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a b s t r a c t
Reservoirs play an important role in flood control, irrigation, water supply, and environmental protec-
tion. The optimal operation of reservoir flood control includes various constraints such as upstream 
and downstream flood control, dam safety, and irrigation needs. Therefore, it is necessary to build a 
multi-objective reserve flood control operation preference model. In this experiment, a decomposi-
tion based multi-objective evolutionary algorithm was adopted as the basic research method. At the 
same time, a preference model was combined in the experiment to construct scheduling methods. 
The results indicate that the multi-objective reserve flood control operation preference model can 
significantly weaken flood peaks and reduce losses caused by floods. The algorithm has success-
fully converged to a specific region of the ideal Pareto Front, both of which are extremely close to 
the ideal Pareto optimal solution set. The inverted generational distance indicators of Multi-objective 
Evolutionary (MOEA/D-PWA) were tested in test sets 3, 4, and 6 with results of 1.73E-03, 2.04E-
03, and 3.61E-03, respectively. The test results of its spacing index in test sets 1 and 3 are 1.56E-03 
and 1.73E-03, respectively. The test results of its hypervolume index in test sets 1 and 3 are 7.59E-
01 and 6.33E-01, respectively. The results confirmed that MOEA/D-PWA can develop appropriate 
reservoir flood control scheduling plans and more efficiently utilize flood resources.
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1. Introduction

Flood disasters not only threaten the safety of people’s 
lives and property, but also may cause serious economic 
losses and have adverse effects on social stability. The par-
ticularity of China’s terrain and climate conditions can eas-
ily lead to frequent floods. In order to prevent floods, the 
construction of water conservancy projects such as dams 
and reservoirs for adjusting water discharge and building 
small flood peaks has been promoted. Reservoir flood con-
trol operation (RFCO) is a water conservancy project that 
considers the inflow of water supply from upstream and 
downstream of the reservoir, and stores and discharges 
water in accordance with the regulation regulations. It 

should not only take into account the flood control work 
in the upstream and downstream of conflicting reservoirs, 
but also pay attention to the balance between flood control 
engineering and revitalization engineering. That is to say, 
RFCO contains multiple targets [1,2]. Therefore, RFCO can 
be treated as a multi-objective optimization problem (MOP) 
and solved through the MOP algorithm [3]. In RFCO, the 
multi-objective evolutionary algorithm based on decom-
position (MOEA/D) has high problem-solving efficiency 
and accuracy [4]. Therefore, this method was chosen as 
the fundamental method in this study. And due to the 
long-term goals of irrigation and water supply for reser-
voirs after floods, the scheduling plan has preferences. In 
view of this, this study will develop an appropriate RFCO 
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scheme by constructing a multi-objective RFCO preference 
model. It is hoped to use appropriate RFCO schemes to 
efficiently utilize flood resources and achieve the goal of 
weakening flood peaks.

2. Related works

RFCO involves multiple decision variables, and its 
essence is a MOP. RFCO has many constraints and deci-
sion variables. Therefore, researchers use machine learning 
to solve MOP problems. To improve the problem-solving 
ability of RFCO, combined cultural algorithm with whale 
algorithm to solve MOP [5]. The validation experimen-
tal results in the test function confirm that this combined 
method can solve the actual RFCO. In RFCO, genetic algo-
rithms can be used to optimize scheduling method param-
eters. The researchers conducted a series of optimizations 
on the penalty coefficient of the model. The results confirm 
that in flood control scheduling, the optimized model can 
improve the efficiency of scheduling results. The optimized 
model can reduce the occupancy of flood control capacity 
when resources are scarce [6]. However, these methods may 
experience issues such as reduced efficiency when applied 
due to parameter settings. For this reason, researchers used 
MOEA/D as the basic method for scheduling schemes and 
made improvements. Then they used the improved method 
to divide RFCO into sub problems corresponding to the 
scheduling time. In typical flood experiments, it has been 
confirmed that this method can accurately perform RFCO 
in hours [7]. MOEA/D can divide MOP into different sub 
problems. This method can reduce the difficulty of MOP 
problems. The practical application results in the field 
of communication have confirmed that this method can 
improve the efficiency of MOP problem processing. And 
this method can reduce the difficulty of program coding, 
thereby reducing the running cost [8]. Due to the accu-
racy and effectiveness of MOEA/D in solving MOP prob-
lems, this method was chosen as the basis for the RFCO 
model in this experiment.

Water resource management is an important issue that 
cannot be ignored in RFCO. Reasonable resource sched-
uling is necessary in water resource management. MOP is 
the main objective that needs to be addressed in the man-
agement and planning of reservoirs. The application of 
intelligent algorithms can improve the efficiency of solv-
ing MOP problems in water resource management. In the 
study by Yoosefdoost et al. [9], the application of intelli-
gent optimization algorithms, logical operations, and pro-
gramming techniques can improve the reliability of MOP 
problem solving. In the optimization of performance indi-
cators, this combined method can also minimize vulnera-
bility to the greatest extent. For the MOP problem of water 
resources, some scholars use particle swarm optimization 
to plan the ecological water use of reservoirs. They intro-
duced different patterns to improve the method. In the 
actual comparison of reservoir scheduling results, the best 
scheduling plan can effectively solve the problem of water 
consumption for residents in the region [10]. Kumar and 
Yadav [11] utilized the Jaya algorithm as the fundamental 
method for reservoir scheduling strategies. They combined 
this method with intelligent optimization algorithms to 

establish a multi group method. In the comparison results 
of convergence, this method has higher performance than 
other intelligent algorithms. At the same time, this method 
can improve power generation while ensuring irrigation 
efficiency. Mansouri et al. [12] proposed a fuzzy optimiza-
tion method for water resource management in reservoirs. 
They use swarm intelligence algorithm to solve MOP prob-
lem in water resource management. Compared with Non-
Dominated Sorting Genetic Algorithm II (NSGA-II), the 
fuzzy particle swarm optimization algorithm can meet the 
water demand of users at the same time. At the same time, 
this method can ensure the sustainability of reservoir water 
resources. When studying the water resources management 
of the reservoir, Mohanavelu et al. [13] used the dynamic 
programming method to establish the optimal reservoir 
operation scheme. They use new planning methods to find 
the optimal solution. The Pareto optimal solution is a key 
indicator for verifying MOP methods. The validation exper-
iment results confirm that the new planning method can 
obtain the optimal reservoir operation decision. Therefore, 
in this experiment, Pareto was used as one of the perfor-
mance verification test indicators.

From the above research results, RFCO is essentially 
a MOP problem. To improve the MOP problem in RFCO, 
MOEA/D with good application results was selected as 
the basic method for the scheduling model in this study. 
And to improve the water resource utilization efficiency, 
the model was optimized by combining the preference 
information of reservoir irrigation demand. It is hoped to 
improve the rationality and efficiency of water resource uti-
lization in RFCO through the improvement of methods.

3. RFCO model with decision preference

When an optimization problem has multiple objectives 
that need to be met simultaneously, and there are often 
conflicts between the objectives, it can be called MOP. The 
solution to this problem requires considering multiple deci-
sion variables. Models with decision preferences can adjust 
the time and reduce constraint conflicts [14]. Therefore, 
in this study, a preference model was introduced for 
optimization in MOP.

3.1. Two-objective RFCO model with decision preference

MOP model contains multiple objectives and decision 
variables. Eq. (1) is the mathematical expression of MOP.

minimize

subject to

F x f x f x f x

x
m� � � � � � � � �� �

�
1 2, ,...,

�
 (1)

where the feasible region of the decision space is Ω, Ω ϵ Rn, 
and x = {x1, x2, …, xn} ϵ Ω are the decision variables. n, m 
refers to the decision space dimension and objective func-
tions number, respectively. The objective vector function 
composed of m objective functions that need to be opti-
mized simultaneously is the objective function F(x): Ω → Rm. 
When m is 1, the above model is a single objective optimiza-
tion problem. When m = 2, 3, the model is a MOP problem. 
When m > 3, the model is a high-dimensional MOP problem.
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RFCO should pay attention to the flood control safety 
of dams and reservoirs themselves, as well as the safety of 
downstream residents. That is to say, the upstream water 
level should not be too high, and the downstream flood dis-
charge should not be too large. Taking the two safety tasks 
of the reservoir as optimization objectives and the discharge 
flow as decision variables, Eq. (2) shows the two-objective 
RFCO model.
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where Zt refers to the upstream water level of the dam in 
dispatch stage t, T and Qt, respectively refer to the duration 
of the flood and the discharge flow of the reservoir in dis-
patch stage t. The objective function f1(Q) is used to mini-
mize the highest upstream water level. The objective func-
tion f2(Q) means the maximum discharge capacity of the 
minimized reservoir. The upstream water level constrains 
Zmin ≤ Zt ≤ Zmax to ensure that the reservoir water level is 
between the lowest water level Zmin and the highest water 
level Zmax. The discharge flow is constrained by 0 ≤ Qt ≤ Qmax, 
and the maximum discharge flow through the reservoir Qmax 
is used to constrain the discharge flow. In the water balance 
formula Vt = Vt–1 + It – Qt, It refers to the reservoir in sched-
uling stage t, such as the reservoir flow rate. The reservoir 
capacity of t and t + 1 scheduling stages is represented as Vt 
and Vt–1 in sequence.

Due to the long-term irrigation and water supply goals 
of reservoirs, RFCO schemes have preferences within 
a certain range and are more likely to be favored by 
decision-makers.

The center point M = (M1, M2, …, Mm) and decision 
threshold vector V = (V1, V2, …, Vm) in Fig. 1a define the pref-
erence region. According to MOP, the definition of Pareto 
optimal solution PR in the preference region can be obtained 
in Eq. (3).

P x f x M V x i mR
i i i� � � � � � �� �, , , ,...� 1 2  (3)

Fig. 1b shows the principles of a new preference model 
that meets RFCO irrigation needs. The center point M and 
decision threshold vector V in Eq. (3) are the keys to estab-
lishing a preference model. When there is a preference 
Pareto optimal solution SP with a series of upstream water 
levels located between CC ZFL – ZPT and ZFL – ZPT at the end, 
Eq. (4) is used to calculate the optimal solution SP.

S x x Z Z xP � � � � � �� �FL FL PT , �  (4)

where ZFL, ZT, ZPT represent the upper flood controllable 
water limit, the upstream water at the end, and the positive 
preference threshold. FL(x) is the final upstream water level 
for solving x.
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where M and V are the expressions for the center point 
and the decision threshold vector, respectively. Due to 
the fact that SP does not cover the entire preference area, 
the decision threshold vector V increases the calculation 
result  1 2

ˆ ˆ ˆ ˆ, ,..., mV V V V  to 1.2 times the original basis. The 
improved decision threshold vector has better preference 
regions coverage. The preference domain in Fig. 1b has been 
slightly expanded compared to Fig. 1a. By defining each 
solution obtained through the center point and decision 
threshold vector, the ranking of preference for Pareto opti-
mal solutions is achieved.
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where PND(x) represents the preferred neighbor distance 
corresponding to the Pareto optimal solution. Mahalanobis 
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Fig. 1. Two-objective optimization preference model based on irrigation demand.
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distance between the center point M and the corresponding 
solution determines the preferred neighbor distance of the 
solution x. When PND(x) < 1, it can be inferred from Eq. (3) 
that the solution x is located within the preferred region.

VD VD ind NN
i
m i

i

m

m L i
j
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�
�, 2

1
 (7)

Eq. (7) introduces the neighbor distance of sparsity, that 
is, the crowding distance. The Euclidean distance between 
individual i and the j nearest individual of i in the popu-
lation is represented by L i

j

2
NN . The product of Euclidean 

distance between individual i and its previous m neigh-
bors is represented by the neighbor distance VD(indi, m). 
The decrease in neighbor distance leads to an increase in 
individual crowding and a decrease in sparsity.

The algorithm prototype used in this study is the 
multi-objective evolutionary algorithm with decomposition 
and preference Multi-objective Evolutionary (MOEA/D-
PWA) based on decomposition and preference. It can guide 
the search to the preference region by removing non pref-
erence region subproblems and adding preference region 
subproblems. The process of multi-objective MOEA/D-PWA 
with preferences is shown below. The stopping criterion 
and parameter set (evolutionary population size N, external 
population size NE, neighbor list size T) were input. Various 
parameters were initialized. Simulated binary crossover and 
polynomial mutation were used to generate offspring pop-
ulations. The population was evolved, and the solutions 
and reference points of the subproblems were updated. 
The external population and preference area were updated. 
Preference based weight vector adjustment was carried 
out (removing sub problems from non-preference regions 
and adding sub problems to preference Pareto Front (PF) 
regions). When the stopping condition is met, the stopping 
criterion is met. If not, re-evolution is carried out.

3.2. Three-objective RFCO model with decision preference

The optimization direction of the two-objective RFCO 
model is minimization. To ensure this optimization direc-
tion, this study will introduce the reciprocal of the power 
generation in RFCO as the third optimization objective.
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Eq. (8) is a three-objective optimization operation model 
for reservoir flood control. f3, E, and Δt, respectively represent 

the generation target, generation capacity, and scheduling 
period length. The average output Nt = K·Qt·Ht and K, Qt, Ht 
of the reservoir during time t, respectively indicate the power 
coefficient, the reservoir discharge flow, and the power gen-
eration head. Vt = Vt–1 + It – Qt represents the water balance 
constraint. The reservoir capacity in stages t and t–1 is Vt 
and Vt–1. The constraints on the discharge capacity and hub 
output are Qt ≤ Qmax and Nt,min ≤ Nt ≤ Nt,min, respectively and 
refer to the minimum and maximum power station output.

The preference information of irrigation demand in res-
ervoirs is more important than the electricity generation 
optimization objective. But its importance is not as signifi-
cant as the highest water level f1(x) and maximum discharge 
flow f2(x) in front of reservoir. Therefore, when calculating 
the center point and threshold vector in the three-objec-
tive RFCO preference model, only the first two optimi-
zation objectives f1(x), f2(x) can be considered.

Fig. 2 shows that when calculating the center point 
M, congestion distance VD, preference distance PND(x), 
and threshold vector V, only the values of the first two-di-
mensional optimization objectives need to be noted. 
As shown in Fig. 2, the preference distance PND is as follows:
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The process of the three-objective MOEA/D-PWA algo-
rithm with decision preferences includes the following 
steps. Firstly, it is necessary to initialize the weight vec-
tor, external population, and reference points of a popu-
lation containing N individuals, and establish a neighbor 
list for each individual. Eq. (10) is the reference point for 
initialization.

z z z zm
* * * *, ,...,� � �1 2  (10)

Eq. (11) is calculated for zi
* in Eq. (10).

z f x f xi i i
N* min ,...,� � � � �� � � �1 710  (11)
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Fig. 2. Three-objective optimization preference model based on 
irrigation demand.
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In the following experiment, simulated binary crossover 
and polynomial mutation are used to generate offspring 
populations, and the population is evolved to update the 
solutions and reference points of subproblems. Then the 
external population and preference regions were updated. 
The next step is preference processing based on weight vec-
tor adjustment. When performing preference processing, it 
needs calculate the individual preference distance accord-
ing to Eq. (9) for deleting and adding sub problems. When 
adding sub problems, it needs use Eq. (12) to calculate the 
individual weight vector.
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Based on the calculation results of the weight vector 
mentioned above, the sub problem was added to the pop-
ulation. When the stop condition is met, the stop criterion 
is applied. If not satisfied, then re evolve.

Generally speaking, MOP has two-objectives. One is to 
make the Pareto front obtained by the algorithm as close as 
possible to the real Pareto front, that is, convergence. The 
second is to find as many non-dominated solutions as pos-
sible, that is, diversity. This experiment used the inverted 
generational distance (IGD), spacing (Sp), and hypervolume 
(HV) metrics to measure the convergence and diversity of 
Pareto frontiers obtained by various MOP algorithms. IGD 
can be used to evaluate the convergence of the approxi-
mate frontier obtained by the algorithm in Eq. (13).

IGD � �� d
n

ii

n 2
1  (13)

where n is the real Pareto front reference points. The 
Euclidean distance between the real Pareto frontier of di 
and the nearest solution obtained by the optimization algo-
rithm. Sp can be used to evaluate the uniform distribution 
of approximate frontiers obtained by the algorithm. In 
Eq. (14), the results diversity obtained by Sp quantitative 
comparison algorithm can be used.

Sp �
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n
d d
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where d  is the average value of di. HV represents the region 
volume in target space enclosed by the non-dominated solu-
tion set and the real Pareto front reference point. HV can 
be used to evaluate the comprehensive algorithm perfor-
mance, that is, to simultaneously evaluate convergence and 
diversity. Eq. (15) is the calculation method for HV.

HV � � ��� U vi
S

i1  (15)

where AA δ is Lebesgue measure used for volume mea-
surement. |S| is non dominated solution sets number. vi is 

the supervolume formed by reference point and solution i. 
Among the above three indicators, IGD and SP are smaller, 
the algorithm performance is better. HV is higher, the 
algorithm performance is better.

4. Analysis of calculation results

4.1. Two-objective RFCO preference model

This testing experiment was conducted on the same 
computer. Its specific parameter is Intel Core i7-4900 
CPU@3. 60 GHZ12.0 GB RAM. The operating system 
is 64-bit Windows 10, and the compilation software is 
MAT-LAB2018b.

To verify the correctness and effectiveness, two rep-
resentative floods were selected as experimental cases. 
MOEA/D-PWA was compared with NSGA-II and MOEA/D 
algorithms [15,16]. The parameters in MOEA/D-PWA are: 
evolutionary population size N = 20, external population 
size NE = 160, neighbor list size T = 4, initial center point 
M0 = (32,510,000), decision threshold vector V0 = (2,100), 
maximum number of sub problem adjustments NWA = 10, 
and weight vector adjustment interval algebra IWA = 100.

According to Fig. 3, two algorithms’ water level in front 
of the reservoir are evenly distributed within a range of 
1 m above and below as well as a range of 1 m above and 
below when the control limit is 325 m. The maximum dis-
charge flow rates of these two are both below 8,000 m3/s, 
which is lower than half peak flow rate of 17,730 m3/s. That 
is to say, the two-objective RFCO preference MOEA/D-
PWA algorithm proposed in this experiment can develop 
a scheduling plan that significantly weakens flood peaks 
and reduces losses caused by floods.

From Fig. 4, on the ideal Pareto frontier, the MOEA/D 
algorithm obtains the Pareto optimal solution with the 
highest coverage. Both two algorithms have converged to 
their preferred PF. Compared with the solution set obtained 
by NSGA-II, the solution set obtained by MOEA/D algo-
rithm has slightly stronger convergence, coverage, and 
uniformity.

The flood in Fig. 5 on 2018.08.28 has two small peaks 
and a relatively small inflow. Based on Fig. 4, both tow 
algorithms can provide flood scheduling schemes with sta-
ble discharge flow, reducing the likelihood of downstream 
reservoirs being affected by floods.

4.2. Three-objective RFCO preference model

For three-objective RFCO preference model, its popu-
lation size N = 100, its external population size NE = 250, 
its neighbor list T = 10, its initial point center and thresh-
old vectors are M0 = (325.0, 10,000.0) and V0 = (4.0, 
2,000.0), respectively. Its evolutionary algebra IWA = 500. 
Preference information was combined and NWA = 20 was 
adjusted until the evolutionary algebra reached 10,000. 
In the two-objective MOEA/D-PWA algorithm, the pop-
ulation size N = 20, external population size NE = 50, 
neighbor list T = 6, and other parameters are the same as 
the three-objective algorithm.

Fig. 6 shows the corresponding Pareto optimal solu-
tion set obtained by the MOEA/D-PWA algorithm for the 
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three-objective RFCO optimization preference model for two 
typical floods in a certain reservoir, and the relative posi-
tion of this solution set relative to the ideal Pareto optimal 
solution set. The ideal Pareto optimal solution set mentioned 
here is calculated by the three-objective MOEA/D-PWA 

algorithm through 6 million function evaluations and inde-
pendent runs of 30 times. That is to say, the three-objective 
RFCO optimization preference model can efficiently uti-
lize computing resources and successfully converge to a 
specific region of the ideal PF.
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Fig. 3. Discharge and upstream water level: (a,c) discharge flow and (b,d) water level in front of the reservoir.
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Fig. 7 shows the projection of the Pareto optimal solution 
set of ideal PF, two-objective optimization PF, and three-ob-
jective optimization on the plane composed of the highest 
upstream water level f1 and the maximum discharge flow 
rate f2. Comparing the projection results, the target values of 
the highest upstream water level and maximum discharge 
flow calculated by both methods are extremely close to the 

ideal Pareto optimal solution set. Meanwhile, in Fig. 7, the 
non-dominated solution sets obtained by MOEA/D-PWA 
are all clustered within the regions of interest for deci-
sion-makers on the ideal Pareto optimal solution set.

Fig. 8 shows the corresponding flood scheduling scheme 
calculated by the MOEA/D-PWA algorithm for the three- 
objective RFCO optimization preference model in the case 
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of floods on 2020.10.12 and 2018.8.26. Meanwhile, Fig. 8 
also shows the changes in the corresponding reservoir 
water level under this scheduling scheme. The inability of 
the scheduling plan to present the true appearance of the 
flood indicates that the two-objective and three-objective 
RFCO optimization algorithm has achieved the goal of 
reducing flood peaks.

In the scheduling scheme provided by two-objective 
RFCO optimization, the stable period of discharge flow is 
relatively long. In the scheduling scheme provided three-ob-
jective RFCO optimization, the maximum discharge flow is 

greater than the maximum discharge flow of two-objective 
RFCO scheme. By adding power generation optimization 
objectives to increase the discharge flow range in three-ob-
jective RFCO scheme, this study validated it through four 
typical floods as examples. Fig. 9 shows the specific results.

Fig. 9 is a box plot used to reflect the statistical distri-
bution. The short horizontal lines at the top and bottom 
respectively reflect the maximum and minimum values. 
The horizontal line in the middle box represents the median 
sample value, and the box size reflects the data dispersion. 
On October 12, 2020, the center of the highest reservoir 
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water calculated by three-objective RFCO preference opti-
mization algorithm was lower than the highest reservoir 
water level calculated by two-objective RFCO preference 
optimization algorithm. Meanwhile, Fig. 9 shows that the 
scheduling scheme provided by the latter generates higher 
electricity generation than the former. The highest reservoir 
water range for the flood on 2018.08.28 and 2017.10.1 is the 
same, and three target power generation is higher than two 
target power generation. On 2015.7.15, the highest reservoir 
water center calculated by three-objective scheduling plan 
was lower than that of the two-objectives, and the three-ob-
jective power generation was higher than the two-objective 
power generation. In summary, the flood control schedul-
ing scheme with greater fluctuation can better utilize flood 
resources and generate more power generation. In terms 
of the utilization of flood resources and power generation, 
three-objective RFCO preference optimization algorithm 
provides a more advantageous solution than two-objective 
RFCO preference optimization algorithm.

To demonstrate the effectiveness of MOEA/D-PWA, the 
widely used ZDT standard test function was selected to test 
the MOP model performance. IGD, Sp, and HV indicators 
were selected to measure the convergence and diversity of 
each MOP algorithm. And to verify the performance supe-
riority of MOEA/D-PWA, it was compared with existing 
more advanced MOP methods in the Zitzler Deb Thiele 
(ZDT) standard test set in the experiment [5,7,10,15,16].

In Table 1, when solving multi-objective problems, IGD 
of MOEA/D-PWA showed the best test results in test sets 
3, 4, and 6, with values of 1.73E-03, 2.04E-03, and 3.61E-
03, respectively. Sp of MOEA/D-PWA showed the best test 
results in test sets 1 and 3, with values of 1.56E-03 and 
1.73E-03, respectively. HV of MOEA/D-PWA showed the 
best test results in test sets 1 and 3, with values of 7.59E-
01 and 6.33E-01, respectively. It should be noted that in the 
comparison of the same indicator, although MOEA/D-PWA 
did not perform optimally in other datasets, this method 
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did not differ significantly from other methods. From the 
overall performance test results, MOEA/D-PWA shows 
certain competitiveness among all methods in solving 
multi-objective problems.

5. Conclusion

This study analyzed the multi-objective RFCO prefer-
ence model using two-objectives and three-objective RFCO 
preference algorithms. The research results indicate that 
the multi-objective RFCO preference algorithm can develop 
flood scheduling schemes with stable discharge flow, signifi-
cantly weakening flood peaks and reducing losses caused 
by floods. The three-objective RFCO optimization prefer-
ence model performs better in efficiently utilizing flood 
resources. The multi-objective RFCO preference algorithm 
successfully converges to a specific region of the ideal PF. 
The target values of the highest upstream water level and 
maximum discharge flow calculated by the multi-objective 
RFCO optimization preference algorithm are extremely close 
to the ideal Pareto optimal solution set. The inability of the 
scheduling plan to present the true appearance of the flood 
indicates that the multi-objective RFCO optimization algo-
rithm has achieved the goal of reducing flood peaks. In the 
analysis of flood resource utilization and power generation, 
the three-objective solution has more advantages than the 
two-objective solution. IGD of MOEA/D-PWA showed the 
best test results in test sets 3, 4, and 6, with values of 1.73E-
03, 2.04E-03, and 3.61E-03, respectively. Sp of MOEA/D-PWA 
showed the best test results in test sets 1 and 3, with values 
of 1.56E-03 and 1.73E-03, respectively. HV of MOEA/D-PWA 
showed the best test results in test sets 1 and 3, with values 
of 7.59E-01 and 6.33E-01, respectively. The MOEA/D-PWA 
model proposed in this study has the ability to weaken 
flood peaks. However, the impact of parameters such as 
population size in the experiment has not been thoroughly 
explored. In the future, the comprehensiveness of research 
should be further improved.
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