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a b s t r a c t
The urban agglomeration in the Yangtze River’s middle reaches is a crucial location of China’s eco-
nomic expansion. Urbanization construction is an important measure to improve human life style, 
encourage economic and social growth, and improve the level of science and technology. These 
changes have an impact on the natural environment at the same moment. This research did a detailed 
investigation on the correlation ecological footprint elements and the construction of three-dimen-
sional ecological footprint model to explore the law of water carbon three-dimensional ecologi-
cal footprint evolution and its depth-to-breadth learning inversion leads to the growth of cities in 
the middle reaches of the Yangtze River. The findings indicate that when promoting the process of 
urbanization, various human activities have a non-negligible impact on the ecological environment. 
We must pay close attention to environmental challenges as urbanization progresses since both the 
rise in people’s quality of life and the pace of urbanization would result in a continual growth in 
ecological footprint. And take scientific and effective measures for different problems to make 
sure the environment and urbanization are developed sustainably.

Keywords:  The Yangtze River’s middle reaches; Urban agglomeration; Three-dimensional ecological 
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1. Introduction

The urban agglomeration along the Yangtze River’s 
middle reaches are now experiencing a development boom 
related to urbanization. The degree of economic growth is 
rising, but there are a number of ecological and environmen-
tal issues that must be addressed [1]. On the urban enclave 
in the Yangtze River’s middle reaches, the level of popula-
tion urbanization does not match the development of land 
urbanization, resulting in low land utilization, and changes 
in land cover affect the food security of cultivated land [2]. 
The entire ecological environment in the middle reaches 
of the Yangtze River, where the urban agglomeration is 

located, is at a high-risk stage. The consumption of ecolog-
ical energy is increasing day by day, so it is imperative to 
save energy and reduce emissions to reduce the region’s 
changing ecological imprint [3]. The ecological environ-
ment is used at fairly different rates in various geographic 
scales. Population agglomeration occurs in areas with rela-
tively developed economies, but not in areas with low levels 
of economic progress. Therefore, the ecological utilization 
rate of human beings does not match bearing capacity of 
the environment’s ecosystem [4]. Although a large number 
of agricultural transfer populations migrated to cities, they 
could not really integrate into cities quickly. Therefore, the 
middle reaches of the Yangtze River’s urban agglomeration’s 
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quality of urbanization development needs to be improved 
urgently [5]. To address the urban agglomeration’s ecologi-
cal and environmental challenges in the middle sections of 
the Yangtze River and raise its ecological development level, 
this study introduces a deep learning model to thoroughly 
analyze the essential growth of the urban agglomeration 
along the Yangtze River’s middle reaches, the influencing 
factors of the ecological footprint, and their space-time 
evolution laws.

2. Related work

A popular intelligence algorithm is deep learning. 
Modern information science has quickly advanced to the 
point that it may contribute significantly to many different 
scientific domains. Some scholars have used deep learning 
models in conjunction with relevant ecological themes to 
produce specific study findings. Pichler et al. [6] and other 
researchers will use various deep learning algorithms to pre-
dict biological species in the ecosystem. Algorithms make 
predictions about the ability of species to interact based on 
traits, while also inferring combinations of traits that lead 
to causal relationships between them. Experimental results 
show that deep learning algorithms have significant advan-
tages in understanding interaction networks, thus verify-
ing the great potential of artificial intelligence such as deep 
learning in ecological reasoning. Scholars such as Hosu et 
al. [7] proposed a new deep learning model of KonCept512 
to effectively recognize ecological images. In addition, they 
constructed the KonIQ-10k dataset, which contains 10,073 
ecologically valid in-the-wild high-quality scoring images. 
The proposed model shows excellent resolution and good 
recognition performance on this dataset. Huang et al. [8] 
found that traditional machine learning algorithms have lim-
ited predictive performance for landslide susceptibility, and 
then proposed a fully connected backup autoencoder algo-
rithm based on deep learning, namely the FC-SAE model. 
The model consists of four steps: original feature loss, sparse 
feature encoder, categorization prediction and sparse feature 
extraction. The experiment included 23195 landslide grid 
cells and non-landslide grid cells. The results show that the 
prediction accuracy of FC-SAE is 81.56%, which is higher 
than the traditional machine learning model. Researchers 
such as Barzegar et al. [9] started from water quality mon-
itoring in the ecological environment, combined the LSTM 
network and CNN network in deep learning, and proposed 
a CNN-LSTM model. The experiment uses this model to 
predict factors affecting water quality. The findings suggest 
that the CNN-LSTM model may assist staff in effectively 
capturing the change level of water quality factors, con-
firming deep learning’s promising application possibilities 
in the ecological sector.

A metric for gauging human demand for resources and 
ecological services is the ecological footprint. Numerous 
academics have studied the issue of the three-dimensional 
ecological footprint of urban agglomerations. Taking the 
Pearl River Delta in China as an example, researchers such 
as Li et al. [10] developed a three-dimensional footprint 
model that incorporates the ecological footprint, carbon foot-
print, and water footprint. On this basis, the problem that 
the traditional three-dimensional footprint model is still in 

a two-dimensional plane under ecological surplus can be 
improved, and the supply and demand relationship between 
human and natural capital can be accurately predicted. The 
results of the study showed that the extent of one’s ecologi-
cal imprint and one’s carbon footprint contributed the most 
to the increase of REP in the study area, and also verified 
the practicability of the three-dimensional footprint model. 
Chen et al. [11] proposed a carbon footprint index based 
on water-carbon-ecological footprint, and took the Central 
China Triangle as an example to identify its balance between 
ecological compensation and regional growth. In the exper-
iment, the assessment framework included the Gini coeffi-
cient, and other factors were used to evaluate the fairness. 
The research results fully reflect the practical significance 
of the three-dimensional model, and can offer a theoretical 
framework for the long-term growth of TOCC. Scholars such 
as Lee et al. [12] conducted research on the physical vulner-
ability of organisms in Taiwan Province. The experiment 
examines the link between the ecological footprint of rural 
regions in Taipei and Taiwan and their overall vulnerability 
using an overlapped methodology. By analyzing the link 
between ecological footprint and overall vulnerability, the 
study divides Taipei and rural areas into four types of risk 
areas. Therefore, local governments can formulate differ-
ent competitive strategies based on these empirical results, 
which shows that the ecological footprint analysis method 
has strong practical significance. To assist in resolving fresh 
issues threatening China’s sustainable development, Wang 
et al. [13] and other researchers explored the driving forces 
of natural capital demand. The experiment analyzes the 
link between domestic economic growth and environmen-
tal conservation by using the three-dimensional ecological 
footprint model and discovers a strong inverted U-shaped 
association between Economic output and natural resources. 
Therefore, when the relevant governments allocate natural 
capital, they need to formulate differentiated environmental 
policies according to different environments, and at the same 
time need to improve advance size, technology and structure 
to improve energy efficiency. The study’s findings demon-
strate the three-dimensional ecological footprint model’s 
applicability.

To sum up, the three-dimensional ecological footprint of 
urban agglomerations has strong credibility and practicabil-
ity, and is a hot topic among researchers. At the same time, 
deep learning, as an intelligent algorithm, enables research-
ers to more clearly and extensively examine the influencing 
variables of ecological footprint. As a result, to address the 
ecological environment challenges of the urban agglomera-
tion in the Yangtze River’s middle reaches, this experiment 
introduced a deep learning model to discuss the funda-
mental growth of the urban agglomeration in the Yangtze 
River’s middle reaches, the variables impacting the ecologi-
cal footprint, and its temporal and geographical history.

3. Analysis of influencing factors of ecological footprint 
and its temporal and spatial evolution

3.1. Correlation influencing factors of ecological footprint

Ecological footprint is a kind of development index, 
which is used to study human production activities and 
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ecological environment. The ecological footprint examines 
in depth how the size of the land area affects human con-
sumption and the effects of such activities on the ecosystem. 
This area refers to the needed amount of land for generat-
ing resources needed by human beings and disposing the 
wastes caused by these resources [14,15]. According to the 
applicable theory of ecological footprint, there are six dif-
ferent categories of productive land that are affected by 
human production and production activities: agricultural 
land, grassland, woodland, water, construction land, and 
land used for fossil fuels [16]. The ecological footprint is 
often affected by many aspects, and it is closely related to the 
spatial effect and urbanization process, as shown in Fig. 1.

The aforementioned figure demonstrates that the effects 
of urbanization on the environment cannot be ignored, and 
there is a two-way interaction between various human pro-
duction and living activities and the ecological environment 
system. Urbanization-related factors such as population 
growth, land urbanization changes, changes in energy fac-
tors, economic development, scientific and technological 
advancements, and improvements in industrial structure all 
interact with one another and have a big impact on how the 
ecological footprint evolves [17]. This effect is two-sided, one 
is promoting, the other is inhibiting. This effect promotes 
changes in the size of the footprint, the functional structure of 
the footprint, and the ecological footprint’s historical devel-
opment, which in turn makes the evolution of the ecological 
footprint counteract the urbanization process [18]. In addi-
tion, spatial effects also affect the evolution of the environ-
mental impact to some degree, so I will not repeat them here. 
The seven stages of urbanization are the major influencing 
elements, and Fig. 2 illustrates how population urbanization 
has affected the development of ecological footprint.

According to Fig. 2, it is clear that the relationship 
between population urbanization and the growth of the 
ecological footprint primarily involves four components: 
changing people’s lifestyles, increasing population density, 
raising people’s levels of education, and improving popu-
lation quality. The development of population urbanization 

has improved per capita income to a certain extent, and its 
living needs have been met. However, the growth and diver-
sification of consumption followed, which caused ongoing 
use of ecological and environmental resources, which even-
tually led to the increase in ecological footprint and the 
decline in the per-person ecological environment’s carry-
ing capacity. The continual growth of culture, on the other 
hand, which greatly raises population quality, is the bene-
ficial consequence of population urbanization. Therefore, 
environmental protection technologies and policies have 
been innovated and implemented, which can effectively 
reduce the strain on the natural environment. The effects 
of modernizing industrial structures on the development of 
ecological footprint can be expressed as an Environmental 
Kuznets Curve, as shown in Fig. 3.

Urbanization may be broken down into three phases. 
The ecological footprint is tiny, the abundance of ecological 
resources is great, and human use of ecological resources is 
minimal in the first stage, which is dominated by the pri-
mary industry. In the second stage based on industrial 
development, the utilization rate of land resources has been 
significantly enhanced, carbon emissions have continued 
to increase, the consumption of ecological environmental 
resources has also continued to increase, and the scale of 
ecological footprint has expanded significantly. Early in the 
third stage and in the late stages of the second stage, tech-
nology and scientific advancement, the elevation of popula-
tion standards, and modifying the industrial structure have 
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effectively controlled the consumption of ecological envi-
ronmental resources, and the ecological footprint’s size has 
decreased over time.

3.2. Model construction and temporal and spatial evolution 
analysis of 3D ecological footprint

Environmental carrying capacity and ecological defi-
ciency serve as the primary markers of the ecological foot-
print. The former is the total of the ecologically productive 
land area that may be delivered to humans in a given loca-
tion to demonstrate the ecosystem’s resource supply capabil-
ity in that area [19]. Since the land productivity in various 
locations must vary, it is required to standardize the ecolog-
ical carrying capacity calculation in dimensions to guaran-
tee the comparability and summing of the carrying capacity 
is accurate. The calculation formula is shown in Eq. (1):

BC �
� ��A q y

N

i i i
i

n

 (1)

where BC denotes the region’s per capita ecological carry-
ing capacity, N represents the total population of the area, 
Ai represents the whole surface area of Class i land in the 
area, qi and yi reflect the equilibrium and yield factors of 
Class i land, respectively. The ecological deficit is the differ-
ence between an area’s ecological footprint and its ecologi-
cal carrying capability, which is used to demonstrate that 
the ecological demand of the area has surpassed the bear-
ing capacity and supply capacity of the ecological environ-
ment [20]. The three-dimensional ecological footprint model 
is built on the two-dimensional model, which organically 
integrates the width and depth of the ecological footprint, 
so the three-dimensional ecological footprint model may 
be stated mathematically in Eq. (2).

EF BC ED EF EFsize depth� � � �  (2)

where EF represents the environmental footprint, BC is still 
the carrying capacity of the environment, and ED is the eco-
logical deficit, EFsize and EFdepth represents the breadth and 
depth of the ecological footprint, respectively. The sche-
matic representation of the ecological model’s translation 
from 2D to 3D is shown below.

Fig. 4 clearly shows that the standard two-dimensional 
ecological model is made up of two concentric rings. The 
inner circle represents ecological carrying capacity, whereas 

the outside circle represents ecological deficiency. The over-
all model is shown in Fig. 4a. After adding the ecological 
footprint, a 3D ecological model was generated. The 3D 
ecological model is generated by multiplying the footprint 
width and footprint depth, as demonstrated by the cylinder 
in Fig. 4b. The actual area of ecologically productive land 
inhabited within the permissible range of ecological carrying 
capacity is referred to as footprint width. It can completely 
present the occupation and level of all flow capital, and 
the specific calculation formula is shown in Eq. (3).

EF EF
EF

EF BCsize
depth

size� � �� �0  (3)

In Eq. (3), it is clear that the calculation of footprint width 
is closely related to footprint depth. The footprint depth 
represents the bottom surface in the three-dimensional eco-
logical model, and the deep meaning is the land area under 
the consumption level of environmental resources in the 
area, which can be calculated by Eq. (4).

EF
ED

BC
depth � �1  (4)

Eq. (4) demonstrates that while calculating the foot-
print depth, both ecological deficit and ecological carrying 
capacity are required, and that the combination of the two 
can properly calculate the footprint depth and then reveal 
the degree of stock capital consumption. It should be men-
tioned that, usually in the basic three-dimensional ecological 
model, the differences in nature between ecological deficit 
and ecological surplus are often easily confused. Therefore, 
the footprint depth is too low and the footprint width is too 
high [12]. When there is a difference between particular loca-
tions that causes the basic model to be limited, it is required 
to enhance the linked algorithms of footprint width and 
footprint depth, as shown by Eqs. (5) and (6), respectively.
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where i represents a total of six kinds of environmentally 
beneficial land: cultivated land, grassland, forest land, water 
area, land for development and land for fossil energy. EFi 
denotes the ecological footprint contained in the i site; BCi 
refers to the area’s ecological carrying capacity; EFdepth,region 
and EFsize,region indicates the depth and breadth of the regional 
footprint, respectively. Based on this, Eq. (7) can be obtained.
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logical model into three-dimensional ecological model.
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Eq. (7) depicts the three-dimensional ecological footprint 
calculation algorithm from a regional scale viewpoint.

4. Effects of urban agglomeration on ecological footprint 
in the middle reaches of the Yangtze River based on deep 
learning

4.1. Model construction and training process of deep learning 
inversion

The deep learning model has a hierarchical structure that 
is quite similar to the normal neural network model. Both 
model systems are made up of three layers: the input layer, 
the hidden layer, and the output layer. It should be noted that 
the nodes between two neighboring levels are completely 
linked, that is, when nodes in the same layer or cross-layer 
nodes are connected, each layer may be treated as a logis-
tic regression model [21]. Fig. 5 depicts the deep learning 
model’s structure.

According to Fig. 5, three hidden layers are incorpo-
rated in deep learning’s multi-layer structure. The net-
work will perform poorly in terms of training efficiency 
and underfitting if all structural layers are trained simul-
taneously. On the other hand, to get rid of various prob-
lems in traditional models, deep learning models apply 
innovative training mechanisms. This innovative training 
mechanism works well. First, a single layer of neurons is 
constructed in sequence according to the order of the struc-
tural layers, and each time the network is trained, its object 
is a single structural layer. After the network training of 
all structural layers is completed, relevant algorithms are 
applied to optimize it. Prior to refinement, all structural 
layer parameters must be obtained in an unsupervised 
way. Next, network training must be carried out layer by 
layer from the bottom to the top, or feature extraction. 
Then, the supervised reverse learning method is applied 
to optimize the parameters of all structural layers, that 
is, the mistake is from top to bottom reversed. The indis-
pensable process in deep learning is sparse auto-encoding, 
and its operating mechanism is shown in Fig. 6.

The deep learning auto-encoding model and the conven-
tional neural network model’s workings are contrasted in 
Fig. 6a. On the left is the former, each input sample carries 

a specific label, transmits data with very little informa-
tion, and adjusts all parameters. The latter is on the right, 
by using the corresponding encoding algorithm to perform 
feature extraction and encoding operations on all informa-
tion data without labels. The use of the tuning mechanism 
in the deep learning autoencoder is shown in action in 
Fig. 6b. After the automatic encoder completes the encod-
ing, all input data will be correspondingly encoded, and the 
reverse decoder can be applied to reconstruct it to obtain 
the restored data information. The quality of the encoder is 
then assessed by comparing the initial information with the 
recovered reconstruction data information. If the L1-norm 
on the automatic encoder has a regularization constraint, 
the encoder is converted to a sparse encoder, and its input 
calculation formula is shown in Eq. (8).

h W XT=  (8)

From Eq. (8), it is evident that at this time, only a small 
number of nodes in each layer are not zero, and the formula 
representing the network training loss is shown in Eq. (9).

L X W X hij
;� � � � � �Wh

2
�  (9)

Sparse coding is a learning algorithm with an unsuper-
vised approach at its core. The appropriate parameter val-
ues, basis vectors, and crucial coefficients can be eventually 
solved by a sequence of optimization and reconstruction.

4.2. Inversion analysis of surface wave dispersion curve from the 
perspective of deep learning

When surface wave dispersion curves are inverted, 
effectively extracting the observed dispersion curves is first 
required. On this basis, after calculating the theoretical dis-
persion curve using the given density ρ, layer thickness h, 
shear wave velocity Vs, and longitudinal wave velocity Vp 
and other related data, the mean square error of the two 
dispersion curves is defined as shown in Eq. (10) Invert the 
objective function:

E
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where N represents the number of sampling points in 
Rayleigh wave phase velocity. From this, it can be observed 
that Vri

obs represents the phase velocity at the i sampling 
point, and Vri

cal represents the Rayleigh wave phase veloc-
ity at the i sampling point. Because of the inversion process, 
there are frequently some unclear components, which cause 
a variety of events to have less effect. The change trend of 
Rayleigh wave phase velocity caused by the change of den-
sity is small, that is, less than 10%. The change of longitu-
dinal wave velocity can hardly affect the phase velocity of 
Rayleigh wave, and its influence is less than 3%. The change 
of P-wave velocity can hardly affect the Rayleigh wave phase 
velocity, and its influence is less than 3%. Based on this, the 
aforementioned inversion parameters may be specified, 
and a global optimization approach, namely the simulated 
annealing process, can be utilized for nonlinear solution. In 
the inversion process of the surface wave dispersion curve, 
it is required to input an initial guessing model, and set 
the disturbance model under the condition of fixed tem-
perature. The perturbation when applying the simulated 
annealing algorithm is shown in Eq. (11).

Vs Vs andi
j

i
j j

i
j

i
j ja V V h h b H H� �� � �� � � � �� �1 2 1 1 2 1  (11)

where a and b are the disturbance coefficients in the distur-
bance model, meeting the requirements of the probability 
distribution. Vsi

j denotes the shear wave velocity of iter-
ation i when it is located at layer j. In the same way, Vsj

i+1 
denotes the shear wave velocity at the same layer number, 
but with the i + 1 iteration processing. h indicates the thick-
ness of the layer, and its superscript and subscript have the 
same meaning as the shear wave velocity. Noteworthy is the 
fact that the values of V1 and V2 are related to Vrmin

obs and 
Vrmax

obs, respectively. The former is usually 1/2 of Vrmin
obs, 

and the latter is 3/2 of Vrmax
obs. Then the value range of 

shear wave velocity in layer j is determined as (V1, V2). The 
thickness of layer j is between H1 and H2. The value of H1 
is fixed as 0, and the value of H2 is usually only half of the 
maximum Rayleigh wave length. Eq. (12) can improve the 
work efficiency in the disturbance model.

a b n T
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�
1
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1 1 1
2 1

 (12)

where the meaning of a and b remains the same, sgn( ) rep-
resents a step function, and T represents the temperature 
in the current environment. u satisfied U(0,1) and evenly 
distributed. Because the model includes specific perturba-
tion properties, such as a positive correlation between the 
search range and temperature, the perturbation effective-
ness of Eq. (12) is greater. In summary, this perturbation 
technique has a greater perturbation efficiency and perfor-
mance, as well as a quicker convergence speed. In addi-
tion, the updated calculation formula of P-wave velocity 
is shown below.

Vp Vs�
�� �
�

2 1
1 2

�

�
 (13)

Eq. (13) demonstrates that the P-wave velocity often 
needs to be determined according to Poisson’s ratio σ on 
the basis of the obtained S-wave velocity, and the Poisson’s 
ratio σ value is usually around 0.25.

4.3. Experimental design and analysis

The middle reaches of the Yangtze River’s urban agglom-
eration’s ecological imprint was estimated at the municipal 
level in this research. In terms of macro analysis, the urban 
agglomeration’s total ecological demand may be studied 
to get the overall demand for its ecological environment, 
which comprises the carbon footprint, total ecological foot-
print, and urbanization rate. The specific analysis is shown 
in Fig. 7.

Fig. 7 demonstrates unequivocally that the entire the 
urban agglomeration’s ecological imprint in the Yangtze 
River’s middle reaches has grown year after year. The growth 
multiple and yearly growth rate have been extremely sub-
stantial, rising from around 76 million gha in 1998 to over 
250 million gha in 2018. At the same time, during this time 
period, the pace of urbanization grew by nearly 1.37 times, 
while the rate of ecological footprint expansion remained 
much larger than the rate of urbanization. Overall, the pace 
of urbanization in the Yangtze River’s middle reaches is 
about commensurate with the frequency of increase of the 
ecological footprint. During the initial period from 1998 to 
2003, the pace of expansion of the urbanization process 
was substantially faster than the rate of increase of the eco-
logical footprint.; from 2004 to 2012, the pace of increase in 
the ecological footprint steadily increased; It was not until 
2013 that the pace of increase in the ecological footprint 
has tended to remain flat. During this time period, the 
changes of different types of ecological footprints are shown  
in Fig. 8.

Figs. 7 and 8 demonstrate that, in terms of different 
ecological footprint types, carbon footprint has occupied 
the largest proportion in the six ecological footprint types 
since 1998. The total ecological footprint is basically con-
sistent with the growth trend of the total carbon footprint. 
It can be observed that carbon footprint is the biggest con-
tributor to the increase in ecological footprint in the Yangtze 
River’s middle reaches urban agglomeration. From the per-
spective of functional classification, it has been discovered 
as the productive footprint of organisms, the growth rate 
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of grassland footprint is extremely fast. The increase from 
around 10.15 million gha in 1998 to approximately 22.2 mil-
lion gha in 2018 is substantial. The growth of fishery land 
and construction land should not be underestimated, with 
an increase of 98.4% and 99.6%, respectively. The explana-
tion for this occurrence is that, as urbanization accelerates, 
per capita income and living standards of city dwellers con-
tinue to rise. Therefore, its demand for livestock meat and 
aquatic products is becoming more and more vigorous, and 
its requirements for living environment continue to increase. 
In a nutshell, the urban agglomeration along the middle 
reaches of the Yangtze River has become more urbanized 
during the last 20 y, and people’s uncontrolled use of eco-
logical resources has led to a significant rise in the overall 
ecological footprint, which has caused a noticeable impact 
on the ecological environment. Fig. 9 depicts the evolution of 
the per capita ecological footprint in this area over the same  
time period.

Fig. 9 shows that the ecological footprint per person’s 
average yearly growth rate of the urban agglomeration in 
the Yangtze River’s middle reaches was unusually high from 
1998 to 2018, growing from 1.08 to 3.25 gha. From 1998 to 
2004, the growth trend of per capita ecological footprint of 
urban enclave at the Yangtze River’s middle reaches was 
relatively flat; From 2005 to 2009, the per capita ecological 
growth in the region showed a rapid upward trend; Except 
for 2013, the growth rate in all years from 2010 to 2018 
was modest, indicating a tendency of steady development. 
On the other hand, in terms of different types of ecologi-
cal footprint, even while all aspects of per capita ecological 
value have risen over time, the per capita carbon footprint 
continues to expand at a far faster rate. The per capita car-
bon footprint has grown from 0.43 gha to 2.26 gha. The 
footprint growth of per capita fishery land and per capita 
forest land is small. The per capita construction land has 
increased. In the past 20 y, Fig. 10 depicts a study of how the 
ecological footprint as a whole has changed over time.

Fig. 10 shows the changes of Theil index of the total eco-
logical footprint, biological production footprint and car-
bon footprint of the Yangtze River’s middle reaches urban 
agglomeration from 1998 to 2018. Theil index is a power-
ful tool for calculating and analyzing regional differences. 
Fig. 10 shows that the difference in total ecological footprint 
during the last 20 y is minimal, and the overall situation 

is changing and growing. Its Theil index rose continu-
ously before 2013, and showed a downward trend of fluc-
tuation after reaching the peak in that year. Theil index of 
total biological production footprint and total construction 
land footprint are both low. The only subtle difference is 
that around 2012, the former showed a slow upward trend 
of fluctuation, while the latter continued to decline. The 
carbon footprint is one of the most significant differences. 
The peak of its Theil index appeared in 2000, and then con-
tinued to decline; it dropped to the lowest point in 2018, 
only 0.485. In a nutshell, when the above four indicators 
are compared horizontally, the Thale index of carbon foot-
print is found to be the highest, indicating that carbon foot-
print is the primary reason for the difference in the entire 
ecological footprint of the Yangtze River’s middle reaches 
urban agglomeration.

5. Conclusion

In recent years, various ecological warnings given to 
human beings by the continuously deteriorating ecological 
environment have made the ecological concept of sustain-
able development more and more respected all over the 
world. This study focuses on the various correlation fac-
tors of the ecological footprint, as well as its temporal and 
spatial evolution, and builds a deep learning model to ana-
lyze it to conduct detailed quantitative ecological footprint 
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investigation and explore the evolution trend of the ecolog-
ical footprint. According to the study’s results, from 1998 to 
2018, the overall ecological footprint of the urban agglomer-
ation in the Yangtze River’s middle reaches rose year after 
year, including various types of ecological footprints, espe-
cially the most significant change in carbon footprint. The 
change of per capita ecological footprint presents a devel-
opment trend of rapid growth to the peak and then slow 
growth. Furthermore, the Theil index of carbon footprint is 
the largest, and the difference varies greatly, with the lowest 
value of 0.485 appearing in 2018 and the maximum value of 
0.698 appearing in 2000, respectively. Although this research 
has made significant progress in analyzing the chronolog-
ical and geographical development of the three-dimen-
sional ecological footprint of an urban agglomeration in the 
Yangtze River’s middle reaches, there are still some gaps. 
For example, the investigation of urban agglomeration in the 
Yangtze River’s middle reaches has not been detailed into 
a single city, and we believe that further progress may be 
done in the future.
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