m’ is selected as the training function. In the input 
samples, 25 groups of data are randomly selected as the 
training data, and the remaining group of data is used to 
test the network performance. During modeling, the best 
network model is selected according to the minimum error. 
According to the parameter setting of genetic algorithm, 
the training results show that the fitness training tends to 
a gentle optimal value after 768 times, as shown in Fig. 4. 
After multiple verification, the population size is set as 

Fig. 3. Input data correlation diagram.
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25 times, the number of iterations is 2,500 times, the cross-
over probability is 0.75 and the mutation probability is 0.01.

4. Results and discussion

4.1. Model performance evaluation

Use the leave one method for data processing [37], 
and randomly select one group each time to test the rest 
of the network for training. As shown in Fig. 5, when the 
genetic algebra is 17 generations, the verification sequence 
has the best performance, and its mean square devia-
tion is 0.813 × 10–2. When the genetic algebra is more than 
3 generations, the mean square deviation of the training 
sequence decreases steadily, and the mean square deviation 
is less than 0.01 from 10 generations, and the mean square 
deviation of the test and validation series is also basically 
maintained at around 0.01. The mean square error results 
show that the neural network has good performance.

Fig. 6 shows the training and prediction cost under 
the GA-BP-ANN method, in which Fig. 6a and b show the 
simulation effect of training data set of total cost and con-
struction cost respectively. The training data R2 of the total 
cost is 0.986 and the training data R2 of the construction 
cost is 0.957, which are close to 1. It can be seen that GA-BP-
ANN has a very good training effect.

4.2. Comparative analysis of models

In the past, many scholars studied the optimization of 
neural network by genetic algorithm. Lira et al. [16] applied 
genetic algorithm to optimize the model of neural network 
for NOx hydrodynamics. Guan et al. [38] applied genetic 
algorithm optimized neural network to the data mining 
and design of electromagnetic characteristics of Co/FeSi 
filling coating, and Shin et al. applied genetic algorithm to 
the prediction of natural gas NOx [39]. These studies made 
a comparison before and after the application of genetic 
algorithm. It is found that genetic algorithm plays an excel-
lent role in optimizing the weight and threshold value of 
neural network transmission process, which makes the pre-
diction result more accurate and the model more practical.
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In order to verify the effectiveness and superiority of 
GA-BP-ANN, the same training data set is used and the 
BP-ANN method is used to train the data set. The results are 
shown in Fig. 7. However, by comparing Figs. 6 and 7 it can 
be seen that the training data R2 of GA-BP-ANN is greater 
than that of BP-ANN. Therefore, from the experimental 
data, the training effect of GA-BP-ANN is significantly 
better than that of BP-ANN.

Baskar et al. [40] successfully applied fuzzy linear 
regression to rice quality assessment, Pandelara et al. [41] 
applied it to the relationship analysis between electricity 
consumption and GDP, and Prieto et al. [42] applied it to 
the prediction of the functional life of cultural heritage. 
These studies show that fuzzy linear regression has been 
very mature and applied to the simulation prediction in 
various fields. However, the disadvantages of fuzzy linear 

regression analysis (FLR) are also obvious, for it is very 
sensitive to outliers [43]. If there are too many outliers, 
the error in the prediction results will increase. Hence in 
order to compare and analyze the difference between this 
method and the traditional linear algorithm, Wen et al. used 
FLR method to compare the data set simulation, as shown 
in Fig. 8. The results show that the simulation effect of the 
total cost of FLR method is good, R2 is 0.946, but the simula-
tion effect of construction cost is poor, R2 is only 0.506. The 
error between the simulation results and the actual data is 
large, because there are many linear relationships between 
various factors. The more data, the greater the amount of 
calculation, and there are inevitably subjective factors 
in the selection and calculation of ambiguity.

Compare the error distribution of GA-BP-ANN and 
FLR, as shown in Fig. 9. It can be seen that the error value of 
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GA-BP-ANN is generally less than that of FLR, and the data 
is more concentrated around 0 error, especially in the error 
comparison of construction cost in Fig. 9b. On the whole, 
individual data of GA-BP-ANN error is greater than FLR 
error, which is due to the small number of data groups 
for training and the data is not de-noised. In addition, the 
fault tolerance of GA-BP-ANN is greater than FLR. For the 

quantity with total cost less than 400 million, GA-BP-ANN 
is 20 groups, accounting for 77% of the total quantity; FLR 
was 16 groups, accounting for 61% of the total. The com-
parison error of construction cost is only the error result of 
GA-BP-ANN, which obeys the normal distribution, and the 
result of FLR shows obvious skewness. The error of con-
struction cost is within 200 million, and GA-BP-ANN is 21 
groups, accounting for 81% of the total; FLR was 11 groups, 
accounting for 52% of the total.

The R2 and RMSE of the three models are listed in Table 1. 
It can be seen that the maximum R2 of GA-BP-ANN simu-
lation result is 0.986 of the total cost training set and the 
minimum is 0.782 of the total construction cost data set. 
The maximum of RMSE is 455.63 of the total cost data set, 
and the minimum is 129.45 of the construction cost training 
set. Under the same conditions, it is obvious that the RMSE 
and R2 of GA-BP-ANN are less than BP-ANN and FLR.

On the whole, GA-BP-ANN is better than BP-ANN 
and FLR, and GA-BP-ANN removes subjective factors and 
only considers the correlation of the data itself. The appli-
cation of genetic algorithm reduces the possibility of neural 
network falling into local optimal solution and obtains the 
best initial threshold and weight. When the functional rela-
tionship is clear and the amount of data is too small, FLR 
can be considered. If the data volume is large enough and 
the linear relationship is not obvious, GA-BP-ANN can 
be used to avoid errors caused by subjective factors and 
unclear internal function relationship of the data.

5. Conclusion

In this paper, a GA-BP-ANN model is developed and 
used to study the sewage treatment fee model. In the 
process of neural network training, the input parameters 
include design water volume, treatment degree, influ-
ent BOD5 concentration and ponding area. Genetic algo-
rithm is used to optimize the neuron, function, weight 
and threshold of back-propagation neural network. The 
training results show that the performance of this model 
is good. The minimum R2 of the total cost and construction 
cost of sewage treatment plant is 0.782 and the maximum 
is 0.986. The application of genetic algorithm can improve 
the accuracy of neural network, make the prediction results 
more accurate, and avoid the training process falling into 
local optimal solution. Through the comparative analysis 
of the models, the simulation effect of GA-BP-ANN is bet-
ter than BP-ANN and FLR in RMSE and R2. GA-BP-ANN 
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Fig. 9. Model error distribution: (a) total cost and 
(b) construction cost.

Table 1
Comparison of model simulation effects

Model Name Cost categories RMSE R2

Training set Total set Training set Total set

GA-BP-ANN
Total cost 279.31 455.63 0.986 0.962
Construction costs 129.45 349.82 0.957 0.782

BP-ANN
Total cost 644.37 718.04 0.924 0.904
Construction costs 217.79 461.83 0.888 0.632

FLR
Total cost – 577.58 – 0.946
Construction costs – 1,333.06 – 0.506
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is more suitable for the prediction of data when the 
internal function is unclear.

GA-BP-ANN can be used to predict the required cost for 
the construction or upgrading of sewage treatment plant, so 
that decision makers can have an intuitive data reference. 
However, GA-BP-ANN needs a large amount of field data 
to train and test the network, and it may face the impact 
of excessive noise for a large amount of data. Therefore, it 
can be considered to smooth the data curve through clus-
ter analysis, so as to be better used for network training 
and testing. When it is difficult to collect data, we can refer 
to GA-BP-ANN and apply genetic algorithm to optimize 
small sample data to improve the stability of data.
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Table S1
Statistics of sewage treatment plants in Taiwan [35]

Planning region Design flow 
rate (10 m3/d)

Treatment 
degree

Influent 
BOD5 (mg/L)

Collection 
area (103 ha)

Total investment 
cost (million yuan)

Construction cost 
(million yuan)

Kaohsiung city
- Nantzu area 175 Primary 225 3.3 1,636.149 224.694
- Kaohsiung downtown 1,103 Primary 195 10.7 7,632.369 556.26
- Linhai area 151 Primary 295 4 1,457.007 195.129
Taipei suburban 1,594 Primary 215 16 10,008.3 3,186.45
Keehmg city 122 Advanced 217 2.2 2,491.125 136.656
Juifang county 16 Secondary 200 0.9 489.027 318.864
Hsinchu city 21 Secondary 195 6 2,393.67 863.955
Chupei city 38 Secondary 191 1.1 498.663 203.013
Kanping fiver basin
- Pingtung area 99 Advanced 164 1.8 1,298.889 718.539
- Chimei area 13 Advanced 161 0.7 361.788 132.057
Chunan & Toufang cities 133 Secondary 199 2.2 395.733 278.349
Hualien city 165 Secondary 163 5.5 1,024.482 391.134
Wu river basin
- Nantou area 26 Secondary 155 0.7 267.618 128.991
- Tsaotun area 36 Secondary 192 1.2 356.751 163.812
Panchiao & Hsintien cities 95 Secondary 192 6.7 1,115.148 421.137
Tungkang river basin
- Chaochou area 23 Advanced 160 0.8 443.475 210.459
- Neipu county 22 Advanced 160 1.1 541.587 202.137
- Tungkang city 17 Advanced 160 1 338.136 186.15
Tanshui city 75 Advanced 168 1 1,149.75 724.89
Erhjen river basin
- Yungkang city 176 Secondary 210 3.9 1,765.359 702.114
- Jente area 132 Secondary 210 3.9 1,430.727 406.683
Taoyuan city 263 Secondary 190 4.8 3,457.134 2,609.604
Chungli city 331 Secondary 172 11.7 4,029.162 1,264.506
Peikang city 34 Advanced 140 4.2 591.957 311.418
Taitung city 38 Secondary 180 1 346.896 132.714
Kengting area 2 Advanced 218 0.2 67.89 43.362

Appendix

The statistical data of 26 sewage treatment plants is listed in Table S1. Total investment costs and construction costs 
are converted from Taiwan Dollar to Chinese Yuan based on exchange rate 0.219.
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