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a b s t r a c t
Human excretion contains metabolites, when entering the drinking water stream, can cause a low-
ering of blood pressure, arterial inflammation, neointima formation, etc. Various types of medicines 
are consumed by the patient. These medicines, through excretion, enter the ecosystem. Being per-
sistent, these medicines remain in the ecosystem and can cause chronic effects on the fauna and flora 
of any ecosystem. Many treatment methods, that is, coagulation, advanced oxidation, and adsorp-
tion were proposed for these medicines but due to cost and sludge production, the results are not 
favorable. In this study novel, iron-titania nanoparticles were synthesized for the treatment of sita-
gliptin which is diabetic II medicine (DPP-IV). Characteristics peaks X-ray diffraction at 27.52°, 
33.39°, 35.65°, and 53.26° indicated the crystalline structure while scanning electron microscopy/
energy-dispersive X-ray spectroscopy confirmed the required molar ratio of iron and titania with a 
size of 100–290 nm. The method validation results for sitagliptin showed 0.69 RSD%, 34 ppm limit 
of quantification, and 11 ppm limit of detection. Optimization of parameters was performed using 
Taguchi design of experiment which gave 80% removal efficiency of sitagliptin at 7 pH, 10 min, 
200 mg of dose, and 70 ppm concentration. The adsorption isotherms models suggested a mul-
tilayer process (Freundlich isotherm), with an adsorption energy of –8.6 kJ/mol (exothermic and 
spontaneous). Kinetic studies indicated that the adsorption process followed second-order kinetics.
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1. Introduction

The increasing water demand due to the increased 
global population leads to scarcity of water on a large scale. 
Inadequate sanitation, the continuous emergence of water-
borne diseases, and the disruption of water quality are the 
major factors responsible for the deterioration of existing 
water bodies [1]. Out of many, pharmaceutical chemicals 
are one of the pollutants which have adverse effects on 
waste bodies. These compounds are present in the range of 

ng/L to µg/L in the wastewater stream even though these 
minor quantities are posing serious impacts on the envi-
ronment [2,3]. The major components of pharmaceuticals 
are antibiotics, antihistamines, steroids, anticancer, etc. 
These pharmaceuticals have a very low bioaccumulation 
rate of 20%–30% in humans and animals [4]. To maintain 
a healthy life, medicines are used that are potent for the 
human body and animals after excretion from the body. 
Human and animal excretions (in the form of wastewater) 
are discharged in lakes and rivers in the form of metabolites. 
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These metabolites, persistent in nature, are posing chronic 
effects on both flora and fauna.

Among many, sitagliptin which is a DDP-IV inhibitor 
was studied using nanoparticles in this research. Sitagliptin 
is one of the dipeptidyl peptidase-4 inhibitors, also called 
DPP-4 inhibitors, which are classified as novel oral anti- 
hyperglycemic agents and are commonly used to treat 
type 2 diabetes mellitus [5]. Sitagliptin is well absorbed 
orally and has a bioavailability of 87%. The suggested dose 
for sitagliptin may vary from 25 to 100 mg once a day for 
30 weeks depending on the condition [6]. An amount 
of 3.25–13 mg of sitagliptin excreted from the human 
body has a half-life 12.8 h based on the consumption and 
excretion rate, the predicted environmental concentra-
tion was calculated using Eq. (1) given by the Technical 
Guidance Document of the European Commission on Risk 
Assessment [7]. The obtained value was 1.974 × 10–5 mg/L.
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where A (kg): total medicine utilized every year in a coun-
try; R (%): elimination rate; P: number of inhabitants in 
a country; V (m3): amount of wastewater per inhabitant 
per day.

This sitagliptin deposited in aquatic animals and plants, 
if consumed by humans, may have significant effects like 
lowering blood pressure, arterial inflammation, neointima 
formation, circulating endothelial progenitor cells, and 
increased homeostasis [8,9]. Hence, the treatment of sita-
gliptin was required.

Many researchers are now working on the treatment 
of these persistent compounds. They used different tech-
niques for the treatment of water that includes biofilms 
[10], ultrasound-persulphate [11], catalytic ozonation [12], 
microbubble ozonation [13], microalgae [14], and elec-
trocoagulation [15]. Production of secondary hazardous 
and toxic pollutants, consumption of a large amount of 
energy, and production of sludge minimize the efficiency 
of these mentioned methods. Researchers are now moving 
for the adsorption process through nanoparticles [16] as 
adsorbents due to their high thermal stability, high poros-
ity, and high surface area [17]. Different types of metal 
nanoparticles like TiO2, ZnS, ZnO, CdS, Fe2O3 [18], PES/
silica nanoparticles [19], Ni/graphene nanoparticles [20], 
PVC/PC/MAg membrane [21], and Cu/Ag nanocompos-
ite [22], etc. have been reported as very effective in the 
degradation of pharmaceuticals.

Recently, it has been investigated that introducing one 
or two metals onto the TiO2 nanoparticles, can improve the 
removal efficiency of nanoparticles against the removal 
of different pharmaceuticals. Thus, co-doping of differ-
ent materials like metallic or non-metallic ions may pro-
duce a synergetic impact to enhance the potential of TiO2 
nanoparticles against the removal of pharmaceutical com-
pounds [23]. In one study, 94% degradation of amoxicillin 
was observed by using Co-doped TiO2 nanoparticles [24], 
whereas, in another study, Cu-TiO2 nanoparticles were eval-
uated against the removal of naproxen and 87% removal was 

observed [25]. One other study shows the complete removal 
of bisphenol A by using Zr-TiO2 nanoparticles [26].

Considering all the above aspects, in this study novel, 
iron doped-titania nanoparticles were synthesized and 
characterized using Fourier-transform infrared spectros-
copy, X-ray diffraction (XRD), scanning electron microscopy 
(SEM), and energy-dispersive X-ray spectroscopy (EDX). 
The synthesized nanoparticles were used for the first time 
in the treatment of sitagliptin in an aqueous solution using 
the LxL4 design of the experiment (Taguchi). To study the 
tentative mechanism different mathematical isotherm 
models were also studied.

2. Materials and methods

2.1. Synthesis of iron-doped titania nanoparticles

The nanoparticles were prepared by the co-precipitation 
method [27]. Titania (5.79g, Merck, Pakistan) was added to 
21 mL of ethanol (Merck, Pakistan) and stirred (700 rpm) 
at room temperature for 2 h. Afterwards, 8 mL of distilled 
water and 7.84 g of FeCl3·6H2O (Merck, Pakistan) were 
added and further stirred for 2 h. The resultant slurry was 
placed in the oven at 100°C till the color changed to light 
yellow. This was further transferred to a furnace at 550°C 
for drying. The dried product was kept in an airtight jar 
and used when required.

2.2. Analytical analysis

The prepared nanoparticles were analyzed using XRD 
(Bruker 2D Phaser, MA, USA) having Cu-Kα at 0.154178 nm 
(λ). The θ range was 20°–60° and the voltage was 30 kV with 
10 mA. The size of the nanoparticles was analyzed using 
Litesizer 500® in ethanol (as solvent). The morphology was 
studied using SEM with EDX and E-beam lithograph (FEI 
Nova 450 NanoSEM, Thermo Fisher, MA, USA). The oper-
ating conditions of SEM/EDX were 10 kV (HV), 3 (spot size), 
0.1 µS (dwell time), ETD (detector), and 4 frames (filtering). 
The results of XRD and SEM/EDX are given in Fig. 2.

2.3. Method validation

For analysis of the sitagliptin method validation on a 
UV-Visible spectrophotometer was performed. For this pur-
pose, a standard solution of 1,000 ppm in distilled water 
was prepared. This stock solution was used to prepare 
standard solutions from 50–80 ppm. The standard solu-
tions were analyzed on a UV-Visible spectrophotometer at 
267 nm. The calibration curve of it is shown in Fig. 1. The 
various parameters calculated based on this calibration for 
method validation are given in Table 1. Various parameters 
like linearity, precision, the limit of detection (LOD), and 
the limit of quantification (LOQ) were calculated (Table 1).

The following equations were for LOD and LOQ.

LOD SDof Intercept
Slope

�
�3 3.  (2)

LOQ SDof Intercept
Slope

�
�10  (3)
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2.4. Taguchi design of experiment (DOE) for optimization of 
parameters

The optimization of parameters was performed based 
on the initial concentration of sitagliptin, adsorbent dose, 
pH, and contact time. Taguchi’s design of the experiment 
(DOE) was to define various values of optimized param-
eters. A set of 16 experiments were performed using the 
LxL (16) design of Taguchi. Table 2 has the list of experi-
ments that were performed in the optimization of parame-
ters. The experimentation was carried out in triplicate and 
contained blank samples and control samples. The results 
have a standard deviation of 0.63.

2.5. Isotherms and kinetic study

At optimized conditions, different isotherms and kinetic 
models were studied. The different mathematical mod-
els for this purpose are given in Table 3.

3. Results and discussions

3.1. Characterization of iron-doped titania nanoparticles

Nanoparticles were characterized using XRD, SEM, 
and EDX (Fig. 2). In the case of XRD, different peaks were 
observed at 2θ values of 24.14°, 33.15°, 35.61°, 35.9°, 41.71°, 
49.48°, and 54.09° with inter planer spaces of 012, 104, 110, 
111, 200, 024, and 116. The d spacing values were in the 
range of 4.3–5.0 Å. The crystalline structure of the nanopar-
ticle is hexagonal, R3c, (167), Z = 6. The results are charac-
teristic of iron-titania nanoparticles [28,29]. The particle size 
analysis (Fig. 2) indicated that the synthetic nanoparticles 
were in the range of 280–630 nm. The SEM analysis of the 
nanoparticles showed the presence of agglomerates and 
clusters. EDX analysis showed the successful formation of 
iron-titania nanoparticles as the analysis showed the pres-
ence of Fe and TiO in the samples. The weight % of “Fe” was 
5.6 while for “Ti” it was 10.5 (Fig. 2).

3.2. Optimization of parameters

The removal of sitagliptin was evaluated by varying 
the parameters, that is, contact time, dose, concentration, 

and pH as per Taguchi’s design of experiment. The removal 
efficiency was calculated using Eq. (4).

Removal Efficiency

Initial Concentration
Final Concentrati%� � � � oon
Initial Concentration

�100  (4)

Table 1
Results of method validation of sitagliptin in distilled water 
using UV-Visible spectrophotometer in this study

Conc. (ppm) Absorbance Found conc. Recovery (%)

50 0.11 49.6 99.2
60 0.12 59.6 99.3
70 0.13 68.6 98.0
80 0.14 79.6 99.5

Parameter

Mean 99.008
St. dev. 0.683
SE of intercept 0.002
SD of intercept 0.003
Limit of detection 11.517
Limit of 
quantification 34.900
R 0.999
RSD% 0.690
Slope 0.001
Intercept 0.058
R2 0.999
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Fig. 1. Calibration curve of standard sitagliptin solution at 
267 nm wavelength.

Table 2
Set of experiments showing the values of different parameters 
for the batch adsorption studies for the removal of sitagliptin 
using nanoparticles

Sr. Conc. (ppm) pH Dose (mg) Time (min) RE %

1. 50 3 50 10 62.54
2. 50 5 100 20 25.14
3. 50 7 150 30 89.19
4. 50 9 200 40 90.7
5. 60 3 100 30 62.33
6. 60 5 50 40 66.09
7. 60 7 200 10 74.85
8. 60 9 150 20 13.72
9. 70 3 150 40 59.58
10. 70 5 200 30 77.05
11. 70 7 50 20 63.89
12. 70 9 100 10 95.11
13. 80 3 200 20 90.16
14. 80 5 150 10 82.71
15. 80 7 100 40 65.46
16. 80 9 50 30 49.78
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The RE % ranged from 25% to 95% (Table 2). At 10 min 
and 7 pH, the maximum RE % indicated that the adsorp-
tion process was not affected by hydrogen and hydroxyl 
ions. Maximum adsorption sites were available at a dose of 
200 mg of adsorbent which resulted in good RE %. A max-
imum of 70 ppm dose of sitagliptin gave good RE % as 
per the given dose active sites. The mean plots of adsorp-
tion parameters are shown in Fig. 3. The highest RE % was 
obtained between 50–200 mg/L of dose which indicated that 
the adsorbent dose is the most important parameter affecting 
the removal efficiency. Afterward, contact time is the second 
most affecting parameter for the removal efficiency giving a 
removal efficiency of more than 75%. Based on the results 
obtained for RE %, contour plots were drawn to discuss the 
interaction between variable and their effects on sitagliptin 
removal. Fig. 4 illustrates the influence of different parame-
ters on the removal of sitagliptin. In the case of pH vs. time, 
by increasing the pH between 6–8 and contact time between 
35–40 min, RE % was more than 80%. The longer contact 
time allows pollutants to occupy all the available adsorp-
tion sites on the surface of the adsorbent [6]. The adsorbent 

dose vs time indicated that increasing the dose from 150 to 
200 mg/L increases the surface area (active sites) and more 
adsorption tools placed which increases the RE %. The ini-
tial concentration of sitagliptin (<65 ppm) showed very little 
RE % because of the low interaction energy and contact time 
available for the process [30]. The effects of dose and initial 
concentration showed that by increasing the concentration 
and dose RE % increased which was a known trend due to 
the abundance of active site availability [1]. The extreme con-
tour gradient shows that the adsorption process was purely 
based on the available surface area [31]. The elliptical contour 
plots also depict that the adsorption process was very rapid 
at the start, and it declines towards higher doses which leads 
to higher turbidity in the solution. This turbidity requires 
additional treatment and increases the operational cost.

3.3. Adsorption isotherms modeling

Five adsorption isotherms Langmuir, Freundlich, 
Temkin, Dubinin–Radushkevich, and Flory–Huggins 
were studied for the removal (a tentative mechanism) of 

Table 3
Mathematical model calculations using different isotherms for the removal of sitagliptin from aqueous solution using iron-titania 
nanoparticles

Model name Mathematical form Parameters Values

Langmuir C
q bQ

C
Q

e

e

e� �
1

max max

 (5)

Qmax 0.06 mg/g
b 1.39 L/mg
RL 0.014
R2 0.99

Freundlich log log logq K
n

Ce f e� �
1  (6)

n 0.39
Kf 12.9 mg/g
R2 0.99

Temkin q RT
b

A RT
b

Ce
T

T
T

e� �ln ln  (7)

A 0.68
B 10.03
R2 0.84

Dubinin–Radushkevich log log log�
�

C
K n

o

�

�
��

�

�
�� � � � � �� �fh 1  (8)

Kad 80.00
Qmax 4.42 mg/g
E 0.08
R2 0.96

Flory–Huggins log log log�
�

C
K n

o

� � �� �FH 1  (9)

n 0.98
KFH 219.01 L/mol
ΔG –8.67 kJ/mol
R2 0.98

Pseudo-first-order log log
.

q q q
k

te t e�� � � � 1

2 303
 (10)

qe 2.2297 mg/g
k1 –0.0152 min
R2 0.8763

Pseudo-second-order t
q k q q

t
t e e

� �
1 1

2
2  (11)

qe 166.6 mg/g
k2 3.14 × 10–6 g/mg·min
R2 0.933

Eq. (5): Ce: Equilibrium concentration of adsorbate (mg/L); qe: the amount of metal adsorbed per gram of adsorbate at equilibrium; 
qm: maximum monolayer coverage capacity (mg/g); b: Langmuir isotherm constant.
Eq. (6): Kf: Freundlich isotherm constant; n: adsorption intensity.
Eq. (7): β: Temkin constant.
Eq. (8): qs: Theoretical isotherm saturation capacity; Kad: Dubinin–Radushkevich isotherm constant; ε: Dubinin–Radushkevich.
Eq. (9): θ: degree of surface coverage; n: number of ions occupying adsorption sites; KFH: Flory–Huggins isotherm constant.
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sitagliptin using iron-titania nanoparticles. The isotherms 
plots are illustrated in Fig. 5. The concentration of sitagliptin 
varied from 20–80 ppm at 7 pH, 10 min, and 200 mg/L 
dose of adsorbent. The mathematical model of isotherms 
is given in Table 3. Langmuir plot between logCe and Ce/
qe, where Ce is the concentration of sitagliptin at equilib-
rium, while qe is the experimental adsorption capacity. The 
results indicate that the monolayer adsorption with max-
imum adsorption (>90%) capacity at 200 mg of the adsor-
bent dose. The constant b was 1.39 and RL was 0.1 which 
indicates that the nanoparticles have good affinity for the 

sitagliptin which makes adsorption a favorable process [32]. 
Freundlich isotherm plot was drawn between logCe and 
logqe. The Kf (adsorption capacity) and n (adsorption inten-
sity) were 12.93 mg/g and 0.38, respectively. This indicated 
that the adsorption process was multilayer [32]. As the R2 
value Freundlich isotherm is higher than the Langmuir 
therefore it suggested that the Freundlich model was more 
suited than Langmuir for sitagliptin removal [33]. Temkin 
isotherm explains adsorption energy and adsorbate–adsor-
bent interaction. The constants A (binding constant) and 
B (binding energy) were 0.68 and 10.31, respectively. This 
suggested that the process of adsorption was exothermic 
[34]. The high value of the correlation coefficient indicated 
that the adsorption process was chemisorption with phys-
ical attraction [32]. Dubinin–Radushkevich explains the 
porosity of the adsorbent. The constant Qmax (maximum 
theoretical isotherm saturation capacity), Kad (Dubinin–
Radushkevich constant), and E (mean adsorption energy) 
were 4.42 mg/g, 80, and 0.08, respectively. These results 
supported the chemisorption adsorption with dominant 
physical attraction as the value of E is less than 8 kJ/mol 
[1,32]. Flory–Huggins isotherms explain the degree of sur-
face coverage of adsorption sites on the surface of the adsor-
bent. The constant n (number of ions occupying adsorbent 
sites) and ΔG (Gibbs free energy) was 0.98 and –8.67 kJ/mol, 
respectively. This indicated that nanoparticles have eno-
ugh adsorption active sites where sitagliptin can adsorbed  
spontaneously (Table 3). Overall, the adsorption process 
was multilayer, spontaneous, and exothermic in nature. 
The tentative mechanism of the adsorption is given in Fig. 6.

3.4. Kinetics adsorption model

To study the kinetics (pseudo-first-order and pseu-
do-second-order), plots between t vs. log(qe – qt) and t/qt vs. 
t were used (Fig. 7). The value for the correlation coefficient 
for pseudo-second-order was closer to 1, that is, (R2 = 0.93) 
than first-order which was 0.87 which indicated that the 
adsorption process was chemisorption as mentioned in the 
literature [35,36]. Furthermore, the values of experimental 
and theoretical adsorption capacity for pseudo-second- 
order was minimal which supported the pseudo-second- 
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Fig. 2. Results of characterization of iron-titania nanoparticles 
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showing the successful formation of nanoparticles.

 

Fig. 3. Mean plots of various adsorption parameters showing the 
effect on removal efficiency of sitagliptin using nanoparticles.
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order kinetics in adsorption [37]. When the outer side of the 
nanoparticles is filled with the components of sitagliptin 
present in the wastewater, it starts entering the pores of 
the adsorbent available for the process. The fast adsorp-
tion kinetics increases the efficiency and reliability of the 
adsorbent [1]. The removal process reaches equilibrium in 
10 min (Table 1).

Table 4 demonstrates that the removal efficiency of 
iron-doped titania nanoparticles towards the removal of 
the understudied pollutant was found extraordinarily 
superior to different materials of doped titania adsorbents 
(reported in the literature), which were investigated for the 

removal of various pharmaceutical drugs from water. The 
researcher used different nanoparticles for the removal 
of persistent pollutants from wastewater but have a less 
removal efficiency than the under-study nanoparticles hence 
making the use of these nanoparticles superior to other 
literature reported studies.

3.5. Cost analysis

The cost analysis of the synthetic nanoparticles is sum-
marized below. A $0.38 is required for the treatment of 
1 L of water containing sitagliptin as a pollutant. 
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Fig. 6. Schematic diagram for the removal of sitagliptin from the sample solution.
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4. Conclusion

In this study, the iron-doped titania nanoparticles are 
synthesized and characterized by XRD, SEM, and EDX. 
The results indicated the successful formation of nanopar-
ticles. These nanoparticles were used for the removal of 

sitagliptin. The UV-Visible spectrophotometer was used for 
the method validation for sitagliptin. The result showed 
that the method was precise, and accurate and had LOD 
(11.5 ppm) and LOQ (34.9 ppm). Taguchi’s design exper-
iment suggested 16 sets of experiments that gave more 
than 80% removal efficiency under batch adsorption stud-
ies. The maximum adsorption capacity of iron-titania 
nanoparticles was 4.42 mg/g for sitagliptin. The optimized 
parameter values were contact time (10 min), pH (7), initial 
concentration (70 ppm), and adsorbent dose (200 mg/L). 
The adsorption isotherms model suggested that the adsorp-
tion process was multilayer chemisorption, exothermic and 
spontaneous. Kinetic studies indicated that the adsorp-
tion process followed second-order kinetics. Overall, the 
nanoparticles are novel and gave exceptionally reliable 
results for batch experiments for the removal of sita-
gliptin and can be used in continuous studies for future  
research.
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Table 4
Comparison of pollutant removal efficiencies of nano adsorbents (reported in the literature) with present research

Different materials used Pollutant removal Removal efficiency (%) References

Fe-TiO2 Sitagliptin (DPP-IV) 80 Present study
Agro waste-TiO2 Sulfamethoxazole 50 [38]
N/S-TiO2 Diclofenac 70 [39]
B-TiO2 Metoprolol 70 [40]
Zn-TiO2 Ciprofloxacin 28.75 [41]
Ag-TiO2 Amoxicillin 63.48 [42]
Fe3+-TiO2–xNx Diclofenac 72.3 [24]

Cost of titania $0.026/1 g
Cost of FeCl3·6H2O $0.28/1 kg
Cost of ethanol $1.5/1
Cost of nanoparticles (titania + iron salt + ethanol + electricity charges) 0.342 + 0.0024 + 0.0315 + 0.01 = $0.3859
Cost of treatment $0.3859 L
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