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a b s t r a c t
Sulfide is commonly found in wastewater from oil refining, petrochemical, pharmaceutical and other 
industries and must be removed because of its toxicity, odor and corrosiveness. In this research, 
the CuO loaded hydrotalcite adsorbent (CuO-HT) was prepared by the impregnation method. 
The as-prepared adsorbent was characterized by X-ray diffraction, scanning electron microsco-
py-mapping, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy and N2 
adsorption–desorption isotherms. The effect of CuO loading amount and calcination temperature 
on adsorption performance of industrial hydrotalcite for sulfide was examined in this experiment. 
The results reveal that the sulfide removal performance over CuO-HT is improvement. Among the 
as-prepared adsorbents, the hydrotalcite loaded with 5% Cu and calcined at 300°C (CuO-HT-5-300) 
had the highest removal rate of sulfide, and the removal rate is nearly 100% in 80 min. After four 
regenerated times, the adsorption rate of the adsorbent could still reach 90%. In the composite adsor-
bent, CuO was identified as the primary active element on the hydrotalcite carrier. The modified 
hydrotalcite had high sulfide adsorption capacity and excellent regeneration performance.
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1. Introduction

Sulfur-containing wastewater will be discharged in 
industrial production, such as in medicine, paper, pet-
rochemical, textiles and so on [1–3]. Sulfide in industrial 
sewage mainly exists in the form of compounds formed by 
metal ions and sulfur ions or hydrogen sulfide ions, includ-
ing some non-metallic sulfides such as hydrogen sulfide 
and organic sulfides [4–6]. Sulfur-containing wastewater is 
highly corrosive and can even corrode modern buildings 
such as reinforced concrete [7,8]. When sulfur-containing 
wastewater enters farmland untreated, the roots of plants 
can rot, causing crops to wither and die. When the concen-
tration of sulfide in water is 1.0~25.0 mg/L, freshwater fish 
will be died within 1~3 d [9,10]. When the concentration of 

sulfide in water continues to increase, volatile hydrogen sul-
fide gas is produced. Excessive inhalation will damage the 
human lung and central system, posing a threat to human 
life and health. Therefore, the treatment of sulfur-containing 
wastewater is imminent [11–13].

At present, there are many methods to remove sulfide 
and its by-products in sewage, such as chemical method [14], 
biological method [15], stripping method [16], precipitation 
method [17], advanced oxidation process (AOP) and so on 
[18]. However, most of these processes have the disadvan-
tages of high cost, complicated process and easy generation 
of by-products [19–21]. The adsorption method is generally 
regarded as an economical and effective wastewater treat-
ment method due to its advantages of simple operation, 
low price, strong selectivity, and difficulty in producing 
by-products [22,23].
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Hydrotalcite is a layered hydroxide, whose structure is 
like brucite, and its chemical expression is [M2+

1–xMx
3+(OH)2]

x+[(An–)x/n·mH2O]x–, M2+ is divalent metal cation, M3+ is triva-
lent metal cation, x is the ratio of M3+/(M2+ + M3+), An– is the 
equilibrium anion between layers [24]. The anions between 
the aluminum hydroxide layers have certain mobility and 
ion exchange, and can be replaced by other anions in the 
environment. Due to its unique layered structure, anion 
exchange and “memory effect”, hydrotalcite is widely 
used in sewage treatment, photoelectric catalysis, corrosion 
resistance and other fields [25,26].

In this study, industrial hydrotalcite was used as the 
carrier, Cu was loaded by impregnation method, and then 
calcined to prepare the modified hydrotalcite adsorbent. 
This adsorbent is used to adsorb and remove sulfides from 
water. Experimental variables included Cu loading amount 
and calcination conditions.

In addition, the properties of the adsorbents, includ-
ing chemical and physical properties, were also discussed, 
characterized by X-ray diffraction (XRD), scanning electron 
microscopy (SEM-mapping), N2 adsorption–desorption 
isotherms, X-ray photoelectron spectroscopy (XPS), and 
Fourier-transform infrared spectroscopy (FT-IR). According 
to the experimental results and characterization, the effects 
of loading and calcination temperature on the adsorp-
tion properties of hydrotalcite were determined, and the 
adsorption process was discussed.

2. Results and discussion

2.1. Adsorption performance of the adsorbents

2.1.1. Effect of Cu loading amount

The adsorption performance of hydrotalcite (HT) and 
CuO loaded hydrotalcite adsorbent (CuO-HT) with the 
different CuO loading amount (0%, 1%, 2%, 5% and 10%) 
for sulfide is illustrated in Fig. 1. From Fig. 1 it can be seen 
that HT has the weakest sorption performance for sulfides 

in water at only about 5% for the same sorption time. In 
contrast, the CuO-HT-5-300 and CuO-HT-10-300 has a best 
adsorption performance, close to 100%.

When the CuO loading was the variety of 1%–5%, the 
adsorption performance was positively linked with the 
loading. When the CuO loading was raised to 10%, the 
adsorption performance for sulfide was almost unchanged. 
This may be because the excess CuO accumulates itself and 
limits the exposure of some active sites.

Throughout the previous several decades, the kinet-
ics equilibrium principle has been frequently utilized to 
the removal of contaminants from aqueous solutions [27]. 
To fit adsorption kinetic data, the quasi-first-order kinetic 
model was applied. The linear form of pseudo-first-order 
equation was expressed as:

ln
C
C

k t0�

�
�

�

�
� � �  (1)

where C and C0 represent the concentration of sulfide solu-
tion in the reaction device when the adsorption time is t 
and t0 (t = 0), respectively, and k is the rate constant of the 
first order kinetic reaction [28].

It can be seen from Fig. 2a that the reaction conforms 
to the pseudo-first-order kinetic formula. According to 
Fig. 2b, the k value of the fitting curve increases with the 
increase of loading capacity, representing the improvement 
of adsorption performance. According to the kinetic curve, 
the k value of CuO-HT-5-300 is almost equivalent to that of 
CuO-HT-5-300. In addition, from the perspective of economy, 
CuO-HT-5-300 is the best choice for the adsorption of sulfide.

2.1.2. Effect of calcination temperature

The effects of calcination temperature on the adsorp-
tion performance of HT and CuO-HT are investigated, and 
the findings are illustrated in Figs. 4 and 5.

Fig. 3 shows the adsorption performance of HT for sul-
fide at different calcination temperatures (100°C, 200°C, 
300°C, 400°C, 500°C). The result shows that HT-300 has the 
best adsorption performance, and the adsorption perfor-
mance is positively correlated with the calcination tempera-
ture at the range of 95°C to 300°C. When the calcination 
temperature reaches 400°C, the adsorption performance of 
sulfide was reduced.

The calcination temperature of the adsorbent is a crit-
ical determinant of adsorption performance throughout 
the preparation process. Appropriate calcination tem-
perature can improve the adsorption ability of adsorbent. 
The calcination temperature has a significant effect on the 
morphology, pore structure, crystallinity, and specific sur-
face area of the adsorbent. Fig. 4 shows the effect of cal-
cination temperature of CuO-HT-5-y on the adsorption 
performance for the sulfide. The CuO-HT-5-300 has the 
best adsorption performance.

When the calcination temperature reaches 170°C, the 
Cu(NO3)2 starts to decompose CuO. Therefore, when the 
temperature is less than 170°C, the CuO cannot be generated 
as active catalysis point and the CuO-HT has a poor adsorp-
tion performance of sulfide. Over 170°C, the CuO can be 
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Fig. 1. Adsorption performance of CuO-HT adsorbents with the 
different CuO loading.
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formed as the active component, but cannot easily diffused 
to equilibrium on the carrier surface. This makes the cata-
lytic activity cannot be fully played, result in a low adsorp-
tion performance of Na2S. When the calcination temperature 
was over 400°C, the removal rate of Na2S was decreased. 
The high calcination temperature cause sintering of adsor-
bent, larger crystalline grain and reduced surface area, lead 
to the decrease of adsorbent activity. In summary, HT and 
CuO-HT has the best performance after calcination at 300°C.

To evaluate the adsorption performance of various sam-
ples even further, the relevant sulfide adsorption data of 
different adsorbents were analyzed by kinetics.

It can be seen from Fig. 5 that the adsorption process 
of different adsorbents conforms to the pseudo-first-order 
kinetic equation. Fig. 5a shows that when the calcination 
temperature is in the interval of 200°C–300°C, the rate con-
stant k of the first-order kinetic curve increases gradually, 
show that the reaction rate keeps increasing. The rate con-
stant of 300°C is very close to that of 400°C. After calcina-
tion at 300°C–500°C, HT has a unique memory effect [29], 
although HT laminate presented different degree of collapse, 
but the layer structure still exists. After contact with water, it 

can also be restored to its original ordered layered structure, 
which leads to a promoted adsorption capacity. However, 
when the calcination temperature of samples was 500°C, the 
lamellar structure has been destroyed and the spinel struc-
ture was formed. Additionally, the surface area and pore 
volume are being reduced, resulting in a drop-in adsorption 
capacity [30].

Combined with the experimental results, it can be 
proved that the preparation method of calcination modified 
HT by impregnation of support metal ions is simple to oper-
ate, economical and practical. And it is a promising adsor-
bent capable of adsorbing sulfides from wastewater. When 
the loading amount is 5% and the calcination temperature 
is 300°C, the sulfide adsorbent capacity of the adsorbent is 
the best. Within 80 min, the adsorption capacity of sulfide 
reaches nearly 100%, and the adsorption rate is relatively 
rapid. The regeneration performance of the adsorbent 
needs further discussed.

2.2. Characterization of the as-prepared adsorbents

According to the above analysis results, CuO-HT-5-300 
has the highest adsorption performance for sulfide. In this 
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Fig. 2. Pseudo-first-order curves of CuO-HT-x-300 with different loading amount (a) and the reaction rate constant k (b).
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study, CuO-HT-5-300 was selected and used HT and HT-300 
as a reference to characterize and analyze.

The morphology and elemental distribution of 
CuO-HT-5-300 were characterized by SEM and elemen-
tal mapping, and the results are shown in Fig. 6. After cal-
cination, the sheet-like structure of HT was collapsed but 
became more densely packed. The presence of Cu in the 
CuO-HT-5-300 was detected by elemental mapping, but 
the amount of Cu was small.

The effect of loaded CuO on structure of HT is described 
by XRD and N2 adsorption–desorption isotherm. The 
results are shown in Figs. 8 and 9.

Fig. 7 shows the XRD patterns of the HT, HT-300, 
CuO-HT-5-300 and CuO-HT-10-300. As showed in Fig. 7a, 
the XRD pattern of HT is keep high consistency with the 
standard card of PDF#89-0460 in the inorganic crystal data-
base. This indicated that HT has a high crystallinity and a 
distinct lamellar structure. The peaks at 2θ values of 11.7° 
and 23.5° are attributed to the (003) and (006) in HT [31,32], 
which indicate that the layered structure of HT is obvious. 
After calcination, the strength of the (003) distinctive dif-
fraction peak drops progressively and formed a low inten-
sity diffraction peak with a large peak width. Meanwhile, 
the 2θ values of (003) characteristic diffraction peak grad-
ually offset to a large angle, and the (006) characteristic 

diffraction peaks disappeared. According to the standard 
diffraction pattern of MgO (PDF# 45-0946), the character-
istic diffraction peak of MgO at the 2θ values of 60.7° is 
observed in Fig. 8b–d. These illustrated that the layer board 
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Fig. 5. Pseudo-first-order kinetic curves of CuO-HT-5-y with different calcination temperatures (a), and the reaction rate constant k (b).

 

Fig. 6. Scanning electron microscopy images and elemental mapping of CuO-HT-5-300.
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Fig. 7. X-ray diffraction patterns of HT (a), HT-300 (b), 
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structure of HT was partially destroyed after calcination at 
300°C for 3 h [33]. Compared with HT-300, the XRD pat-
tern of CuO-HT-5-300 and CuO-HT-10-300 has no obvious 
change, indicating that the loading process has no effect on 
the structure of HT-300. In addition, there was no character-
istic peak of CuO in the XRD pattern of CuO-HT-5-300 and 
CuO-HT-10-300. Combined with SEM-mapping, it showed 
that CuO was evenly dispersed on the surface of HT.

The N2 adsorption and desorption isotherm measure-
ment was used to analyzed the surface area and the dis-
tribution of pores in the samples that had been produced. 
As illustrated in Fig. 8a, the adsorption isotherms of the 
as-prepared samples are all IV types and the H3 hysteresis 
loop (IUPAC classification), indicating that the HT con-
gregate and stack to produce slit-like gaps. The pore-size 
distribution curve produced utilizing adsorption branch 
data using the Barrett–Joyner–Halenda method shows that 
all of the pore sizes of the as-prepared samples are in the 
range of 2–35 nm, indicating a mesoporous structure [34]. It 
is belong to porous adsorbent, therefore, the phenomenon 
of capillary coalescence appears, so it has a strong interac-
tion with the adsorbent [35]. The pore-size distribution of 
HT is mainly aggregated at 7.6 nm. After calcinated, the 

pore-size distribution was more dispersed for HT-300 and 
CuO-HT-5-300. It indicated that the layer board structure 
of HT was destroyed. Moreover, the specific surface area 
and pore volume of HT-300 and CuO-HT-5-300 are larger 
than those of HT (Table 1). Large specific surface area and 
pore volume enable Na2S to interact with adsorption active 
sites in HT, in the meantime decreasing the steric hindrance 
effect. This is consistent with XRD results. Enhancing these 
qualities is critical for optimizing its adsorption efficacy.

As seen in Fig. 9, the FT-IR characterizations were uti-
lized to investigate the surface functional groups of the 
various samples. These spectra are similar to those previ-
ously reported for hydrotalcites in the literature [36]. As 
illustrated in Fig. 9a, at 3,462; 1,624; 1,366 and 781 cm–1, four 
significant peaks are assigned. The fundamental stretching 
and bending vibrations of H2O or hydroxyl group can be 
attributed to the peaks located at 3,462 and 1,624 cm–1, respec-
tively [37]. The peak located at 1,366 cm–1 is attributed to the 
stretching vibration CO3

2– [38]. Between 800 and 500 cm–1, the 
bands correspond to the M–O and M–O–M vibrations of the 
hydroxide layer (M = Al, Mg) [39]. The peak near 2,900 cm–1 
is the organic impurity in the industrial HT. Fig. 9b and c 
are the FT-IR of HT-300 and CuO-HT-5-300, respectively. 
After being calcined, the peak located at 3,462 and 1,366 cm–1 
became weakness. It could be after calcination, H2O was 
removed and CO3

2– overflows in the form of CO2. The peak 
located at 1,624 cm–1 was observed become stronger. These 
indicate that the layered structure of HT was destroyed by 
calcination, and the group of CO3

2– existing between the lay-
ers was disintegrated. After Cu loading, the characteristic 
peaks of Al–O bond and Mg–O bond at 774 and 613 cm–1 in 
FT-IR of HT-300 were moved slightly, which may be caused 
by CuO load. In addition, the shift amplitude of the charac-
teristic peak of Mg–O is greater than that of Al–O, indicating 
that CuO mainly interacts with Mg–O during loading.
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Table 1
Some parameters of HT, HT-300 and CuO-HT-5-300

Samples SBET (m2/g) Vtotal (cm3/g)

HT 11.74 0.03
HT-300 20.14 0.05
CuO-HT-5-300 18.64 0.04
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Further interaction model between CuO and HT-300, 
and the surface element states of CuO-HT-5-300 were char-
acterized by XPS, and the results are shown in Fig. 10.

As shown in XPS spectrum of CuO-HT-5-300, the charac-
teristic peaks of Cu 2p, Mg 1s, Al 2p and O 1s are appeared, 
in indicated that Cu was loaded on the surface of HT suc-
cessfully. Fig. 10b shows the high-resolution spectrum of 
Cu 2p. The peaks at 955.5 and 935.3 eV are attributed to 
Cu 2p1/2 and Cu 2p3/2 of Cu2+, and the peaks at 952.6 and 
933.0 eV are corresponded to Cu 2p1/2 and Cu 2p3/2 of Cu+ 
[40,41]. It indicated that CuO/Cu2O coexists on the HT sur-
face after CuO loading. Compared with HT-300, in the XPS 
spectrum of CuO-HT-5-300, the characteristic peak of Al 
2p did not change significantly, but the characteristic peaks 

of Mg 1s and O 1s moved significantly during the loading 
process. It shows that CuO has obvious interaction with 
Mg–O, which is consistent with the results of FT-IR.

2.3. Regeneration performance of the adsorbent

The results of the adsorption performance of regen-
erated CuO-HT-5-300 for sulfide are shown in Fig. 11. The 
adsorption rate of the adsorbent shown a declining trend, 
after four times adsorption–desorption cycle regeneration 
experiments, the adsorption performance of the worked 
CuO-HT-5-300 is 90%. It is slightly lower than that of the 
unworked CuO-HT-5-300. This may be because a small 
amount of sulfide is not effectively desorbed during the 
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regeneration process, resulting in the occupation of part of 
the active site.

Fig. 12 shows the XRD patterns of the unworked, worked 
and regenerated CuO-HT-5-300, respectively. After adsorp-
tion of sulfide, the sharp and symmetric peaks at lower 
2θ (003, 006) reappeared, suggesting that the sulfide was 
adsorbed onto the positive layer and formed the negative 
layer [42]. This indicated that he calcined HT recovered 
their original layered structure. Anion incorporation was 
occurred during the adsorption process. Which was ascribed 
to rehydration and structural reconstruction of the calcined 
products in the adsorption process of sulfide [43]. After 
regeneration, the XRD pattern is shown in Fig. 12c. The peak 
corresponding to (006) plane disappeared, comparison the 
peaks of unworked and regenerated CuO-HT-5-300, there 
are no significant change in XRD pattern. It indicated that 
the structure of the regenerated CuO-HT-5-300 was recov-
ered well. Combined with regeneration adsorption rate, 
the sample has good regeneration performance.

2.4. Adsorption mechanism

The adsorption mechanism of CuO-HT-5-300 for sul-
fide was characterized by XPS, and the results are shown 
in Fig. 13. As shown in Fig. 13b, the characteristic peaks of 
S 2p are appeared, the peak located at 161.67 eV is assigned 
to the sulfide, and the other peak located at 168.58 eV is 
ascribed to the sulfate [44,45]. it indicated that the adsorp-
tion of sulfide by adsorbent was determined. Sulfide is vol-
atile. The adsorbed sulfide is largely desorbed during the 
vacuum pumping process of XPS characterization, and all 
detected sulfides are less than those actually adsorbed. As 
shown in Fig. 13c–e, the characteristic peaks of Mg 1s, Al 
2p and O 1s are hardly changed, this shows that sulfide is 
not adsorbed on the surface of Al–O and Mg–O. The relative 
content of Cu2+ in CuO-HT-5-300 before and after adsorp-
tion was analyzed. It was found that Cu2+ changed to Cu+ 
after adsorption, and its relative content decreased from 
41% to 11%. It shows that Cu2+ as the main active site pro-
motes the adsorption of sulfide via the Cu–S interaction in 
the adsorption process.

3. Conclusion

CuO-HT was successfully prepared by impregnation 
and high temperature calcination. The results of the physico-
chemical characterizations of the CuO-HT material showed 
that CuO were successfully loaded on HT. Moreover, the 
adsorption performance of CuO-HT for sulfide in sew-
age is significantly improved. The adsorption performance 
of CuO-HT-5-300 is highest with nearly 100% in roughly 
80 min. The regenerated adsorbent obtained after washing 
by dilute nitric acid and calcination also has good adsorption 
performance, and the adsorption performance for sulfide is 
still over 90% after four times of regeneration. In the com-
posite, Cu2+ is the main active site to promote the adsorption 
of sulfide via the Cu–S interaction in the adsorption process. 
The current research will promote the development of highly 
efficient adsorbents combining metal oxides and hydro-
talcite to improve the adsorption performance for sulfide.
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Supporting information

S1. Experiments

S1.1. Chemical reagents

Mg-Al hydrotalcite (HT) was purchased from Shaoyang 
Paradise Reagent, China. The Cu nitrate (Cu(NO3)2·3H2O, 
AR), absolute ethyl alcohol (CH3CH2OH, AR), sodium sul-
fide (Na2S, AR), sodium hydroxide (NaOH, AR) and nitric 

acid (HNO3, AR) were bought from Sinopharm Chemical 
Reagent Co., Ltd., China.

S1.2. Preparation of the adsorbents

3.00 g HT and Cu(NO3)2·3H2O are uniformly dispersed 
in 60 mL mixture solution of alcohol and water with volume 
ratio of 1:1. The mixed system is stirred and evaporated at 
95°C until the liquid evaporates completely. High tempera-
ture calcination at a heating rate of 5°C/min and a holding 
period of 180 min yielded the solid adsorbents CuO loaded 
hydrotalcite adsorbent (CuO-HT). CuO-loaded HT prepared 
by the different calcination temperature and different CuO 
loading amount is defined as CuO-HT-x-y (x = 0, 1, 2, 5, 
10 mol.%; y = 100°C, 200°C, 300°C, 400°C, and 500°C).

S1.3. Characterization of the adsorbents

X-ray powder diffraction was carried out on a SmartLab 
SE X-ray Diffractometer (Rigaku Corporation, Japan) with Cu 
Kα radiation (λ = 0.15406 nm). The morphology and element 
distribution were observed by a scanning electron micros-
copy-mapping (SEM, FlexSEM 1000, Hitachi). The surface 
functional groups were investigated by Fourier-transform 
infrared spectroscopy (Nicolet iS50, Thermo Scientific, 
American) spectrometer. The Brunauer–Emmett–Teller spe-
cific surface area and Barrett–Joyner–Halenda pore-size dis-
tribution curves were obtained from N2 adsorption–desorp-
tion isotherms determined at liquid nitrogen temperature 
(77 K) on a surface area and porosity analyzer (Micromeritics 
ASAP 2460, American). Samples were degassed at 473 K for 
6 h prior to the measurement. The chemical composition 
and element valence were analyzed by an X-ray photoelec-
tron spectroscopy (ESCALAB 250Xi, Thermo Scientific, 
American) with Al Kα radiation.

S1.4. Adsorption examination

50 mg of the as-prepared adsorbent was suspended 
into 100 mL of Na2S solution (100 mg/L) and adjust pH = 10 

 Fig. S1. Schematic illustration of the preparation and adsorption of the adsorbents.
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with NaOH. It was held at room temperature for 80 min 
while being stirred in the dark. Nearly 3 mL of the suspen-
sion mixture was collected at 10 min intervals during stir-
ring and separated by centrifugation at 9,000 rpm for 5 min. 
The concentration of Na2S was analyzed with a Shimadzu 
UV-2700 Spectrophotometer (Japan) by methylene blue 
method. The schematic illustration of the preparation and 
adsorption of the adsorbents is showed in Fig. S1.

The sulfide adsorption performance is calculated as 
formula:

� �
�

�
C C

C
0

0

100%  (2)

where η is the sulfide adsorption accuracy, C0 and C are 
the concentration of sulfide before and after adsorption 
(mg/L).

S1.5. Adsorbent regeneration

The regenerate procedure of the adsorbent was as fol-
lows. The worked adsorbent was washed in dilute nitric acid 
(pH = 6) for 3 times. The filtered solid adsorbent is washed, 
dried and calcined at 300°C for 3 h. The adsorption perfor-
mance of the regenerated adsorbent was carried out under 
the same conditions as the as-prepared adsorbent.
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