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a b s t r a c t
Activated carbon has a high adsorption feature because it contains a specific high surface area, as 
this property helps it to adsorb organic, inorganic, and colloidal substances, whether these sub-
stances are liquid or gaseous. In this research, Ficus benjamina plant residues were selected as a 
precursor for preparation of the activated carbon (AC), and composite photocatalyst (AC-TiO2) 
adsorbents using pyrocarbonic acid microwave technique. The Ficus benjamina and activated car-
bon was characterized using Fourier-transform infrared spectroscopy, scanning electron micros-
copy with energy-dispersive X-ray spectroscopy and Brunauer–Emmett–Teller techniques. A certain 
range of conditions (impregnation time, acid concentration, impregnation ratio, microwave power, 
and microwave exposure time,) has been identified and analyzed for the production of activated 
carbon using STATISTICA 12.5 software with Taguchi method. The results showed that the best 
productivity of activated carbon in a specific range of condition was 80% phosphoric acid concen-
tration, 1:2 impregnation ratio (weight ratio), 6-h impregnation time, 20-min microwave exposure 
time and 700-watt microwave power. Likewise, Taguchi method was used to identified and ana-
lyzed the experimental adsorption data of initial dye concentration, mixing time, and adsorbent 
dosage. In addition, the adsorption data were analyzed and fitted by Langmuir and Freundlich iso-
therm models, and the result was well fitted with the Freundlich model. Likewise, the adsorption 
kinetics were fitted with pseudo-first-order and pseudo-second-order models and the results were 
well represented by the pseudo-second-order model.
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1. Introduction

The adsorption process is used as an efficient physical 
technique for removing or reducing the concentration of a 
variety of organic and inorganic pollutants from water efflu-
ent [1–5]. The fact that activated carbon (AC) as a renowned 
adsorbent, may be utilized effectively to remove a wide 
range of contaminants from the environment. Activated 
carbon is an amorphous form of carbon that is specially 
treated to produce a highly developed internal pore struc-
ture and a large surface area, thus, producing a reasonably 
cheap and excellent adsorbent [6]. Activated carbon has 

highly developed porosity, large surface area (that can reach 
3,000 m2/g), variable characteristics of surface chemistry, 
and a high degree of surface reactivity so it can be identified 
as a very effective adsorbent for the removal of a wide vari-
ety of organic and inorganic pollutants dissolved in aque-
ous media [7,8] or from the gaseous environment [9,10]. 
Currently, around 275,000 tons of AC are consumed annu-
ally worldwide [10,11]. Most of the materials used to pre-
pare AC are mineral carbons [11] and lignocellulosic from 
biomass, wood, and some agricultural wastes [10]. Two 
methods are used for the production of AC, namely, chem-
ical activation (ChA) (activation with mineral salts) and 
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physical activation (PhA) (activation using oxidizing agents 
such as CO2 or steam). In ChA, the precursor is impregnated 
with an activating agent such as ZnCl2, H3PO4, KOH, H2SO4, 
and NaOH followed by carbonization with conventional 
heating by an electrical furnace in an inert atmosphere at 
temperatures ranging from 400°C to 800°C or carbonization 
with microwave heating [12,13]. Possible advantages of ChA 
over PhA include higher yield, simplicity (no need for the 
previous carbonization of raw material), lower temperature 
of activation, and good development of the porous structure 
[14]. A variety of methods such as precipitation, adsorp-
tion, evaporation, reverse osmosis, and ion-exchange have 
been employed to remove some pollutants from water or 
wastewater, among which adsorption with AC is considered 
to be the best technology for the removal of color, nitrate, 
chemical oxygen demand and heavy metals except for its 
high manufacturing cost as said by [15,16]. Coal, wood, and 
coconut shell are the most widely used carbonaceous mate-
rials for the industrial production of ACs as said by [17]. 
But these types are often expensive and imported which 
makes it necessary for developing countries to find a cheap 
and available feedstock for the preparation of AC for use 
in industry, drinking water purification, and wastewater 

treatment. Agricultural by-products can be broadly classi-
fied into two groups: (a) soft, compressible waste products 
of low density such as rice husks, sugarcane bagasse, pea-
nut shells, soybean shells, etc. and (b) hard, dense, and not 
easily compressed agricultural by-products such as pecan 
or walnut shells, and stones from dates, apricots or cherries. 
Several suitable agricultural by-products including; olive 
cakes [17], olive stone [7,18], olive waste cakes [19], dates 
stone [14,20], tobacco stems [21], almond shells [10,22], corn 
cob [23], date palm fronds [24] waste tea [25], waste apri-
cot [26], sawdust [27–29], cherry stones [30], rice bran [31], 
durian shell [32], herb residues [33,34] cotton stalk [13] Siri’s 
seed pods [35,36] have been investigated in the last years 
as AC precursors and are still receiving renewed attention. 
A comparison of the malachite green adsorption capacity 
from aqueous solution using different adsorbents [37–55] 
is illustrated in Table 1.

The present work was conducted using the Ficus benjam-
ina plant used as a precursor for the preparation of the acti-
vated carbon (AC), and composite photocatalyst (AC-TiO2) 
adsorbents using pyrocarbonic acid microwave technique 
to adsorbate malachite green dye from aqueous solution. 
High surface area activated carbon was prepared via H3PO4 

Table 1
Comparison of the malachite green adsorption capacity using different adsorbents

Adsorbents Surface 
area (m2/g)

Microporosity 
(%)

Pore width 
(nm)

Adsorption 
capacity (mg/g)

pH References

Hemicellulose-based adsorbent 96.1 6.5 [37]
Magnetic-cyclodextrin-graphene oxide 
nanocomposites

741 7 [38]

Oxidized mesoporous carbon 334 61 3.9 1,265 6.5 [39]
Reduced graphene oxide 931 3.0 476 6 [40]
Carboxylate group-functionalized multi-walled 
carbon nanotubes

400 1.5 11.8 9 [41]

Potassium salts-activated carbons from textile 
sludge

481 57 34 167 6 [42]

Magnetic CuFe2O4 nano-adsorbent 128 1.8 197 5.4 [43]
Starch-graft poly(acrylamide)/hydrogels 287 5.5 [44]
Sulfonic acid-modified coal fly ash 69.4 3.0 233 [45]
Zeolite nanostructures from waste aluminum cans 227 [46]
Bio-based magnetic activated carbon 389 69 4.6 218 6 [47]
Fibrous cellulose sulfate 36.6 960 6 [48]
Tetraethylenepentamine-functionalized activated 
carbon

333 8 [49]

Lignin sulfonate-based mesoporous materials 118 3.8 121 7 [50]
Nickel hydroxide nanoplates-modified activated 
carbon

960 87 3.5 76.9 6.5 [39]

ZnO nanorod-loaded activated carbon 20 6 [52]
Copper nanowires loaded on activated carbon 689 7.4 164 5 [53]
Steam/H3PO4-activated carbon produced from 
waste-printed circuit boards

730 40.2 2.5 769 [54]

Magnetic metal–organic framework composite 35.4 114 [55]
Ficus benjamina activated carbon 951.33 4.2034 395.96 2 Present 

study
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activation by microwave heating. The design of the exper-
iment program was used with the Taguchi method, and 
five variables with four levels were used to investigate and 
analyzed the effects of impregnation time, acid concentra-
tion, impregnation ratio, microwave power, and microwave 
exposure time on the activated carbon surface area and yield. 
Also, five variables with four levels that study the effect of 
agitation speed, mixing time, pH, the concentration of dye, 
and dose of adsorbents on the malachite green removal 
efficiency were investigated and analyzed.

2. Method and design of experiments

2.1. Preparation step of activated carbon

Ficus benjamina waste was collected from the gardens 
of the University of Baghdad. These wastes include twigs 
firstly washed with water to remove dirt and dust and dried 
for 24 h in an oven at 100°C. The dried waste was crushed 
and sieved to (720 µm–1 mm). The sample was impregnated 
in different concentrations 50%–80% of H3PO4 with different 
impregnated ratios (1–4) and different impregnation times 
(2–8). The impregnated samples were filtered to remove 
excess acid and poured into a glass reactor instilled in a 
microwave oven with different radiation power 280–700 W 
and different times of irradiation under nitrogen flow of 
150 cc/min [56]. The produced samples of activated carbon 
were washed with hot water to remove the acid residue until 
pH reached 6.5–7, then dried at 105°C for 24 h and crushed 
to desired particle size. The present technique quoted the 
least expensive production cost of activated carbon with 
chemical activation using phosphoric acid H3PO4 and micro-
wave carbonization with a minimum cost estimated as 
$0.05/g compared to the cost of other production techniques 
[57,58] The ranges of the impregnation ratio, impregnation 
time, acid concentration, radiation power and radiation time 
as independent variables with their levels are using Taguchi 
design methodology shown in Table 2. Taguchi method 
with 16 experiments was generated by STATISTICA 12.5 
Software as shown in Table 3.

2.2. Characterization of precursor and adsorbents

The Ficus benjamina and activated carbon were char-
acterized using Fourier-transform infrared spectroscopy 
(FTIR), scanning electron microscopy (SEM) with EDS, and 
Brunauer–Emmett–Teller (BET) techniques. The specific sur-
face area of AC was determined using the liquid nitrogen 
adsorption–desorption isotherm. Brunauer–Emmett–Teller 

(BET: HORIBA, SA-900 Series, USA) was used to calculate 
the specific surface area.

2.3. Adsorbate preparation

Malachite green (MG) dye stock at various concen-
trations was prepared from a standard solution of MG 
dye by dissolving 1 g of MG dye in 1 L of distilled water. 
The standard solution was diluted with distilled water to 
achieve the desired dye solution concentrations 20–80 mg/L. 
The various concentration of dye was determined using 
UV-visible spectroscopy (λ = 617 nm) with a calibration 
curve as illustrated in Fig. 1.

3. Results and discussion

3.1. Design of experiments

A set of experiments was generated using Taguchi 
method with experimental results obtained for the surface 
area and yield of activated carbon prepared is illustrated 
in Table 4.

Activated carbon yield and surface area were recorded 
from the results of physical experiments using Taguchi 
method and calculation of yield and surface area after the 
activation process, respectively. The yield of activated car-
bon on the other hand was found to range from 49.3432% 
to 49.6158% whereas, the activated carbon surface rang-
ing from 2.2667 to 951.33 m2/g. The final empirical formula 
model for yield (Y1) and surface area (Y2) shown in Eqs. (1) 
and (2), respectively, were fitted with experimental data 
for yield model R2 = 0.9482 and R2 = 0.987314.
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where Y1 and Y2 are activated carbon yield and surface area, 
b0, b1, b2, b3, b4 and b5 are the linear coefficients, b12, b13, b14, 
and b15, are the second-order interaction terms, b11, b22, b33, 
b44 and b55 are the quadratic terms of each factor. X1, X2, X3, 
X4, and X5 are the coded terms of immersion rate, acid con-
centration, immersion time, radiation exposure time, and 
radiation energy, respectively. The estimated values of the 
model coefficient, the standard error of each model term, 
and its p-value are shown in Tables 5 and 6. It’s clearly noted 
from these tables, that all coefficients have a significant 
effect on model accuracy due to their p-values which are 
smaller than 0.05.

Figs. 2 and 3 represent the actual values vs. the predicted 
values for surface area and yield, respectively. These fig-
ures show that the quadratic model of the responses fit the 
experimental data, which is reflected in the good predictions 
of the models. The interaction effect between the models’ 
terms is crucial and could be examined based on the model 
equation and significant effects. The three-dimensional 

Table 2
Independent variables and their levels for Taguchi design 
for activated carbon production

Parameter Factor Variable level

Impregnation ratio (wt./wt.) X1 1:1 1:2 1:3 1:4
Impregnation time (h) X2 2 4 6 8
Acid concentration (wt.%) X3 50 60 70 80
Radiation power (Watt) X4 280 420 560 700
Radiation time (min) X5 10 20 30 40
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surface plot of all the variables is the best way to clearly 
present the relationships.

In addition, the composite activated carbon was pre-
pared by impregnating 25 g of AC with a high surface area 
in 250 mL of an aqueous suspension containing 1.25 g of 
TiO2 powder. The mixture was heated at 80°C for 5 h with 
300 rpm stirring and the product was filtered, and the solid 
was washed with distilled water until the color in the resid-
ual liquid disappeared, then the solid product dried for 
24 h at 120°C, to obtain the desired adsorbent for the MG 

dye removal. SEM and BET analyses were used to undertake 
a qualitative investigation of AC before adsorption.

3.2. BET analysis for activated carbon

The BET surface areas of activated carbons derived 
from Ficus benjamina were found to be relatively high, 
with 951.33 m2/g being the ideal surface area. The pore 
diameters of sawdust and caw bones were determined 
to be in the nanopore range on average. The average pore 
width was calculated to be 4.2034 nm, as shown in Table 7. 
which conforms to IUPAC nanoporous material categories 
within the provided range [59].

3.3. Scanning electron microscopy with energy-dispersive X-ray 
spectroscopy

The surface form and topographical features were 
investigated using a SEM. The resulting photos are 
three-dimensional and precisely portray the surface shape. 
The energy-dispersive X-ray spectrophotometer is used to 
analyze the elements that make up the precursors ener-
gy-dispersive X-ray spectroscopy (EDS). TESCAN, Vega III, 
Czech Republic, was used for SEM-EDS analysis as shown 
in Fig. 3a, the best AC produced from 16 runs in run 8 from 
Table 3. The surface morphology for AC has been devel-
oped with lamellar structure with different pores sizes 
and shapes. These pores’ heterogeneity in sizes and shapes 
have resulted from the breakdown and volatilization of 
non-carbonaceous material in feedstock and the resulting 
pores formed due to chemical gives a good probability for 
dyes to be adsorbed. Whereas Fig. 3b shows the surface 
morphology of AC-TiO2 with spongy nature and a large 
number of cavities, the presence of metal nanoparticles, 
and layers of carbon particles [59]. Elemental compositions 
of activated carbons (AC) and composite photocatalysts 

Table 3
Taguchi method for experimental design of activated carbon preparation

Number Impregnation ratio Acid concentration Impregnation time Radiation exposure time Radiation power

1 1:1 50 2 10 700
2 1:1 60 4 20 560
3 1:1 70 6 30 420
4 1:1 80 8 40 280
5 1:2 50 4 30 280
6 1:2 60 2 40 420
7 1:2 70 8 10 560
8 1:2 80 6 20 700
9 1:3 50 6 40 560
10 1:3 60 8 30 700
11 1:3 70 2 20 280
12 1:3 80 4 10 420
13 1:4 50 8 20 420
14 1:4 60 6 10 280
15 1:4 70 4 40 700
16 1:4 80 2 30 560

y = 114.27x + 0.8869
R² = 0.9975
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Fig. 1. Calibration curve of malachite green concentration.
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(AC-TiO2) were analyzed by EDS their results are shown 
in Fig. 4a and b. It’s clearly from these figures that carbon 
percentage for active carbon was 81.19%.

3.4. Fourier-transform infrared spectroscopy

Fourier-transform infrared spectroscopy was utilized to 
determine the functional groups that occur on the surface 
of both Ficus benjamina and activated carbon. The infrared 
spectra were examined using a Fourier-transform infra-
red spectrophotometer (IRAffinity-1 Shimadzu, Japan) as 
shown in Fig. 5b the best AC was produced from 16 runs 
in run 8 from Table 4. Fig. 5a shows the FTIR for Ficus 
benjamina.

The FTIR spectra of Ficus benjamina and AC are shown 
in Fig. 4a and b. The FTIR spectra clearly have lower inten-
sities than the Ficus benjamina spectrum, and many of the 
Ficus benjamina peaks have vanished. The dissolution of 
chemical bonds during H3PO4 impregnation creates this 
evanescence, which subsequently leads the carbonization 
process to remove and liberate a range of volatile com-
pounds [60]. Four peaks were discovered in the AC FTIR 
spectra at 3,425; 1,647; 1,554 and 1,415 cm–1. The initial peak 
at 3,425 cm–1 was probably induced by the O–H stretching 
vibration of the hydroxyl groups [61]. The band around 
1,647 cm–1 might be attributed to C≡C stretching vibrations 
in alkyne groups, while the peak around 1,554 cm–1 could 
be attributed to C=C stretching vibrations in aromatic rings 

Table 4
Experimental design of optimization of production of activated carbon

Number Impregnation ratio Acid concentration Impregnation time Exposure time Radiation power Yield % BET (m2/g)

1 1:1 50 2 10 700 49.5334 825.05
2 1:1 60 4 20 560 49.5956 809.12
3 1:1 70 6 30 420 49.6158 585.18
4 1:1 80 8 40 280 49.555 418.21
5 1:2 50 4 30 280 49.3432 13.015
6 1:2 60 2 40 420 49.4864 17.683
7 1:2 70 8 10 560 49.4364 16.615
8 1:2 80 6 20 700 49.5638 951.33
9 1:3 50 6 40 560 49.5288 14.26
10 1:3 60 8 30 700 49.5064 37.268
11 1:3 70 2 20 280 49.4104 2.2667
12 1:3 80 4 10 420 49.506 15.808
13 1:4 50 8 20 420 49.3854 11.274
14 1:4 60 6 10 280 49.3462 10.352
15 1:4 70 4 40 700 49.473 31.942
16 1:4 80 2 30 560 49.53 6.8107

Table 5
Model coefficients, standard error, and terms p-values for activated carbon yield

Coefficient Estimate Standard error t-value df = 1 p-value Lo. conf. limit Up. conf. limit

b0 472.5532 0.080445 39.631748 0.033453476 472.5532 472.5532
b1 –5.7924 0.722492 –18.434666 0.022354676 –5.7924 –5.7924
b2 –3.3206 0.022664 –10.55949 0.04876435 –3.3206 –3.3206
b3 –16.4448 0.000643 –33.050914 0.027356476 –16.4448 –16.4448
b4 –1.5723 0.000258 –17.919547 0.0176345 –1.5723 –1.5723
b5 0.2530 0.031082 64.572202 0.0376854 0.2530 0.2530
b11 0.0158 0.023694 21.239910 0.012134253 –0.2852 0.3169
b22 0.0007 0.000257 91.755232 0.028765 –0.0032 0.0033
b33 –0.0020 0.006396 –64.020965 0.043786523 –0.0833 0.0793
b44 –0.0001 0.000261 –148.61886 0.0237564 –0.0034 0.0033
b55 –0.0003 0.018365 –30.472067 0.017564335 –0.0000 –0.0000
b12 0.0328 0.000041 11.996309 0.0376565 0.0328 0.0328
b13 0.1630 0.002099 31.034637 0.02874556 0.1630 0.1630
b14 0.0312 0.000354 27.952689 0.0345378 0.0312 0.0312
b15 –0.0025 0.001782 –8.12495113 0.022764534 –0.0025 –0.0025
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[62]. The existence of C–O stretching vibrations in alcohols, 
phenols, acids, ethers, or esters is indicated by the 1,415  
peak [63].

3.5. Batch experimental studies

Batch experiments with five independent factors with 
four levels of initial dye concentration, mixing time, and 
adsorbent dosage were selected for design experiments as 
shown in Table 8, whereas Taguchi method with 16 experi-
ments was generated by STATISTICA 12.5 Software to inves-
tigate their impact on the quality of MG dye adsorption 
as shown in Table 9. was proposed using Taguchi method 
as described before and the response as experimental 
removal efficiency illustrated in Table 8. The batch exper-
iments were carried out to evaluate the factors’ effects and 

their interaction on the removal efficiency of MG. 250 mL 
Erlenmeyer flask containing the necessary adsorbent 0.1–
0.4 g/L of AC-TiO2 and 20–80 ppm of malachite green dye solu-
tion. The solution was agitated on a temperature-controlled 
mixer for a specified contact period 20–100 min. The mixture 
of AC-TiO2 and dye solution was filtered after specific time 
intervals to remove the solid from the solution. Ultraviolet-
visible spectroscopy was used to determine the equilibrium 
concentration of malachite green dye. The MG adsorption 
capacity and efficiency was determined in Eqs. (3) and (4).

q
C C V
Me

o e�
�� �

 (3)

RE% �
�� �C C
C
o e

o
 (4)

Table 6
Model coefficients, standard error, and terms p-values for activated carbon surface area

Coefficient Estimate Standard error t-value df = 1 p-value Lo. conf. limit Up. conf. limit

b0 3,282,444 0.023364 32.9754396 0.012423 1.827109E+39 –1.827109E+39
b1 –42,604 0.000076 25.7865392 0.00234235 1.809098E+37 –1.809098E+37
b2 –27,924 0.003078 –11.3465982 0.01433234 2.283770E+37 –2.283770E+37
b3 –145,450 0.000563 –32.6667493 0.03763458 1.141887E+38 –1.141887E+38
b4 –14,470 0.000298 –18.9667532 0.04423652 1.141877E+37 –1.141877E+37
b5 2,152 0.006396 61.7647372 0.03323748 1.631238E+36 –1.631238E+36
b11 100 0.001033 23.3959108 0.01237472 4.299873E+31 –4.299873E+31
b22 0.00754 0.002275 89.5852727 0.02234346 5.453686E+29 –5.453686E+29
b33 –18 0.090664 66.2098652 0.0334525 1.170699E+31 –1.170699E+31
b44 –1 0.000643 –166.618867 0.01463256 4.490555E+29 –4.490555E+29
b55 0.002397 0.000887 –28.721067 0.02134513 3.188241E+27 –3.188241E+27
b12 276 0.003678 18.9896914 0.03451351 2.261162E+35 –2.261162E+35
b13 1,441 0.000161 33.3467375 0.04534134 1.130581E+36 –1.130581E+36
b14 287 0.013835 26.5627685 0.02334534 2.261143E+35 –2.261143E+35
b15 –21 0.000071 8.95771313 0.0116567 1.615088E+34 –1.615088E+34
b12345 0.00075 0.000877 39.6317483 0.0236534 –1.626432E-07 –1.626432E-07

 

Fig. 2. Comparison between the actual and predicted value 
for yield.

 

Fig. 3. Comparison between the actual and predicted value for 
surface area.
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where Co and Ce are dye initial and equilibrium concentra-
tions (ppm), respectively; qe is the equilibrium capacity of 
MG (mg/g); V is the volume of malachite green solution (L); 
M is the mass of AC-TiO2 (g).

The removal efficiency of malachite green by AC alone 
was found to range from 98.99% to 91.39%, for the AC-TiO2 
was found to range from 99.13% to 95.39%. This means that 
the presence of TiO2 enhanced the adsorption of MG on 
activated carbon. The empirical formula model for removal 
efficiency by AC (Y1) and AC-TiO2 (Y2) as illustrated in 
Eqs. (5) and (6), respectively, were fitted with experimental 
data for removal model R2 = 99.455565, and R2 = 98.914094.
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Table 7
BET analysis for activated carbon

Parameter Value

Sample weight (g) 0.0416
Standard volume (cm3) 9.779
Dead volume (cm3) 15.408
Equilibrium time (s) 0
Adsorptive (N2) N2

Apparatus temperature (C) 0
Adsorption temperature (K) 77.000
Saturated vapor pressure (Kpa) 84.424
Adsorption cross-section area (mm2) 0.162

BET plot

Vm (cm3(STP)/g) 218.57
as,BET (m2/g) 951.33
C 312.26
Total pore volume (p/p0 = 0.990) (cm3/g) 0.9997
Mean pore diameter (nm) 4.2034

(a) (b)

Fig. 3. Scanning electron microscopy for (a) activated carbon and AC-TiO2.

 

 

(a)

(b)

Fig. 4. Energy-dispersive X-ray spectroscopy for (a) activated 
carbon (b) AC-TiO2.
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where Y1 and Y2 are removal efficiency for AC alone and AC 
with TiO2, b0, b1, b2, b3, b4 and b5 are the linear coefficients, 
b12, b13, b14, and b15, are the second-order interaction terms, 
b11, b22, b33, b44 and b55 are the quadratic terms of each factor. 
X1, X2, X3, X4, and X5 are the coded terms of MG concentra-
tion, mixing time, pH, speed of mixing, and dosage of AC, 
respectively.

The estimated values of the model coefficient, the stan-
dard error of each model term, and its p-value are shown 
in Tables 10 and 11. It’s clearly noted from these tables, that 
all coefficients have a significant effect on model accuracy 
due to their p-values which are smaller than 0.05.

3.6. Surface response analysis

Three-dimensional surface plot of the experimental 
parameter’s interaction effects on MG removal efficiency for 
concentration 20–80 mg/L, mixing time 20–100 min, pH of 
the solution 2–8, and adsorbent dose 0.1–0.4 g/50 mL of AC 
and AC-TiO2 are illustrated in Figs. 6a–d and 7a–d. Figs. 6a 

and 7a demonstrate the effect of MG concentration and 
mixing time on removal efficiency for AC and AC-TiO2, 
respectively. In general, there are two possible explana-
tions for the cationic dye adsorption mechanism by AC and 
AC-TiO2. The first one is due to the electrostatic interaction 
between the positively charged cationic dyes and the neg-
atively charged of adsorbents and the second one is due to 
van der Waals interactions between hexagonally arrayed 
carbon atoms in the graphite sheet of AC and TiO2 atoms, 
as well as carbon atoms of the adsorbents and the aromatic 
backbones of the dyes [64]. It clearly noted that as the ini-
tial dye concentration increased, with the mixing time the 
removal efficiency increased, and the rate of MG adsorption 
on AC and AC-TiO2 increased rapidly due to the availabil-
ity of a great number of unoccupied sites on the surface of 
the adsorbent, therefore, the dye adsorption rate is high at 
the beginning. Whereas the colonization of the remaining 
unoccupied sites becomes more difficult with increasing 
time due to increased repulsive interactions between dye 
molecules and bulk solution [65,66]. The obtained results 
are similar to that obtained by bagasse fly ash and activated 
carbon [67] and oil palm trunk fiber [68]. Figs. 6b and 7b 
demonstrate the effect of MG concentration and pH on 
removal efficiency for AC and AC-TiO2, respectively. pH 
of the solution is regarded as the most important element 
influencing the adsorption capacity is the surface charge 
intensity of the adsorbent and the ion concentration in the 
solution [69]. It’s clearly noted that the removal efficiency 
of MG increased as the pH of the solution increased until 
reach approximately pH 5. This implies that the adsorbent’s 
surface was negatively charged, which allowed more elec-
trostatic attraction for malachite green absorption. similar 
results were reported for bamboo leaf ash [70], pea shells 
[71], zinc oxide nanoparticles loaded with activated carbon 
[72], and wood apple shell [73] adsorbents. Figs. 6c and 7c 
illustrate the effect of malachite green concentration and 
agitation speed on removal efficiency for AC and AC-TiO2, 

 

 

(a)

(b)

Fig. 5. Fourier-transform infrared spectroscopy for (a) Ficus 
benjamina and (b) activated carbon from run 8.

Table 8
Factors with their levels of Taguchi design method

Parameter Factor Level

Dye concentration (wt.%) X1 20 40 60 80
Mixing time (min) X2 20 40 60 100
pH X3 2 4 6 8
Speed of mixing (rpm) X4 200 400 600 800
Dose of activated carbon X5 0.10 0.20 0.30 0.40

Table 9
Taguchi method for a batch design experiment

Ci Time pH RPM Dosage RE% AC RE% TiO2

20 20 2 200 0.1 91.97% 95.39%
20 40 4 400 0.2 95.39% 95.96%
20 60 6 600 0.3 94.82% 96.53%
20 100 8 800 0.4 94.82% 96.53%
40 20 4 600 0.4 97.12% 98.26%
40 40 2 800 0.3 96.55% 97.69%
40 60 8 200 0.2 97.12% 97.98%
40 100 6 400 0.1 96.55% 97.98%
60 20 6 800 0.2 97.89% 98.65%
60 40 8 600 0.1 90.10% 98.27%
60 60 2 400 0.4 98.46% 99.03%
60 100 4 200 0.3 97.89% 98.65%
80 20 8 400 0.3 98.56% 98.85%
80 40 6 200 0.4 98.70% 98.85%
80 60 4 800 0.1 98.99% 98.85%
80 100 2 600 0.2 98.70% 99.13%
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respectively. It can be observed from these figures that the 
influence of the agitation is minor as compared to the effect 
of concentration which coincide to the results obtained 
by apricot stones activated carbon [74]. Finally, the effect 
of malachite green concentration and adsorbent dose on 
removal efficiency for AC and AC-TiO2 are illustrated in 
Figs. 6d and 7d. It’s clearly noted that the effect of mala-
chite green concentration is more significant as compared 
to the adsorbent dose, which means as the concentration 
increased there are sufficient free sites on the absorbent still 
available for malachite green adsorption. Similar results 
were obtained by activated carbon generated from agri-
cultural waste activated carbon [75] and multi-wall carbon 
nanotubes [76].

3.7. Adsorption isotherm

To match the results in the adsorption isotherms for mal-
achite green adsorption on AC-TiO2 were performed under 
the ideal conditions discovered for each case and with dif-
ferent starting concentrations. At different mixing times, 
the developed experimental model produced different 
outcomes. To understand the behavior of adsorbate mole-
cules at a solid–liquid interface, several adsorption models 
can be used. Langmuir (Langmuir 1916) and Freundlich 
analyzed adsorption data in their work (Freundlich 1925). 
The Langmuir model has the following linear form:

q
k q C
k Ce

L m e

L e

�
�1

 (7)

Table 10
Model coefficients, standard error, and terms p-values for removal malachite green by activated carbon

Coefficient Estimate Standard error t-value df = 1 p-value Lo. conf. limit Up. conf. limit

b0 –1.20280 1.415525 –18.434666 0.002323 –19.1887 16.78315
b1 0.10260 0.068950 64.572202 0.012123 –0.7735 0.97870
b2 –0.00463 0.003633 39.631748 0.005745 –0.0508 0.04153
b3 0.13595 0.082218 –30.472067 0.045645 –0.9087 1.18063
b4 0.00165 0.001344 11.996309 0.009764 –0.0154 0.01874
b5 3.78324 2.268078 –10.55949 0.001256 –25.0354 32.60190
b12 –0.00039 0.000238 –64.020965 0.004564 –0.0034 0.00264
b13 –0.00577 0.003665 –17.919547 0.005837 –0.0523 0.04080
b14 –0.00006 0.000042 27.952689 0.006747 –0.0006 0.00047
b15 –0.10023 0.067252 –148.61886 0.007655 –0.9548 0.75428
b12345 –0.00000 0.000030 91.755232 0.002345 –0.0000 –0.00000
b11 0.00003 0.000010 –8.12495113 0.007897 –0.0001 0.00016
b22 0.00010 0.000060 31.034637 0.007845 –0.0007 0.00087
b44 –0.00000 0.000763 21.239910 0.007845 –0.0000 –0.00000
b55 –3.81895 2.352758 –33.050914 0.001260 –33.7136 26.07567

Table 11
Model coefficients, standard error, and terms p-values for removal malachite green by AC-TiO2

Coefficient Estimate Standard error t-value df = 1 p-value Lo. conf. limit Up. conf. limit

b0 –1.20280 1.415525 39.631748 0.0321 –19.1887 16.78315
b1 0.10260 0.068950 –64.020965 0.0281 –0.7735 0.97870
b2 –0.00463 0.003633 –33.050914 0.0189 –0.0508 0.04153
b3 0.13595 0.082218 31.034637 0.0213 –0.9087 1.18063
b4 0.00165 0.001344 11.996309 0.0278 –0.0154 0.01874
b5 3.78324 2.268078 64.572202 0.0256 –25.0354 32.60190
b12 –0.00039 0.000238 91.755232 0.0298 –0.0034 0.00264
b13 –0.00577 0.003665 –17.919547 0.0254 –0.0523 0.04080
b14 –0.00006 0.000042 27.952689 0.0195 –0.0006 0.00047
b15 –0.10023 0.067252 –148.61886 0.0184 –0.9548 0.75428
b12345 –0.00000 0.000000 21.239910 0.0266 –0.0000 –0.00000
b11 0.00003 0.000010 –8.12495113 0.0243 –0.0001 0.00016
b22 0.00010 0.000060 –30.472067 0.0385 –0.0007 0.00087
b44 –0.00000 0.000000 –10.55949 0.0258 –0.0000 –0.00000
b55 –3.81895 2.352758 –18.434666 0.0147 –33.7136 26.07567
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where qe (mg/g) is the equilibrium adsorption capacity, 
Ce (mg/L) is the equilibrium malachite green concentra-
tion, kL (L/mg) is the adsorption equilibrium constant, and 
qm (mg/g) is the complete monolayer adsorption capacity.

The Freundlich isotherm is given in the linear form:

q k Ce f e
n= 1/  (8)

The Freundlich constants kf (L/mg) and 1/n.
The adsorption behavior of MG on AC and AC-TiO2 

was stated by Langmuir and Freundlich isotherm mod-
els as shown in Figs. 8 and 9. It is clearly noted from these 
figures that the adsorption process data well matched with 
the Freundlich model which means that the adsorption 

occurred on the assumption of multilayer adsorption on 
the heterogeneous surface of AC and AC-TiO2. This behav-
ior agreed with that reported by [77] and disagreed with 
results obtained by [60] using different kinds of commercial 
activated carbon. Table 12 summarizes the Langmuir and 
Freundlich coefficients that fitted with experimental data 
for malachite green adsorbed by AC and AC-TiO2.

3.8. Adsorption kinetics

Experiments with batch MG adsorption on both AC and 
AC-TiO2 were carried out to investigate adsorption kinetics 
under optimal conditions for each concentration and with 
varied contact times. Other results were obtained from the 

 
(a)                                                                            (b) 

 
(c)                                                                               (d)  

Fig. 6. Effect of (a) malachite green concentration with contact time, (b) malachite green concentration with pH, (c) malachite 
green concentration with mixing speed and (d) malachite green concentration with activated carbon dose.
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(a)                                                                            (b)  

    
(c)                                                                             (d) 

Fig. 7. Effect of (a) malachite green concentration with contact time, (b) malachite green concentration with pH, (c) malachite 
green concentration with mixing speed and (d) malachite green concentration with AC-TiO2 dose.
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Fig. 8. Langmuir and Freundlich isotherm models for mala-
chite green adsorption by activated carbon.
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Fig. 9. Langmuir and Freundlich isotherm models for mala-
chite green adsorption by AC-TiO2.
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empirical model when the initial concentrations were var-
ied. Adsorption kinetics defines the interactions between 
adsorbate and adsorbent, and it is being studied because 
of its application in the prevention of water pollution. 
Adsorption kinetics may assess two essential aspects used 
in the design of adsorption units: response rate and mech-
anism [78]. The kinetics mechanism was characterized for 
adsorption data fitting using two models: pseudo-first-or-
der (Lagrange 1906) and pseudo-second-order [78,79]. The 
pseudo-first-order and pseudo-second-order formulas were 
used to fit adsorption data as shown in Eqs. (9) and (10):

q q et e
k t� �� ��1 1  (9)

q
k tq
q k Ct

e

e e

�
�

2
2

21
 (10)

where qe and qt (mg/g) are the equilibrium adsorption 
capacities at time t (min), and k1 (min–1) k2 (g/mg·min) is the 
adsorption constants.

Fig. 10 shows the plots of qt vs. time of adsorption (t) 
using experimental data compared with pseudo-first-or-
der fitting models for AC whereas Fig. 11 shows the plots 
of qt vs. time of adsorption (t) using experimental data 
with pseudo-first-order models for AC-TiO2. It’s clearly 
noted that the adsorption process well fitted with a pseu-
do-second-order model which means that the mechanism 
of the adsorption process complied with chemisorption. 

This mechanism was similar to that reported by [42]. The 
kinetic parameters for the two kinetic models and correlation 
coefficients are summarized in Table 13.

3.9. Proposed adsorption mechanisms

Various potential interactions, including cationic and 
ionic exchange, hydrogen bond creation, electrostatic 
attraction, n–π interaction, π–π interaction, and pore fill-
ing have been proposed in the literature for cationic dye 
adsorption [80], and the adsorption mechanism is greatly 
related to the structure and properties of the adsorbate [81]. 
Two processes for the adsorption mechanism of malachite 
green dye on activated carbon were proposed as illustrated 
in Fig. 12a and b; monolayer adsorption on the first layer 

Table 12
Freundlich and Langmuir coefficients for malachite green 
adsorption on activated carbon and AC-TiO2

Adsorbent Langmuir Freundlich

kL 
(L/mg)

qm 
(mg/g)

R2 kf 
(mg/g)

n R2

Activated 
carbon

0.0426 73.356 0.958 5.9644 1.7203 0.9993

AC-TiO2 0.0750 37.356 0.9646 2.8725 1.6798 0.9996

Table 13
Kinetic parameters and correlation coefficients for activated carbon and AC-TiO2

Pseudo-first-order Pseudo-second-order

k1 (min–1) qe,cal (mg/g) R2 k2 (g/mg·min) qe,cal (mg/g) R2

Activated carbon 0.1248 37.4772 0.9388 0.00229 43.9151 0.9995
AC-TiO2 0.1630 40.7945 0.9412 0.00778 40.8717 0.9911

0

5

10

15

20

25

30

35

40

45

50

0 30 60 90 120

qt
 (m

g/
g)

Time (min)

Experimental data
Pseudo-First-Order
Pseudo-Second-Order

Fig. 10. Plots of pseudo-first-order and pseudo-second-order 
adsorption kinetics of malachite green on activated carbon.

0

5

10

15

20

25

30

35

40

45

50

0 50 100 150

qt
(m

g/
g)

Time (min)

Experimental data

Pseudo-First-Order

Fig. 11. Plots of pseudo-first-order and pseudo-second-order 
adsorption kinetics of malachite green on AC-TiO2.
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and multilayer adsorption on the posterior layers (ref). 
Fig. 11a shows three steps for potential monolayer adsorp-
tion interactions, (i) an electrostatic interaction between 
the carboxylic groups in the adsorbent surface and the 
cationic charge of the MG dye, (ii) H-bonding between the 
carboxyl or hydroxyl groups in the adsorbent surface and 
H-bonding in malachite green as well H-bonding between 
hydroxyl group in malachite green and carbonyl group in 
the adsorbent surface, (iii) π–π interaction between aro-
matic groups in adsorbent surface and malachite green 
molecules. Whereas, Fig. 11b shows two steps for poten-
tial multilayer adsorption interactions (i) π–π interac-
tions between the aromatic rings of the malachite green 
and, (ii) H-bonding between hydroxyl group in malachite 
green molecules [82]. In addition, Lewis acidic and basic 
sites in TiO2 allow its surface to be easily hydroxylated 
by dissociation and adsorption of water molecules during 
the AC-TiO2 preparation sample. TiO2 molecules on the 
surface of the activated carbon are bonded by hydroxyl 
groups and the slightly increasing of malachite green 
adsorption is attributed to the electrostatic interactions 
between the cationic dyes and the metal oxide’s negative  
surface [83].

4. Conclusion

The present research revealed that Ficus benjamina agro-
waste can effectively be used as a raw material for the prepa-
ration of activated carbon by pyrocarbonic acid microwave 
method with titanium oxide (TiO2) as composite material for 
the removal of malachite green dye from aqueous solutions. 
The experiment conditions with the method of activation 
were optimized using the experimental design methodol-
ogy and the results were analyzed with the STATISTICA 
12.5 Software. The analyzed results showed that the best 
removal efficiency of AC adsorbent reached 98.99% at oper-
ating conditions of 40 min, pH 4, mixing speed 800 rpm, 
and 0.1 g/50 mL adsorbent dose. Whereas the best removal 

efficiency of AC-TiO2 adsorbent reached 99.13% at oper-
ating conditions of 100 min, pH 2, mixing speed 600 rpm, 
and 0.2 g/50 mL adsorbent dose. In addition, the analysis 
of the results showed that the adsorption process followed 
the Freundlich and pseudo-second-order kinetic models 
which explained that the adsorption may involve multi-
layer adsorption behavior with interactions between the 
adsorbate molecules and the availability of the adsorbent 
sites than the adsorbate concentration pesticides in solution.
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