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a b s t r a c t
Total nitrogen (TN) concentration is one of important indications of wastewater quality and also a 
parameter important for wastewater treatment plant performance evaluation. Since the variability 
of total nitrogen in the effluent from the wastewater treatment plant is the result of the processes 
taking place in the bioreactor, the processes can be described by mechanistic models, for exam-
ple, activated sludge models. However, calibration of many parameters is required in such mod-
els, and can leads to problems in identifying their proper numerical values. The paper proposes a 
novel way to deal with this problem by presenting a methodology for building a model for simu-
lating TN, based on sequential structure. In the applied approach, regression models for simu-
lation of TN are first created using Extreme Gradient Boosting (XGBoost), and random forest (RF) 
methods. In the case of unsatisfactory predictive ability, a division of the dependent variable into 
a classifier form is made. In the next stage, classification models are created by RF and XGBoost 
methods and sensitivity analysis is performed by calculating Shapley indices. Two classification mod-
els were built that allow for the identification of TNeff variability ranges. The new approach using 
two models instead of one is preferable because it allows control and optimization of the bioreactor  
operation.

Keywords:  Total nitrogen simulation; Wastewater parameters; Operating and control of WWTPs; 
Machine learning; Extreme Gradient Boosting (XGBoost); Random forest (RF); Regression 
and classification models

1. Introduction

Total nitrogen (TN) is one of the important wastewater 
quality indicators (WQI) for evaluating the performance 

of wastewater treatment plants (WWTPs). The concentra-
tion of total nitrogen in the effluent is regulated by legal 
acts [1]. The removal of total nitrogen in bioreactors is a 
complex process that is sensitive to the quality of influent 
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wastewater and meteorological conditions [2–5]. In many 
cases quality measurements at the effluent during opera-
tion show exceedances of the permissible values of total 
nitrogen, while the other WQIs (BOD, COD, TSS, TP) are 
below the maximum ones. To minimalize the above-men-
tioned problem, bioreactor models are being developed 
[6–8]. Activated sludge models have been widely used for 
this purpose. However, due to the complex dynamics of 
biochemical processes, they are usually over-parameter-
ized, which leads to problems with their calibration [9–11]. 
Therefore, machine learning models (ML) were also used to 
model bioreactors [12–15]. In this approach, the problem of 
model calibration was eliminated. In these models, the basis 
for creating a simulation tool is measurement data, which 
was used to identify the model structure and validate its 
predictive capabilities [16–18]. Regression tree methods, 
artificial neural networks and their modifications were used 
to model TN. These models took into account the quality 
of the effluent at the influent, but due to the limited range 
of input data, they made it impossible to assess the impact 
of parameters in the bioreactor on the efficiency of WWTP 
operation. This issue was rectified by Wang et al. [19] who 
applied Shapley indices to a sensitivity analysis that deter-
mined the effects of quantity, effluent quality at the influ-
ent and process parameters on the results of total nitrogen  
simulations.

Despite numerous works in the field of modeling total 
nitrogen for a bioreactor using ML, the reliability of simu-
lation results is still not validated by independent simula-
tion tools. This is important from the point of view of using 
the simulation results obtained as a basis for modifying 
bioreactor settings to achieve the intended technological  
effect.

This paper presents a methodology for creating a 
model for simulating total nitrogen, based on sequential 
structure. In the adopted approach, regression models for 
simulation of total nitrogen are first created using Extreme 
Gradient Boosting (XGBoost), random forest (RF) methods. 
In the case of unsatisfactory predictive ability, a division 
of the dependent variable into a classifier form is made. 
In the next stage, classification models are created by RF 
and XGBoost methods and sensitivity analysis is per-
formed by calculating Shapley indices. The above-men-
tioned calculation procedure is presented for the data 
from the period 2008–2022 from the Sitkówka-Nowiny 
wastewater treatment plant.

2. Research object

The analysis was based on the Sitkówka-Nowiny waste-
water treatment plant, which has a nominal capacity of 
72,000 m3/d, that is, 275,000 PE. The wastewater from the 
city of Kielce and surrounding municipalities flows into 
the WWTP. Influent wastewater is treated mechanically on 
step screens and aerated settling tank. The treated waste-
water flows into a bioreactor designed in the BARDENPHO 
system, where biogenic compounds are removed. The 
treated wastewater flows into four secondary settling tanks, 
where the clarification process takes place. Next, the waste-
water is discharged to the Bobrza River.

3. Calculation methodology

A calculation methodology that includes two stages of 
model development was proposed (Fig. 1). In the adopted 
methodology, on the basis of measurement data collected 
at the site, the so-called pre-processing of data processing 
is performed, which is a preliminary statistical analysis 
of the data.

3.1. Measurement data (step 1)

At the WWTP, as part of continuous monitoring, the 
quantity and quality of wastewater at the inflow, in the bio-
reactor and at the WWTP outlet have been measured since 
2008. At the inlet and outlet, measurements of wastewater 
quality indicators are made once a month, including: BOD 
(biochemical oxygen demand), COD (chemical oxygen 
demand), TSS (total suspended solids), TN (total nitrogen), 
NH4–N (ammonia), NO3–N (nitrate), NO2–N (nitrite), TKN 
(total Kjeldahl nitrogen), TP (total phosphorus). In addi-
tion, continuous measurements (1 h resolution) of flow 
rate are carried out at the inlet. In the bioreactor, continu-
ous measurements (1 h resolution) of the following indica-
tors of wastewater quality, including NH4–N, NO3–N, PO4–P 
(phosphates), are carried out with analyzers. Operational 

 
Fig. 1. Computational algorithm used to create a model simu-
lating general nitrogen using machine learning methods.
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parameters, that is, recirculation, sludge concentration, oxy-
gen concentration, and sludge temperature are monitored 
with a resolution of 30 min. During the operation stage, the 
data on the amount of dosed methanol and PIX coagulant 
are also collected with a daily resolution. TN was determined 
using a total organic carbon (TOC) analyzer (TOC-VCSH) 
coupled with a TN module (TNM-1). The concentrations 
of COD, inorganic N forms (NH4–N, NO3–N) and TP were 
determined using a Xion 500 spectrophotometer (Dr. Lange 
GmbH, Berlin, Germany). The analytical procedures, which 
were adopted by Dr. Lange and SHIMADZU Corporation, 
followed Standard Methods for the Examination of Water 
and Wastewater [20]. TSS were measured by the gravi-
metric methods in accordance with Standard Methods [20].

3.2. Pre-processing of data (step 2)

Prior to the calculations, the data was subjected to pre-
liminary analysis. Data was transformed to facilitate the 
comparison of different variables, reduce the skewness of 
the distribution of the variables and the impact of outliers. 
Data standardization (scaling and centering) was performed, 
which consists in transforming the data into the form:
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where xi – the values of i-th variable; µi – average value of 
i-th independent variable; σi – standard deviation of i-th 
independent variable.

The data was then transformed using the Yeo-Johnson 
transform to resemble a normal distribution:
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where x, y – independent and dependent variables, respec-
tively; λ – scaling factor. On the basis of the transformed 
data using the Yeo-Johnson transformation, the next com-
putational steps were performed (calculation of correlations, 
determination of the regression and classification model).

3.3. Selection of independent variables (step 3)

The selection of independent variables for the model 
to simulate total nitrogen was made on the basis of the 
results of calculating Pearson correlation coefficients and 
literature data [13].

3.4. Development of models for TN prediction by XGBoost, RF 
methods (step 4)

In this study, the RF and XGBoost methods were used 
to model general nitrogen. Each tree is constructed on a 

random sample of n observations drawn with return from 
the learning set (bootstrap sample). The independent vari-
ables selected in the construction of each tree are also cho-
sen randomly. During the construction of the tree at each 
node, partitioning is done by drawing without returning 
m out of p attributes (m ≤ p). The m parameter is usually 
determined as follows: = p , as suggested in the litera-
ture [21]. Forecasting based on the random forest model 
involves determining the forecasts for each tree included 
in the forest and determining the arithmetic mean of these 
individual forecasts as the forecast of the entire model.

The XGBoost method was developed by Chen and 
Guestrin [22] based on a regression tree model, which uses 
an advanced boosting algorithm that considers so-called 
“regularization” to prevent overfitting. In XGBoost models, 
each successive tree learns to predict a value of the resid-
ual obtained in the previous iterative step. The process of 
learning the model is based on the minimization of the 
objective (loss) function enriched with a part causing the 
regularization of the model.

l x x x L x x x x x xi i i1 2 1 2 1 2, , , , , , ,  � � � � � � �� �  (3)

where Ω – a regularization term; L(x1, x2, …, xi) – loss function 
for regression task described as  2ˆi ii

y y ; yi – observed 
value of dependent variable; ˆ iy  – predicted value; x1, x2, …, 
xi – independent variables.

The selection of optimal hyperparameters for the model 
was made using the grid search. The machine chose the 
best mtry parameter in the range of integers 2 and 14, as 
well as the parameter specifying the number of ntree trees 
for the random forest. For the XGBoost model, the param-
eters max_depth, eta, subsample were obtained. The selec-
tion of hyperparameters was made based on the R2, mean 
absolute error (MAE), root mean square error (RMSE) val-
ues. With these and other improvements to the underly-
ing gradient boosting algorithm, XGBoost dominates the 
machine learning industry this day.

3.5. Development of a classification model (step 5)

In the next stage of calculations, in order to verify 
the obtained simulation results with XGBoost and RF 
regression models, classification models were made. This 
approach can be adopted to control the process of nitro-
gen removal from wastewater for the case of unsatisfactory 
simulation results for calculations with ML models.

In order to build a classification model, there is a need 
to transform TNeff data to binary. Two thresholds for divid-
ing the data into binary forms were adopted in the study:
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where Zi – variable describing the value of TN in binary 
form; TNeff(0.5p) –50% percentile value of TN determined 
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from measured data; TNeff(0.75p) – 75% percentile value of 
TN determined from measurements. The advantage of the 
adopted approach is the ability to identify total nitrogen in 
three ranges:

• TN < TNeff(0.5p),
• TN Î [TNeff(0.5p); TNeff(0.75p)],
• TN > TNeff(0.75p).

3.6. Evaluating of the matching calculation of calculation results 
to measurements (step 6)

The following measures of matching simulation 
results to measurements were used to assess the predic-
tive ability of the regression model:

- coefficient of correlation (R):

R
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- mean absolute error (MAE):
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- root mean square error (RMSE):
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where: N – number of measurements; ymes – results of total 
nitrogen measurements; ysim – results of total nitrogen 
simulations.

The following measures were used to evaluate the 
matching of the calculation results to the classification 
model measurements:

- sensitivity (SENS):

SENS TPos
TPos FNeg

� �
�

100  (8)

- specificity (SPEC):

SPEC TPeg
FPos TNeg

� �
�

100  (9)

- accuracy (Acc):

Acc TPos TNeg
TPos TNeg FPos FNeg

� �
�

� � �
100  (10)

where: TPos, TNeg, FPos, FNeg – classification results 
based on RF, XGBoost models (Table S1).

3.7. Sensitivity analysis of models based on the Shapley 
index (step 7)

The concept was designed to allocate the total profit/
reward among players according to the relative importance 

of their contribution to the final outcome of the game. An 
importance value is assigned to every feature represent-
ing the influence on the model prediction of including this 
feature. To calculate this effect, fS i�� �  model with the pres-
ence of this feature and the fs model with its omission were 
analyzed. The SHAPE method requires the calculation of 
the determined model on all subsets of S M i� �� � , fea-
tures, where: M – the set of all features. The simulation of 
two Shapley values is evaluated on the basis of the differ-
ence f x f xS i S i S S�� � �� �� � � � � , where xs represents the input 
feature values in the set S. Because the effect of withhold-
ing a feature is dependent upon other model features, 
the preceding differences are calculated on all possible 
differences f x f xS i S i S S�� � �� �� � � � � , for all possible subsets 
S M i� � �/ . Shapley values were determined as a weighted 
average of all these differences based on the formula:
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where fs is the output of the ML model to be explained by 
means of a set S of features, and M is the full set of all fea-
tures. As part of the presented analyses, the R – cran soft-
ware using the Shapley value package was used to cal-
culate SHAP values in RF, XGBoost models and evaluate 
the impact of individual independent variables.

4. Results

4.1. Correlation matrix

Pearson correlation coefficients were calculated (Table 1) 
according to the methodology (step 3). The highest value of 
correlation between total nitrogen (TNeff) and independent 
variables (quantity, wastewater quality, operational parame-
ters) was found for recirculation (REC; R = 0.58) and mixed 
liquor suspended solid (MLSS; R = 0.53). The value of the 
correlation between TNeff – met was only R = 0.08, but this 
does not exclude the existence of a relationship between vari-
ables, due to the fact that it may be non-linear. Among the 
WQI values on the tributary, the highest correlation value 
with TNeff was found for NO2–N (R = 0.45), after mechani-
cal treatment the highest correlation was found with CODm 
(R = 0.23). A high correlation was established between 
REC – MLSS (R = 0.74), but this value is less than the cut-
off value of R = 0.90 indicating multi-correlation, indicat-
ing that both independent variables can be included in the 
model. A high correlation (R = 0.58–0.71) was found between 
TSSm and BODm, CODm. The correlation of total nitrogen 
with quantity, quality of wastewater (BOD, COD, TSS, TN, 
NH4–N, NO3–N) confirms the influence of the amount 
of organic matter for the course of biochemical processes 
by microorganisms to remove pollutants in the influent  
wastewater.

The correlation of total nitrogen with activated sludge 
temperature confirms that the rate of metabolic processes 
is a seasonal factor that depends on the season. During the 
period of reduced temperature, there is a decrease in the 
dynamics of biochemical processes, resulting in an increase 
in total nitrogen at the outflow. Operational parameters 
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(MLSS, REC, F/M) determine the pollutant load of the bio-
reactor, retention time and dynamics of multiplication, as 
well as death of microorganisms in activated sludge [7]. 
With the above-mentioned considerations in mind, the total 
nitrogen model can be written as a general relationship:

TN
BOD COD TSS NH N

NO N MLSS REC meteff
4

3 as

�
�

�
�

�
�

�

�
�f

Q
T

, , , , ,
, , , ,  (12)

where Q – flow rate (m3/d); BOD – biochemical oxygen 
demand (mg/L); COD – chemical oxygen demand (mg/L); 
TSS – total suspended solids (mg/L); NH4–N – ammo-
nium (mg/L); NO3–N – nitrate (mg/L); Tas – temperature in 
activated sludge chambers (°C); MLSS – mixed liquor sus-
pended solids (kg/m3); REC – recirculation (%); met-daily 
dose of methanol (m3/d).

4.2. Development of models for TN prediction by XGBoost, RF 
methods

The dataset contained 144 observations. The data was 
divided into a teaching set and a testing set. The testing 
set accounted for 30% of the observations of the original 
dataset. The dependent variable in the regression models 
was TN. The independent variables are listed in Section 
4.1 – Correlation matrix.

The performed calculations showed that the best 
results of TNeff calculations using the RF method were 

obtained for 200 trees. For the XGBoost model, it was 
found that the greatest correspondence of simulation 
results to measurements for depth tree equal to 10. The 
simulations carried out showed that the RF model only 
predicts the average values of TNeff with satisfactory accu-
racy, at the same time the minimum and maximum values 
are underestimated (Figs. 2 and 3b). The XGBoost model 
showed an improvement in the predictive ability of TNeff 
compared to the RF model (Fig. 2). It was shown that the 
minimum and maximum values of TNeff were modeled 
with adequate accuracy (Fig. 2 and 3a).

4.3. Evaluating of the matching calculation of calculation results 
to measurements (R2, MAE, RMSE)

On the basis of the simulation results, measures of 
matching of the calculation results to the TNeff simulation 
were determined by determining the values of R, MAE, 
RMSE for the teaching and testing set, respectively (Table 2).

On the basis of the calculations performed, it was 
found that the RF model for the teaching and testing sets 
has similar predictive capabilities. This is confirmed by 
the determined values of R, MAE, and RMSE. For the 
XGBoost model, a very good fit was found for the learn-
ing set, as confirmed by R = 0.96, MAE = 0.44 mg/L and 
RMSE = 0.53 mg/L. The results of XGBoost model calcula-
tions for the learner and test set may indicate overfitting 
of the model and limited generalization capabilities.

Table 1
Pearson correlation coefficients between individual variables
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For the XGBoost and RF models, importance values 
(Imp) were determined for each independent variable, 
which are given in Table 3. The calculations performed 
with the XGBoost model showed that the values of deter-
mined importance ranged from 0.59–1.00, while with the 
RF model they were equal to 0.30–1.00. The simulations 

performed with the XGBoost model showed that MLSS, TSS, 
Q have the greatest influence on total nitrogen in the out-
flow, and NO3–N has the least influence. For the RF model, 
REC and F/M were found to have a key effect on TNeff.

The RF model calculations performed showed that 
among the independent variables considered, Tas has the 
least influence. A significant effect of the external carbon 
source on the total nitrogen content of the outflow was 
also found in the XGBoost and RF models.

4.4. Classification models (XGBoost, RF)

Considering the limited predictive ability, as indicated 
by the R, MAE, RMSE values for the test set, classification 

 

Fig. 2. Comparison of TNeff measurement results for simulation 
with RF and XGBoost methods.

Table 2
Comparison of fit measures for the determined models 
(XGBoost, RF) for the teaching and testing set

Method

Teaching Testing

R MAE RMSE R MAE RMSE

XGBoost 0.96 0.44 0.53 0.51 1.30 1.72
RF 0.75 1.10 1.38 0.76 1.00 0.78

 

Fig. 3. Comparison of TNeff measurements and calculations for the learning and test set by methods: (a) XGBoost and (b) RF.

Table 3
Validity values for individual independent variables in the 
XGBoost and RF models

XGBoost RF

Variables Imp Variables Imp

MLSS 1.00 REC 1.00
TSS 0.89 F/M 0.85
Q 0.82 NO2–N 0.73
F/M 0.81 MLSS 0.72
TN 0.81 Methanol 0.51
REC 0.79 Q 0.48
BOD 0.76 TN 0.47
NO2–N 0.76 TSS 0.46
NH4–N 0.70 BOD 0.40
COD 0.69 NH4–N 0.39
Tas 0.65 NO3–N 0.35
Methanol 0.59 COD 0.34
NO3–N 0.47 Tas 0.30
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models were performed using the XGBoost and RF meth-
ods. A 50% percentile value of 6.59 mg/L and a 75% per-
centile value of 8.17 mg/L were used to divide the TNeff 
values. Thus, zero-one variables were partitioned, which 
formed the basis for developing computational models. 
The determined values of the measures of matching of the 
simulation results to the calculations (SPEC, SENS, Acc) 
are given in Table 4. Meanwhile, the determined values of 
the importance (Imp) of the individual independent vari-
ables for the XGBoost and RF models are given in Table 5. 
On the basis of the data in Table 4, it was concluded that 
the obtained classification models have satisfactory pre-
dictive capabilities and can be used to identify TNeff in the 
ranges TN < 6.59 mg/L, TN = 6.59–8.17 mg/L, TN > 8.17 mg/L.

The calculations performed showed that in the XGBoost 
model, the validity values for identifying TNeff correspond-
ing to the 50% percentile, are 0.26–1.00 and for predicting 
TNeff corresponding to the 75% percentile, they change 
in the range of 0.76–1.00. In the RF method, the validities 
were found to be 0.40–1.00 and 0.49–1.00 in the models 
for classifying TNeff (50%, 75% percentile). It was found 
that in the XGBoost model, MLSS, REC, NO2–N have the 
greatest influence for identifying the 50% percentile of 

TNeff and the least influence is the COD. It was found that 
in the XGBoost model, Tas, F/M and TN have the greatest 
influence for identifying the 75% percentile of TNeff, and 
the least influence corresponds to NO3–N, NO2–N. It was 
found that TNeff is also strongly influenced by Q, TSS, 
MLSS, and the amount of methanol dosed for which Imp 
values > 0.90 were obtained. In the RF model, REC, F/M and 
MLSS have the greatest influence for identifying the 50% 
percentile of TNeff and NO3–N has the least influence. In the 
RF model, MLSS, REC (Imp > 0.90) have a key influence for 
identifying the 75% percentile of TNeff, and the least effect 
corresponds to the amount of dosed methanol.

5. Discussion

Based on the data in Table 6, it can be stated that the 
proposed methodology of the model building, compared 
to those developed so far, includes two stages, creating a 
regression model and building a classification model.

The advantage of the adopted approach compared to the 
others is the fact that in the case of unsatisfactory predictive 
abilities of the designated regression models, classification 
models are built. The application of a single classification 
model has limited possibilities of its use in the control and 
optimization of bioreactor operation, but based on two 
classification models (which was adopted in the paper), it 
allows for the identification of TNeff variability ranges and 
thus the correction of the bioreactor settings, if necessary. 
The models proposed in this paper take into account both 
the quantity and quality of wastewater, as well as the oper-
ational parameters of the bioreactor; a similar approach 
was adopted in the study by Szeląg et al. [29], Hvala and 
Kocijan et al. [30], Lee et al. [26], Luo et al. [25]. The pro-
posed solution is important in terms of the possibility of 
controlling the settings of the bioreactor, which can be used 
at the stage of the WWTP operation. It should be noted that 
the model developed in this study takes into account the 

Table 5
Validity validities for individual independent variables for the classification models determined by the XGBoost and RF methods

XGBoost RF

50% percentile 75% percentile 50% percentile 75% percentile

Variables Imp Variables Imp Variables Imp Variables Imp

MLSS 1.00 Tas 1.00 REC 1.00 MLSS 1.00
REC 0.90 F/M 0.97 F/M 0.81 REC 0.93
NO2–N 0.85 TN 0.97 MLSS 0.73 Tas 0.87
F/M 0.61 Q 0.96 NO2–N 0.69 F/M 0.73
TSS 0.44 TSS 0.95 TN 0.58 TSS 0.70
BOD 0.38 MLSS 0.94 BOD 0.47 BOD 0.68
TN 0.34 Methanol 0.93 NH4–N 0.46 TN 0.64
Q 0.34 COD 0.89 COD 0.46 Q 0.59
Tas 0.30 REC 0.89 Methanol 0.45 NH4–N 0.53
NH4–N 0.29 BOD 0.81 Tas 0.41 NO3–N 0.49
NO3–N 0.29 NH4–N 0.79 TSS 0.40 NO2–N 0.49
Methanol 0.26 NO3–N 0.76 Q 0.40 COD 0.49
COD 0.16 NO2–N 0.76 NO3–N 0.33 Methanol 0.48

Table 4
Comparison of the values of the measures of matching of mea-
surements to calculation results of classification models ob-
tained with the XGBoost and RF methods

Indices XGBoost RF

50% 
percentile

75% 
percentile

50% 
percentile

75% 
percentile

SENS 0.75 0.81 0.80 0.82
SPEC 0.78 0.76 0.78 0.80
Acc 0.77 0.78 0.79 0.81
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amount of methanol (external carbon source), which allows 
the process to be controlled with a wide range of variability 
of the quality of wastewater at the inflow to the treatment 
plant, even with high dilution of wastewater and unfavor-
able C/N, C/P values. The model provided by Bagherzadeh 
et al. [31] has limited applicability in the operational phase 
as it only considers the quality of the wastewater. This is 
the factors that make it impossible to control and optimize 
the bioreactor operation, but only to identify its operation 
in a continuous time. The performed calculations showed 
that the data collected in the WWTP on the basis of moni-
toring (measurement once a month) may be useful for the 
analysis of the operation of the treatment plant. Studies by 
other authors [23,25,30] have shown that the models devel-
oped on the basis of data collected by means of continuous 
(on-line) monitoring are more accurate. The data collected 
continuously in the form of time series (constant resolu-
tion) deliver a lot of information, including the identifica-
tion of the assessment of the impact of the object inertia on 
the changing quantity, quality of wastewater on the inflow 
and meteorological conditions. It should be remembered 
that these data also provide valuable information about 
changes taking place in the activated sludge, which only 
after a certain period of time may manifest themselves in the 
wastewater treatment plant and deterioration of operating  
conditions.

6. Summary and conclusion

Paper presents a methodology for building a model for 
simulating total nitrogen, based on sequential structure. 
In the applied approach, regression models for simulation 
of total nitrogen are first created using XGBoost and ran-
dom forest methods. In the case of unsatisfactory predictive 
ability, a division of the dependent variable into a classi-
fier form is made. In the next stage, classification models 
are created by random forest and XGBoost methods and 

sensitivity analysis is performed by calculating Shapley 
indices. The application of a single classification model has 
limited possibilities of its use in the control and optimiza-
tion of bioreactor operation, but based on two classification 
models (adopted in the paper) allows for the identification 
of TNeff variability ranges and thus the correction of the 
bioreactor settings, if necessary.

The models proposed in this paper take into account 
both the quantity and quality of wastewater, as well as the 
operational parameters of the bioreactor. Mentioned mod-
els covers also the amount of external carbon source, which 
allows to evaluate the process with a wide range of variabil-
ity of the wastewater quality at the inflow to the wastewa-
ter treatment plant, for example, in case of high dilution of 
wastewater or unfavorable C/N, C/P values.
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Table S1
Classification matrix

Classification Forecast decisions

Positive Negative

Observed Positive True positive 
(TPos)

False negative 
(FNeg)

Decisions Negative False positive 
(FPos)

True negative 
(TNeg)
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