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a b s t r a c t
Modeling of pan evaporation (Ep) is of paramount importance in the evaluation of drinking water 
supplies, planning of regional water resources and reservoir management. The main aim of this 
study is to investigate the accuracy of linear and non-linear ensemble approaches for monthly Ep 
modeling in Erbil and Salahaddin meteorological stations of Iraq. For this purpose, sensitivity anal-
ysis was performed to determine the dominant input parameters. The results showed that Tmean, 
Tmax and Tmin are the most effective parameters. Thereafter, two scenarios were involved for the 
Ep modeling. In scenario 1, the ability of artificial neural network, least-squares support-vector 
machine and multiple linear regression models was examined for the estimation of Ep. The results 
demonstrated that different input combinations led to different performance, model 3 (which has 
Tmean, Tmax, Tmin, RH) for Erbil station and model 2 (which has Tmean, Tmax, Tmin) for Salahaddin sta-
tion provided the best performance among several models developed. In scenario 2, linear and 
non-linear ensemble approaches were employed as simple linear average, weighted linear aver-
age and non-linear ensemble (NLE) models to improve predictions of the single models. The 
results reported that ensemble modeling could improve performance of single models and NLE 
model provided the best results due to its non-linear nature. The general results demonstrated 
that the proposed ensemble models could improve predictions of single models up to 5% and 
16% for Erbil and Salahaddin stations, respectively.
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1. Introduction

Estimation of evaporation with reliable accuracy is very 
crucial for reservoir control, regional water resources plan-
ning, drought management and domestic water supplies 
[1]. For irrigation systems and various water resources 
planning, water loss due to evaporation should be a well-
thought-out issue. In scarce rainfall areas, the water loss 

by evaporation for a reservoir or lake can constitute huge 
amount of water budget, and tremendously contributes to 
dropping of surface water level [2].

For Erbil and Salahaddin stations in the Kurdistan 
region, the climate is semiarid that characterized by high 
temperatures and decline in precipitation amount with 
visible negative effects that include vegetation cover des-
iccation and reduced surface water amongst others [3]. 
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Consequently, proper estimation of evaporation loss from 
the water body in such climate regions has essential impor-
tance for water resources allocation and monitoring at 
regional as well as at farm scales [4].

Direct and indirect approaches are generally the two 
methods used for calculating or predicting evaporation. The 
direct method employs the use of instruments for measuring 
the evaporation (such as Ep); however, practical issues such 
as maintenance and measurement errors as well as instru-
mental limits may deter the efficiency of the evaporation 
measurements [5]. Hence, for the evaporation prediction, 
several methods using observed meteorological parame-
ters have been proposed, by modeling the relationship lin-
early between Ep and meteorological data (including solar 
radiation, sunshine hours, air pressure, relative humidity, 
air temperature, etc.) [5].

The evaporation process has an intricate stochastic char-
acteristic which cannot be simulated sufficiently by the linear 
or empirical modeling techniques and thus, can substantially 
amalgamate the prediction errors [6]. Moreover, the coeffi-
cients of the empirical methods must be calibrated before 
their application to various agroclimatic zones as under dif-
ferent conditions, they possess different behavior [7]. The 
evaporation process is yet non-linear, unsteady, incidental 
and complex [2]. Therefore, driven accurate relationship 
that will represent the physical processes involved between 
climatic parameters and Ep is difficult to be achieved [8]. 
Consequently, the use of non-linear data driven meth-
ods for hydrological modeling studies on Ep have been 
emphasized by many researchers [9].

In the last decades, artificial intelligence (AI) methods 
such as artificial neural network (ANN) and least-squares 
support-vector machine (LS-SVM) have been successfully 
applied for Ep modeling [2,10]. For instance, Rahimikhoob 
[11] estimated Ep on daily basis in a semiarid environment 
using ANN as a function of air temperature in the south-
west of Iran. Shirsath and Singh [12] applied ANN, multi-
ple linear regression (MLR) and climate-based models for 
daily Ep estimation. Kisi [2] applied LS-SVM, multivariate 
adaptive regression splines and M5 model tree for Ep mod-
eling in Antalya and Mersin stations of Turkey. Wang et al. 
[5] used four heuristic approaches including least squares 
support vector regression (LS-SVR) and MLR for daily Ep 
estimation in Dongting Lake Basin, China. Qasem et al. [13] 
modeled monthly Ep using ANN, support vector regression 
(SVR) and their hybrid forms. Chen et al. [14] investigated 
the performance of support vector machine (SVM) in mod-
eling monthly Ep in Three Gorges Reservoir Area, China. 
However, predictions by AI techniques are affected by the 
quality standard of the used data, implying that flawed 
dataset could lead to unreliable predictions by AI models. 
According to Zhang et al. [15], for a successful application 
of soft computing methods, high quality datasets with well 
extracted features that are closely related with the depen-
dent responses are critical. Estévez et al. [16] applied range 
test and other four quality control procedures to ascertain 
the quality and validity of meteorological datasets.

Though, quite reasonable and reliable results could be 
achieved by the mentioned black box models (ANN, LS-SVM 
and MLR) using dataset of a standard quality, it is appar-
ent that different outcomes could be resulted from different 

models for a particular problem. Thus, by assembling dif-
ferent techniques, more accuracy with less error would be 
accomplished than application of sole method [17]. Study 
by Makridakis et al. [18] also revealed that enhancement 
of forecasting accuracy through combination of numerous 
single models has become a common practice. According to 
Kiran and Ravi [19], the overall idea of ensemble modeling 
is the presentation of dataset in different pattern through 
combination of outputs from different models in a unique 
framework.

Ensemble modeling has been applied recently in dif-
ferent fields of hydrology, hydro-environmental and 
hydro-climatological studies. For instance, Sharghi et al. 
[20] performed earth fill dam seepage analysis by employ-
ing ensemble approaches to improve performance of AI 
models. Nourani et al. [21] modeled reference evapotrans-
piration (ET0) at several meteorological stations in Turkey, 
Cyprus, Iraq, Iran and Libya using ensemble-based model-
ing approaches. Nourani et al. [22] investigated the capabil-
ity of ensemble models in improving the prediction accuracy 
of AI based models for daily global solar radiation modeling 
across four stations in Iraq. Nourani et al. [23] examined the 
potential of ensemble learning to improve AI based predic-
tions of single and multi-step ahead ET0 process in different 
climatic regions. Up-to-date scrutiny of the current literature 
indicates that no ensemble modeling study was performed 
for evaporation process.

The primary aim of this study was to apply linear and 
non-linear ensemble concepts to enhance prediction of AI 
based models for Ep modeling in Iraq. The data obtained 
were validated using range (fixed) test method of quality 
control procedures. Due to the importance of appropriate 
input selection for AI based modeling, firstly, sensitivity 
analysis was performed to determine the dominant vari-
ables. Then, the Ep modeling was performed in scenarios 1 
and 2. In scenario 1, ANN, LS-SVM and MLR were trained 
and validated separately for monthly Ep modeling in Erbil 
and Salahaddin stations. Scenario 2 involved the applica-
tion of simple linear average (SLA), weighted linear average 
(WLA) and non-linear ensemble (NLE) methods to improve 
performance of the single models.

2. Materials and method

2.1. Study locations and data

Erbil is the largest and the capital city of Kurdistan 
region in northern Iraq. Its location is within a continental 
semiarid climate. Erbil experiences cool and rainy winters 
with warm and dry summers [21]. Erbil governorate esti-
mated population in 2010 was 1,820,000 whereas the city 
population was 852,000. The Erbil district population den-
sity in terms of persons/km2 was 472.9 [24]. Salahaddin city 
is also located in Kurdistan region in further north of Iraq. 
The climate of Salahaddin is considered semiarid accord-
ing to Şarlak and Agha [25] study. Fig. 1 shows map of Iraq 
and the respective study stations.

The data used in this study were of 20 years duration 
(1992–2011), which were measurements of daily values aver-
aged over the month including pan evaporation (Ep) (mm/
month), maximum air temperature (Tmax) (°C), minimum 
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air temperature (Tmin) (°C), mean air temperature (Tmean) 
(°C), relative humidity (RH) (%), vapor pressure (Vp) (mbar) 
and wind speed (U2) (m/s) obtained for each study station 
from general directorate of dams and reservoirs, Kurdistan. 
Table 1 gives statistical description of the used data.

As seen in Table 1, Erbil station is more semiarid which 
has Tmax as high as 45°C and RH as low as 5% whereas 
Salahaddin is more humid with Tmax as 39.9°C and maxi-
mum RH of 92%. Evaporation is less in Salahaddin station as 
minimum Ep value of 0.1 mm/month could be seen. This is 
because of the dryness of the Erbil land coupled with high 
temperature which increases the rate of Ep for Erbil sta-
tion. To determine the effect and correlation of each variable 
on the target, Pearson correlation matrix was developed. 
Table 2 provides the results of the used correlation matrix.

The results shown in Table 2 demonstrated that the cor-
relation between Ep and temperatures is directly propor-
tional, implying that as the temperature increases the rate 
of Ep increases and vice versa. This is why the temperatures 
(Tmean, Tmax and Tmin) in Erbil station have higher correlation 
than in Salahaddin station. Among all the variables, RH was 
found to be less correlated with Ep compared to the rest.

2.2. Data normalization and performance criteria

At initial stage, the data were normalized to eliminate 
the dimensions of inputs and output and to ensure equal 
attention is given to all variables. The data were normalized 
between 0 and 1 according to Elkiran et al. [26] as;

Ep
Ep Ep
Ep Epnorm
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max min

�
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where Epnorm, Epi, Epmax and Epmin, respectively are the nor-
malized, observed, maximum and minimum values of Ep.

To determine the accuracy of the applied models, this 
study endorsed Legates and McCabe [27] study which sug-
gested that for any hydroclimatic model, determination 
Coefficient or Nash–Sutcliffe efficiency criterion (NSE) and 
root-mean-square error can be sufficient for performance 
evaluation [21], given by:
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where Epi has been defined, N, Ep
∧

i , and Epi  are the num-
ber of observations, predicted values and mean of the 
observed values, respectively. The NSE ranges between –∞ 
to 1 and root-mean-square error (RMSE) between 0 to ∞ with 
NSE towards 1 and RMSE close to 0 imply high efficiency.

Fig. 1. Study country and location of the study stations.
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2.3. Quality control tests

To determine the validity of the meteorological data 
used in this study, quality control measures were utilized to 
ascertain the erroneous and suspect data from observations. 
Initially, to ensure that all possible data have been collected 
with correct and complete record structure, verification is 
necessary. Gaps detected in the data files would be flagged 
as erroneous, and should not be used as input variable in 
the estimations [21]. Several methods can be found in the 
literature for quality assurance of meteorological parame-
ters. These include step test, range (fixed or dynamic) test, 
persistence test and internal consistency test [16,28]. Range 
(fixed) test method was selected and applied in this study, 
owing to its ability to detect erroneous data (data outside 

acceptable fixed range). Table 3 shows the applied range 
test procedures for data quality control of the variables  
used.

2.4. Proposed methodology

The Ep modeling in this study was conducted in two 
scenarios;

• Scenario 1

In the first scenario, AI based and MLR models were 
applied for modeling Ep in two meteorological stations in 
Iraq. The dependent variable (Ep) was used as a function 
of the independent variables as follows:

Table 1
Data descriptive statistics of the used variables including pan evaporation (Ep) (mm/month), maximum air temperature (Tmax) (°C), 
minimum air temperature (Tmin) (°C), mean air temperature (Tmean) (°C), relative humidity (RH) (%), vapor pressure (Vp) (mbar), 
Ep and wind speed (U2) (m/s) for 1992–2011 study period

Station Variable Minimum Maximum Mean Std. deviation

Erbil

Tmean, °C 6 37.3 21.28 9.37
Tmax, °C 9.5 45 27.5 10.63
Tmin, °C 0.6 30 15.07 8.26
RH, % 5 88 46.73 18.78
Vp, mbar 3.5 18.3 11.12 2.57
U2, m/s 1 7 2.5 0.8
Ep, mm/month 1 16 6.84 4.39

Salahaddin

Tmean, °C 0 34.6 18.02 9.27
Tmax, °C 0 39.9 22.26 10.29
Tmin, °C –1.6 29.2 13.35 8.57
RH, % 24 92 52.27 16
Vp, mbar 4.7 20.1 10.46 3.58
U2, m/s 1 4 2.36 0.64
Ep, mm/month 0.1 15.5 4.99 3.48

Table 2
Results of the applied correlation matrix

Station Variable Ep (mm/month) Tmean, °C Tmax, °C Tmin, °C RH, % Vp, mbar U2, m/s

Erbil

Ep (mm/month) 1
Tmean, °C 0.95187 1
Tmax, °C 0.947304 0.99118 1
Tmin, °C 0.948491 0.989551 0.971483 1
RH, % –0.86684 –0.88408 –0.89572 –0.86305 1
Vp, mbar 0.725395 0.778229 0.762167 0.792531 –0.54576 1
U2, m/s 0.000203 –0.03324 –0.02856 –0.04811 0.027797 0.001558 1

Salahaddin

Ep (mm/month) 1
Tmean, °C 0.886293 1
Tmax, °C 0.887104 0.981548 1
Tmin, °C 0.903824 0.982538 0.990335 1
RH, % –0.88738 –0.87041 –0.88985 –0.88183 1
Vp, mbar 0.786193 0.871481 0.873193 0.889176 –0.69521 1
U2, m/s 0.240498 0.098463 0.074705 0.106517 –0.16363 0.042088 1
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Ep mean
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where the superscript s (such as in Eps) represents the sta-
tion (e.g., Erbil or Salahaddin), Tmin, Tmean, Tmax, Vp, U2 and 
RH were previously defined.

• Scenario 2

The concepts of ensemble modeling were applied for 
accuracy improvement of the single models in the second 
scenario, where the single models output were used as 
inputs to the ensemble models as:

Ep ANN LLSVM MLREp Ep Ep
s s s sf� � �, ,  (5)

where ANNs
Ep, LLSVMs

Ep, MLRs
Ep are the Ep outputs pro-

duced by ANN, LS-SVM and MLR models.
The general methodology employed in this study is 

given in Fig. 2. For proper comparison, same methodol-
ogy is applied to the data from both Erbil and Salahaddin 
stations.

2.5. Model validation

A stratified k-fold cross validation was applied in 
this study. The main advantages of using this validation 
approach over hold-out validation approach (which uses sin-
gle test set per station) are that both training and validation 
are done by all observations and each observation is used 
exactly once for the model validation [21]. The data were ran-
domly divided in to 4-fold of equal subsamples. The model 
was trained using ¾ of the subsamples while the remain-
ing ¼ was used for testing the model. The procedure was 
repeated 4 times (the number of subsamples), in each case, 
different k–1 (4–1) subsamples were used for training and 
the remaining subsample for testing the model.

2.6. Artificial neural network

ANN provides a determined approach in dealing with 
non-linear, noisy, and dynamic data, more specifically 

when the physical fundamental relationship are not com-
pletely known [10].

ANN constitutes a number of simple processing ele-
ments that are interconnected by nodes or neurons with 
fascinating characteristics of information processing includ-
ing parallelism, non-linearity, generalization, capability, 
learning and noise tolerance. For solving many engineering 
problems, a feed forward neural network trained with back 
propagation (FFBP) algorithm is the most applied ANN 
method [31,32]. The FFBP method is comprised of layers 
of parallel processing elements known as neurons, with 
every successive layer neuron completely connected to its 
predecessor layer by weight [33]. BP algorithm generally 
accomplished this ANN learning [34]. Fig. 3 shows the FFBP 
structure (Ep).

2.7. Least-squares support-vector machine

The LS-SVM emerged from the learning context of SVM 
is a robust approach used for function estimation, classifica-
tion and for solving non-linear problems [2]. The LS-SVM 
procedure was first proposed by Suykens and Vandewalle 
[35]. By considering the time series of xi and yi as inputs 
(meteorological data) and output (Ep values), the LS-SVM 
function as a non-linear function is expressed as;

Table 3
Data validation procedures for meteorological variables 
before their use as input data for Ep estimations

Variable Unit Applied data 
validation procedure

Relative humidity (RH) % 0.8 < RH < 103
[16]

Surface pressure (Sp) Kpa 80 < Sp < 105
[29]

Maximum air temperature (Tmax)
Minimum air temperature (Tmin)
Mean air temperature (Tmean)

(°C) –20 < Tmax, Tmin, 
Tmean < 50 [28]

Mean wind speed (Umean)
Maximum wind speed (Umax)
Minimum wind speed (Umin)

m/s 0 < Umax < 100
0 < Umean [16]

Pan evaporation (Ep) mm 0 ≤ Ep < 500 [30]

 
Fig. 2. The overall methodology of the study for data between 
1992–2011 in 2 scenarios: (1) artificial neural network (ANN), 
least-squares support-vector machine (LS-SVM) and multi-
ple linear regression (MLR) were used to predict monthly pan 
evaporation (Ep). (2) Simple linear average (SLA), weighted 
linear average (WLA) and non-linear ensemble (NLE) were 
used to enhance performance.
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f X w X bT� � � � � ��  (6)

where b represents bias term, φ is the mapping function 
and w is the m-dimensional weight vector [36]. Regarding 
structural minimization principle, the regression problem 
using the function estimation error can be expressed as;

min ,J w e w w eT
m

i
i
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1
2 2 1

2�  (7)

Which is dependent on the following constraints;
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T
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where ei refers to xi training error and γ denotes to regular-
ization constant.

Lagrange multiplier optimal programming mechanism is 
applied for solving Eq. (7) to determine the solutions of w 
and e. By forming unconstraint problem through the mod-
ification of the constraint problem, the objective function 
can be achieved. The L Lagrange function is given by;
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where αi denotes to Lagrange multipliers.
Considering Karush–Kuhn–Tucker [37], by applying 

partial derivatives to Eq. (9), the optimal condition with 
respect to w, b, e, α can be obtained as;
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After elimination of w and ei, the linear equations can be 
derived as;
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where Y = y1, …, ym, Z = φ(x1)Ty1, …, φ(xm)Tym, I = [1, …, 1], 
α = [α1, …, αl].

Kernel function can be expressed as K(x, xi) = φ(x)Tφ(xi), 
i = 1, …, m, which is satisfied with Mercer’s condition. 
Owing to that, the LS-SVM regression becomes;

f x K x x b
i

m
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�
�

1

� ,  (12)

This study employed radial basis function (RBF) kernel 
which is a commonly used kernel function, given as;

K x x x xi i, exp /� � � � �� �2 22�  (13)

Fig. 4 shows the LS-SVM structure for pan evaporation 
modeling.

2.8. Multiple linear regression

Multiple linear regression (MLR) is a famous method of 
modeling mathematically, the linear relationship between 
one or more independent variables and dependent vari-
able. In general, the dependent variable y, and n regressor 
variables may be related by [26]:

y b b x b x b x b xi i� � � � ��� �0 1 1 2 2 3 3 �  (14)

where xi is the value of the ith predictor, b0 is the regression 
constant, and bi is the coefficient of the ith predictor and 
ξ is the error term.

2.9. Ensemble modeling concepts

Evaporation process, like any other natural process, 
may exhibit both linear and non-linear behaviors. As such, 
neither linear nor non-linear models could be sufficient for 
accurate modeling of evaporation process, because the AI 
models cannot deal with both linear and non-linear aspect 
of the system while MLR could not cope with non-linear-
ity of the data. Therefore, application of ensemble models, 
which combined all models, will take care of the deficiencies 

 

Fig. 3. A three layered FFBP structure.
 

Fig. 4. Structure of LS-SVM model for Ep modeling [2].
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of the single models. The ensemble approaches are cat-
egorized into two based on Kiran and Ravi [19] study, as; 
(i) linear ensemble approach; which includes weighted 
median, weighted average and linear average. (ii) non-lin-
ear ensemble approach; which involves application of 
non-linear model, for example, ANN.

The proposed ensemble modeling in this study 
includes two linear (SLA, WLA) and non-linear ensemble 
(NLE) approaches.

Simple linear average (SLA) is conducted as;

Ep Ep�
�
�1

1N i
i

n

 (15)

where Ep  is the obtained ensemble output, Epi is the out-
put produced by the ith model (FFBP, LS-SVM, MLR) and 
N is the applied number of single models.

The weighted linear average (WLA) is given as;

Ep Ep�
�
�wi i
i

N

1
 (16)

where wi is the weight generated based on model perfor-
mance in terms of NSE, given as;

wi
i

i
i

N�

�
�
NSE

NSE
1

 (17)

For the non-linear ensemble method, outputs of the 
FFBP, LS-SVM and MLR models are combined together as 
inputs to a new ANN model to obtain the final Ep output.

3. Results and discussion

As the general methodology of this study involves val-
idation of the used meteorological variables, sensitivity 
analysis to determine dominant input variables, applica-
tion of FFBP, LS-SVM (as AI based) models and conven-
tional MLR model for single modeling in the first scenario, 
and utilization of SLA, WLA and NLE models in the second 

scenario to enhance the Ep prediction, hence, the results 
obtained are provided accordingly.

3.1. Range (fixed) test results

To properly validate and ensure quality standard of 
the variables to be used in this study, quality assurance 
procedures were utilized to identify erroneous values. The 
applied fixed range test results showed no identification 
of erroneous or flagged data. Indicating that all variables 
are within the accepted limit described in Table 3. This can 
also be supported by the descriptive statistics of the data 
given in Table 1.

3.2. Sensitivity analysis of input variables

One of the most important aspects of any AI based 
modeling is the appropriate selection of input variables, 
as failure to do so may lead to inefficient modeling. Thus, 
in this study, single-input single-output ANN based sensi-
tivity analysis was conducted to determine the most dom-
inant input variables. The results of sensitivity analysis are 
given in Fig. 5.

As shown in Fig. 5, the three categories of tempera-
ture (Tmean, Tmax, Tmin) are the most dominant variables in 
the prediction of Ep. This could be because temperature 
has a direct effect on evaporation process, implying that 
increase or decrease in temperature will lead to increase 
or decrease in evaporation. As such, temperature could be 
the main indicator for the evaporation process especially 
in this study stations, which have semiarid climate that 
constitutes higher temperature.

Visual inspection of the results depicted by Fig. 5 also 
shows that U2 has the least sensitivity to Ep prediction in 
both stations. In other words, U2 has the minimum effect 
on Ep process among the variables considered in this study. 
Although the rate of evaporation may increase with increase 
in U2, the ineffectiveness of U2 in Erbil and Salahaddin sta-
tions demonstrated that evaporation process is not heavily 
dependent on U2. In another perspective, U2 as a sole input 
variable may not have much effect on evaporation pro-
cess in the two study stations. According to Nourani et al. 
[21] study, U2 as a standalone variable may not have much 

 
Fig. 5. Sensitivity analysis results for the study period from 1992–2011 based on maximum air temperature (Tmax) (°C), minimum air 
temperature (Tmin) (°C), mean air temperature (Tmean) (°C), relative humidity (RH) (%), vapor pressure (Vp) (mbar) and wind speed 
(U2) (m/s) for (a) Erbil station (b) Salahaddin station.
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effect on evaporation and transpiration, but significantly 
increases prediction accuracy when combined with other 
variables. This is supported by Wang et al. [5] study which 
shows that addition of U2 into model inputs significantly 
improve model accuracy in most cases despite having low 
correlation with Ep.

As can be seen also in Fig. 5, the first 4 variables have 
much impact on Ep and hence used in 3 different input 
combinations for the Ep modeling in both stations.

3.3. Scenario 1 results

For the ANN model in both stations, FFBP was used 
for the model training using Levenberg–Marquardt (LM) 
algorithm. Single hidden layer was used and via trial 
and error, the best number of hidden layer neurons was 
selected. For LS-SVM modeling, RBF is the most utilized 
kernel function [21] and hence used in this study. Lastly, 
based on input-output linear relationship, MLR modeling 
of Ep was performed. Table 4 shows the results of applied 
models for scenario 1.

For the structure of FFBP model in Table 4, x–y–z rep-
resent the number of inputs, number of hidden layer nodes 
and output. For LS-SVM, RBF is the kernel function used 
in LS-SVM construction and x–y for MLR model signify 
inputs and output number of variables, respectively.

In view of the obtained results in Table 4, it is appar-
ent that all the applied models could lead to acceptable 
Ep modeling.

For Erbil station, the performance of the models in terms 
of NSE and RMSE are up to 0.9268 and 0.0820 for FFBP 
model, 0.8920 and 0.0899 for LS-SVM model and 0.8836 
and 0.0941 for MLR model in the validation phase for the 
best performance models. Also from Table 4, it can be seen 
that the AI models have superior performance over MLR 
model both in training and validation phases. This could be 
attributed to the ability of AI techniques to deal with com-
plex and non-linear Ep process.

Comparing the results in Table 4 and results obtained by 
Goyal et al. [38] study, it can be seen that despite using less 
number of input variables, this study led to better predic-
tion performance. This implies that the higher performance 
of the AI based prediction of Ep lies on the proper method 
employed for the selection of input variables, less complex-
ity, reduced uncertainty and a lot of time could be saved 
with better performance when the required inputs are used.

Similarly, the results of this study outperformed the 
empirical method of Priestley–Taylor, MLR and ANN based 
simulation developed by Bruton et al. [39] for the predic-
tion of daily Ep at Watkinsville, Georgia. Bruton et al. [39] 
study obtained the highest performance by ANN with R2 
value of 0.717 and RMSE value of 1.11 mm whereas, the 
best performance in this study was achieved by FFBP with 
R2 value of 0.9268 and RMSE of 0.0820 (normalized) in the 
validation phase. In addition to robust inputs selection tech-
nique applied that enhanced performance in this study, the 
time scale of the data may have influence on the results of 
the Ep prediction. With longer study period (1992–2011), 

Table 4
Results of pan evaporation (Ep) modeling for the study period 1992–2011 in the first scenario based on model 1 (M1), model 2 
(M2), model 3 (M3) using feed-forward back propagation (FFBP), least-squares support-vector machine (LS-SVM) and multi-
ple linear regression (MLR) models as analyzed by Nash–Sutcliffe efficiency criterion (NSE) and root-mean-square error (RMSE) 
performance evaluation criteria

Station Model Model no. Input Structure Training Validation

NSE RMSE NSE RMSE

Erbil

FFBP
M1 Tmin, Tmean 2-7-1 0.9215 0.0803 0.9042 0.0938
M2 Tmax, Tmin, Tmean 3-6-1 0.9444 0.0675 0.8979 0.0969
M3 Tmax, Tmin, Tmean, RH 4-10-1 0.9385 0.0711 0.9268 0.0820

LS-SVR
M1 Tmin, Tmean RBF 0.9236 0.0792 0.8988 0.0964
M2 Tmax, Tmin, Tmean RBF 0.9282 0.0768 0.9098 0.0910
M3 Tmax, Tmin, Tmean, RH RBF 0.9290 0.0763 0.9120 0.0899

MLR
M1 Tmin, Tmean 2-1 0.9104 0.0858 0.8915 0.0998
M2 Tmax, Tmin, Tmean 3-1 0.9110 0.0855 0.8906 0.1003
M3 Tmax, Tmin, Tmean, RH 4-1 0.9122 0.0849 0.9036 0.0941

Salahaddin

FFBP
M1 Tmin, Tmean 2-5-1 0.8519 0.0648 0.7356 0.1236
M2 Tmax, Tmin, Tmean 3-10-1 0.8612 0.0627 0.8004 0.1074
M3 Tmax, Tmin, Tmean, RH 4-8-1 0.8192 0.1022 0.7699 0.0808

LS-SVR
M1 Tmin, Tmean RBF 0.8111 0.0732 0.7775 0.1134
M2 Tmax, Tmin, Tmean RBF 0.8210 0.0713 0.7788 0.1130
M3 Tmax, Tmin, Tmean, RH RBF 0.8356 0.0683 0.7776 0.1134

MLR
M1 Tmin, Tmean 2-1 0.7880 0.1107 0.7235 0.0886
M2 Tmax, Tmin, Tmean 3-1 0.7888 0.1104 0.7249 0.0883
M3 Tmax, Tmin, Tmean, RH 4-1 0.7894 0.1103 0.6943 0.0931

Data have been normalized, so RMSE has no unit.
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in this study, better simulation of the complex and uncer-
tain phenomenon surrounding Ep might be achieved than 
shorter period (1992–1996) by Bruton et al. [39] study.

However, a close performance can be seen when this 
study results are compared with Simon-Gáspár et al. [40] 
study. Their predicted Ep by MLR method has maximum 
R2 value of 0.62 in comparison with 0.9036 of this study. In 
contrast, the results obtained using Kohonen self-organizing 
map (K-SOM) has superior performance with maximum R2 
value of 0.98 in comparison to R2 value of 0.9268 of this study. 
The similarity as well as the close performance of the two 
studies could be attributed to the selection of the best input 
variables where the sensitivity analysis of both the stud-
ies showed better correlation of temperature variables and 
poor correlation to RH to Ep (Table 2).

In terms of the performance comparison between AI 
based and MLR models, this study is in agreement with that 
carried out by Wang et al. [9], where they found that across 
all stations, MLR model has the least Ep prediction accu-
racy. The reason could be due to the fact that MLR is a linear 
model whereas Ep may contain both linear and non-linear 
behaviors, hence, the MLR might generate errors from the 
non-linear aspect of Ep and thus, less efficiency is achieved. 
However, Wang et al. [9] study showed a relatively supe-
rior results to this study. Many reasons could lead to the 
difference, some of them include; (1) It has been proven by 
previous studies such as Nourani et al. [21] that there is no 
specific model to be employed which can perfectly simulate 
the underline behavior of a real world problem. (2) Wang 
et al. [9] included sunshine durations (HS) variable in their 
models development which was not available for application 
in this study. This may play a significant role in the differ-
ence in results of the two separate studies as HS is obviously 
amongst the most significant factors influencing evaporation 
process. (3) Another factor that is of great significance is arid-
ity index of the study stations. In this study, both Erbil and 
Salahaddin are a semiarid climate stations that are charac-
terized by high temperature and low precipitation amount. 
As demonstrated by many studies [5], factors affecting the 
rate of evaporation are the climatic variables. With the com-
plex nature of these factors in semiarid regions, the evap-
oration process would be uncertain and complex. Hence, 
predicting and investigating the phenomenon surrounding 
the evaporation process in these stations would be tedious 
and highly competitive. This led to less predictive efficiency 
of the results of this study compared to Wang et al. [9]  
study.

The results of this study can also be compared with the 
results of Wang et al. [41] study. It can be vividly seen that 
the performances of the models are comparable for the 2 
studies despite fluctuations of inferiority and superiority of 
one model over another and vice versa. The results similar-
ity can be connected to the number of inputs as both stud-
ies have a maximum of 4-input variables. The little disparity 
observed could be due to the fact that different methods were 
involved to simulate the Ep process, as every technique has 
its unique step to follow in model development and every 
technique has different generalization capability.

Among the AI models in Table 4, FFBP is found to have 
better prediction accuracy, though fluctuations could be 
observed such as in M2 where better performance is achieved 

by LS-SVM model using both NSE and RMSE performance 
indicators in the validation phase. Many reasons could be 
associated to this development some of which include; 

• Time series prediction involved complex and uncertain 
behavior of a system due to the huge amount of data 
used for a long period of time, which could be affected 
by seasonality, non-stationarity and missing data. This 
could result in increase and decrease (or rise and fall) of 
the observations, which in turn might lead to failure of 
a particular model to capture all the aspects of the data 
efficiently. As such, one model may perform better at cer-
tain stage and inferior at another stage of the modeling.

• Though the applied AI models are both non-linear in 
nature, but their methodologies of application as well 
as the training parameters are quite different, thus an 
adjustment of a particular parameter may increase 
accuracy of one model and could be deterrent to another.

Also, by visual inspection of the results for Erbil sta-
tion, it can be seen that for all the applied models, the per-
formance of the developed models increases as the number 
of input increases. This shows that evaporation process has 
a complex stochastic nature which its accurate prediction 
requires several climatological variables and depends on 
many factors. Despite the existence of strong correlation 
between Ep and temperatures, inclusion of RH increased 
efficiency of the Ep modeling. For example, comparing M1 
(which has only Tmin and Tmean) with M3 (which has Tmax, 
Tmin, Tmean and RH) a difference in performance in terms of 
NSE up to 3% could be achieved for FFBP models in the val-
idation phase. Fig. 6 shows the time series plot of the best 
models for Erbil station in the validation phase.

For Salahaddin station, being both the stations have 
semiarid climate, the results for Salahaddin station show 
similar characteristics to the results obtained for Erbil sta-
tion. In contrast, M2 provided the best performance and 
inclusion of RH for M3 reduced the modeling performance.

Comparing the results for Erbil and Salahaddin sta-
tions in Table 4, it can be deduced that, the applied mod-
els provided better performances in Erbil stations than in 
Salahaddin despite having same semiarid climate. This is 
because evaporation has a direct relationship with tem-
perature. As shown in Table 1, the Tmax, Tmin, and Tmean 
are all higher in Erbil station than in Salahaddin station, 
hence as the temperature increases the rate of evapora-
tion increases, hence higher Ep prediction by the models. 
However, behavior of the climate between the stations 
may lead to higher results in Erbil than Salahaddin. For 
instance, Şarlak and Agha [25] study shows that differ-
ent aridity index and period of investigation give varied 
climate for Salahaddin station. Using UNEP [42] arid-
ity index, Salahaddin station was found to be semiarid 
between 1998–2011, subhumid between 1980–1997 and 
subhumid between 1980–2011. The unrealistic nature of the 
climate in the station leads to inefficiency of models to give 
comparable performance with the results of Erbil stations. 
Fig. 7 shows observed vs. predicted plot of the best models 
in validation phase for Salahaddin station.

As can be seen in Figs. 6 and 7, two points are ran-
domly selected in each figure. At point 1 in Erbil station, 
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the observed Ep value is 14 mm/month, FFBP value is more 
closer to the observed value which implies better agreement 
between observed and predicted values and hence, better 
accuracy. At point 2, MLR model produced the best perfor-
mance. For Salahaddin station at the first point, MLR value is 
more close to the observed value than the rest of the models 
despite having less performance when the whole data is con-
sidered (as seen in Table 3), while at point 2, FFBP has better 
accuracy. Based on the aforementioned development it can 
be deduced that, different performances could be achieved 
by different models at different point in time, suggesting 
that best performing model could be weak at certain period 

of a time series while the weak could produce strong per-
formance at a given point. Thus, by assembling of the mod-
els, the gap created by the weakness of each model could 
be filled up. Therefore, in the next section (scenario 2) SLA, 
WLA and NLE approaches were applied to increase the per-
formance of the single models.

FFBP was used as the kernel for NLE modeling. The 
choice of the ANN model was made based on its com-
patibility, accuracy and higher reported performance by 
recently applied ensemble studies [20–22]. Fig. 8 shows the 
schematic illustration of the proposed NLE concept with 3 
inputs, 5 hidden neurons and an output.

 
Fig. 6. Time series of the best performing models in the validation phase for Erbil station.

 
Fig. 7. Time series of the best performing models in the validation phase for Erbil station.
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3.4. Scenario 2 results

In this section, SLA, WLA and NLE approaches were 
applied to enhance the performance of the single models. 
As 3 models (M1, M2, M3) were developed by each applied 
technique for the single modeling, the ensemble model 
were produced accordingly. Table 5 shows the results of the 
ensemble models for Erbil station. The procedure followed 
for FFBP non-linear ensemble modeling is same as that of 
single model and the description of the model structure is 
same. The x–y numbers are representations of the number of 
inputs and output for SLA while a,b,c are the weights gener-
ated for WLA ensemble.

As demonstrated in Table 5, amalgamation of different 
models in form of ensemble modeling has a significance 
effect in Ep modeling. The applied ensemble concepts in this 
study have improved the performance of single models.

For Erbil station, the improvements in performance of 
NLE models over single models are achieved up to 2%, 4% 
and 1% for FFBP models, 2%, 3% and 3% for LS-SVM mod-
els and 3%, 5% and 4% for MLR models with respect to M1, 
M2 and M3, respectively. It is obvious from the results that 
SLA and WLA have comparable performance. This could 
be because; both the two models are derived linearly, which 
makes them possess similar behavior in terms of their per-
formances. The little difference between the performances 
of the models is due to difference in their methodology.

For the analysis of uncertainties of ensemble predictions 
due to uncertainties in input data, the average performance 
of the ensemble concepts for each model (models 1, 2 and 
3, for different set of inputs) was compared to the average 
performance of single models. Table 6 presents the results 
of the average models performance for each station.

From the results displayed by Table 6, it is obvious that 
the choice of input data plays an important task in Ep ensem-
ble predictions. For instance, considering Erbil station, the 
average results for single models show that M2 exhibited the 
most reliable performance (as boldly shown) in both train-
ing and validation phases. Similarly, the ensemble models 
average results also show that M2 provided the most satis-
factory results. Nevertheless, the results in terms of RMSE 
indicator show a slight under performance of M2 compared 
to M3 in the validation phase, which may be due to linear 
effect of single models on SLA and WLA models. Based on 
this results in Table 6, it is worthy to mention that the selec-
tion of the best input data (dominant variables) for Ep pre-
diction is not limited to providing better model output for 
single modeling but rather, it also affects the performance of 

Table 5
Results of the ensemble models

Station Model Model no. Model structure Training Validation

NSE RMSE NSE RMSE

Erbil

SLA
M1 3-1 0.9220 0.0800 0.9017 0.0950
M2 3-1 0.9351 0.0730 0.9218 0.0848
M3 3-1 0.9316 0.0749 0.9208 0.0853

WLA
M1 0.3356, 0.3336, 0.3309 0.9220 0.0800 0.9018 0.0950
M2 0.3301, 0.3372, 0.3327 0.9351 0.0730 0.9217 0.0848
M3 0.3376, 0.3326, 0.3295 0.9317 0.0749 0.9207 0.0853

NLE
M1 3-5-1 0.9391 0.0707 0.9163 0.0877
M2 3-9-1 0.9445 0.0675 0.9367 0.0763
M3 3-8-1 0.9424 0.0687 0.9385 0.0752

Salahaddin

SLA
M1 3-1 0.8175 0.0934 0.8131 0.0728
M2 3-1 0.8172 0.0982 0.8140 0.0726
M3 3-1 0.8075 0.0955 0.7861 0.0779

WLA
M1 0.3289, 0.3476, 0.3235 0.8178 0.0933 0.8117 0.0731
M2 0.3474, 0.3380, 0.3146 0.8176 0.0981 0.8143 0.0726
M3 0.3434, 0.3469, 0.3097 0.8082 0.0953 0.7834 0.0784

NLE
M1 3-12-1 0.8697 0.0862 0.8672 0.0614
M2 3-9-1 0.8237 0.0909 0.8156 0.0723
M3 3-10-1 0.8540 0.0879 0.8473 0.0658

Data have been normalized, so RMSE has no unit.

 
Fig. 8. Schematic illustration of the proposed non-linear 
ensemble concept.
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ensemble output. Fig. 9 shows the scatter plots of the ensem-
ble models in the verification phase for Erbil station for 
M1, M2 and M3, respectively.

Considering the performance of ensemble models for 
Salahaddin station shown in Table 5, it can be deduced that 
the performances of the single models are improved by 

NLE models in the validation phase up to 13%, 2% and 8% 
for FFBP models, 9%, 4% and 7% for LS-SVM models and 
15%, 10% and 16% for MLR models with respect to M1, 
M2 and M3, respectively.

Comparing the performances of the 3 ensemble models 
applied it can be seen that for all models, NLE provided the 

Table 6
Average results for single and ensemble models

Station Model type Model no. Training Validation

NSE RMSE NSE RMSE

Erbil

Single model
M1 0.9185 0.0818 0.8982 0.0967
M2 0.9279 0.0766 0.8994 0.0961
M3 0.9266 0.0774 0.9141 0.0887

Ensemble model
M1 0.9277 0.0769 0.9066 0.0926
M2 0.9382 0.0711 0.9267 0.0820
M3 0.9352 0.0728 0.9266 0.0819

Salahaddin

Single model
M1 0.8170 0.0829 0.7455 0.1085
M2 0.8237 0.0815 0.7680 0.1029
M3 0.8147 0.0936 0.7472 0.0958

Ensemble model
M1 0.8350 0.0909 0.8307 0.0691
M2 0.8195 0.0957 0.8146 0.0725
M3 0.8232 0.0929 0.8056 0.0740

Data have been normalized, so RMSE has no unit.

Fig. 9. Observed vs. predicted plots for Erbil station for (a) M1, (b) M2 and (c) M3.
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best performance. This might be because; (i) non-linear ker-
nel is used for the development of NLE model, which has 
the capability of dealing with non-linear aspect of the evap-
oration process as such, produced highest performance. (ii) 
Both SLA and WLA simulate the behavior of the system lin-
early, hence errors developed from the single models could 
be generated by the linear models which could reduce their 
performances. Fig. 10 shows scatter plots for Salahaddin 
station in the verification phase of Salahaddin station.

By careful observation of the obtained results in Table 4, 
it can be realized that similar to single models, the applied 
ensemble models has better results in Erbil station than 
Salahaddin station. However, higher percentage of ensemble 
performances are achieved in Salahaddin than Erbil station. 
These distinct characteristics implied that, ensemble models 
emulate the performance of single models, meaning more 
efficient single models will lead to more accurate ensem-
ble models and vice versa. On the other hand, less perfor-
mance single models have more space for accuracy improve-
ment, hence, higher increment in percentage is achieved 
by less efficient single models.

4. Conclusion

In this study, novel artificial intelligence (AI) based 
ensemble techniques including simple linear average (SLA), 
weighted linear average (WLA) and non-linear ensem-
ble (NLE) were applied for monthly pan evaporation (Ep) 

modeling across Erbil and Salahaddin stations in Iraq. The 
advantage of this proposed methods over others is that both 
linear and non-linear aspects of Ep are taken into cognizance, 
thereby resulting in more robust, improved and accurate 
predictions. For this purpose, two AI based models includ-
ing feed-forward back propagation (FFBP) neural network 
and LS-SVM were employed initially as single models after 
sensitivity analysis was performed that determined the 
best input combinations. Additionally, a conventional mul-
tiple linear regression model was also applied for compar-
ison. Thereafter, the ensemble techniques were applied to 
improve the performance of the single models.

The simulation results and the comparative analysis per-
formed indicated that the proposed ensemble techniques 
(SLA, WLA and NLE) can be useful tools for performance 
improvement of Ep time series prediction and they have out-
performed all the single models tested using the same data-
sets. The results also showed that ensemble models could 
improve predictions of single models up to 5% for Erbil 
station and 16% for Salahaddin station. The overall results 
showed that, ensemble modeling could be applied for both 
least performance and high-performance single models, 
but for better accuracy, high performance single models 
should be used for ensemble modeling of Ep in Erbil and 
Salahaddin stations.

This study has two main contributions: (i) The pro-
posed ensemble techniques have improved the predict-
ing performance of AI based single models. Despite the 

 

Fig. 10. Observed vs. predicted plots for Salahaddin station for (a) M1, (b) M2 and (c) M3.
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uncertainty and difficulty surrounding the Ep prediction, 
they have produced a promising improvement over sin-
gle models. These can serve as an alternative methods for 
other time series and hydro-climatological studies includ-
ing evapotranspiration, precipitation to mention a few. 
(ii) The applied ensemble methods also implied that their 
successful application is possible in all climate regions. 
Being semiarid climate stations (Erbil and Salahaddin) that 
characterized by scarce water resources, Ep prediction in 
those regions is difficult and challenging task. As such, the 
required performance could be achieved if the methods 
are applied in other water scarce regions such as arid and 
hyper arid climate stations. Further studies should include 
the application of other heuristic computing approaches 
and incorporation of more stations from distinct climates 
to investigate the behavior of ensemble models with 
respect to climate and different stations.
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