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a b s t r a c t
Atenolol (ATN) belongs to a class of drugs known as β-blockers. This medicine works on the heart 
and blood vessels by blocking the action of some natural chemicals in the body. ATNs are pres-
ent in surface water and sediments from hospitals and wastewater treatment plants. In the current 
study ATN degradation using hybrid processes of peroxymonosulfate (PMS)/ultraviolet (UV)/
microwave (MW) were investigated. The reaction kinetics and scavengers’ effects were also eval-
uated. Experiments were carried out in a 1.5-L reactor with UV lamp and MW and then analyzed 
by high-performance liquid chromatography. Artificial neural networks was implemented for mod-
elling and particle swarm optimization technique was used to specify the optimal status for ATN 
degradation. According to the result, only MW power and PMS parameters had a linear relation-
ship with efficiency, and other parameters had non-linear relationship. Moreover, increasing PMS 
dosage and MW power in neutral pH has a significant effect on ATN degradation. As per our 
result, optimum conditions in the experiments were pH 6.2 and 28.8 mg/L ATN initial concentra-
tion, 3.05 mg/L PMS concentration, 14.30 min UV time, 19.90 min MW time and 630 W MW power. 
In this situation the ATN degradation rate was about 97% which according to the sensitivity anal-
ysis by Pearson correlation method, pH had the greatest effect on the degradation efficiency in the 
range of 3–7. Nitrate (NO3

–), chloride (Cl–) and humic acid (HA) were used as scavengers. The find-
ings showed that increasing the concentration in HA and NO3

– decreased the efficiency, but Cl– did 
not have much effect on the results. According to the results, this method can be efficient for the  
degradation of ATN.

Keywords:  Advanced oxidation; Artificial neural networks modeling; Atenolol; Hybrid processes; 
Particle swarm optimization

1. Introduction

Personal care products (PPCPs) and pharmaceuticals 
are emerging pollutants that prompt great attention in 

recent decades. Atenolol (ATN) is one of the most common 
β-blocker belongs to PPCPs [1,2]. β-blockers are widely 
used to treat high blood pressure, arrhythmia and other 
cardiovascular diseases [3,4]. Due to the widespread use 
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of β-blockers, they usually remain in the aquatic environ-
ment [3]. On the other hand, pharmaceutical wastewaters 
have high dissolved solids as well as dissolved organic 
carbon. Discharge of the wastewaters to the environment 
have rigid difficulties such as formation of antibiotic resis-
tant microbes in the aqueous environment and increased 
the chemical toxicity [4]. ATN was generally discovered in 
wastewater and surface waters, with a concentration range 
of ng/L to µg/L [5]. The bioaccumulation, biological activity, 
persistence and toxicity of ATN make it a major threat to 
the ecosystem. Its presence along with other β-blockers can 
create synergistic toxicity in the environment. Prolonged 
exposure to ATN causes hormonal imbalance and cancer in 
humans. It has also been reported that ATN can have a neg-
ative effect on the growth of human embryonic cells in com-
bination with other common therapeutic drugs. For these 
reasons, it is necessary to remove atenolol from wastewater 
with effective treatment processes [6,7]. Recently, some of 
the methods have been used for ATN degradation including 
modified multiwalled carbon nanotubes [8], photocatalytic 
reactor with immobilized ZnO [9], and ZnO/solar irradia-
tion [10]. The advanced oxidation processes (AOPs) alone 
or in combination with other treatment methods are useful 
options to remove organic pollutants from wastewater [11]. 
AOPs are extremely efficient wastewater treatment technol-
ogies for degradation of recalcitrant organic material [12], 
low biodegradability, resisting, disincentive, wide chemi-
cal stableness contaminants [13] and pharmaceuticals [14]. 
AOPs are the oxidation processes associated to the gener-
ation of reactive oxygen species (ROS) such as hydroxyl 
radicals (OH–), sulfate radicals (SO4

2–), and single oxygen 
by activation of oxidants, which stimulate the velocity of 
reaction. [11,15]. Also, another advantage of the AOPs is 
that working at ambient temperature [13].

Peroxymonosulfate (PMS:HSO5
–) is a convenient chemical 

oxidant for removing several organics. PMS is an ecological 
friendly oxidant that used in environmental remediation 
applications. Also, it has many uses due to its reasonable 
cost, very wide stability, solubility and function in large 
range of pH [15,16]. PMS is generally activated by using 
ultraviolet light, carbon catalysts, heat, ultrasound [17], het-
erogeneous catalytic materials and microwave [18]. In some 
studies, the researchers used sulfate radical for removing 
different pollutants, for example, Mohamadiyan et al. [19] 
used it for aniline degradation from aqueous solution.

Ultraviolet (UV) radiation is a method with many advan-
tages such as high effectiveness to pathogens, easy proceeds, 
chemical-free and no by-product formation. The research 
and usage of UV has been rapidly growing especially [20] 
in sterilization of medical devices, water and air treatment 
systems [21]. Recently, UV has been used in many studies 
to remove various pollutants such as azo red-60 dye from 
textile effluents, bisphenol A from treated wastewaters, 
and etc [22,23].

Nowadays, microwave (MW) irradiation technology 
has attracted an increasing attention as a powerful tool in 
several energy and environmental applications [24,25]. MW 
heating is a procedure of effective quick heating material in 
relatively enclosed volumes via the sorption and scattering 
of MW energy [26,27]. Compared to normal heating tech-
niques, MW heating is rapid, more effective and flexible, it 

doesn’t need direct closeness among the heating origin and 
the objects, very cost-effective and heating materials homog-
enously [24,26]. One essential step in the AOPs is to model 
and optimization of effective parameters in the process. 
One of the traditional methods of modeling is regression. 
Artificial neural networks are preferable to regression mod-
els. Neural networks offer a number of advantages, including 
requiring less formal statistical training, ability to implicitly 
detect complex non-linear relationships between dependent 
and independent variables, ability to detect all possible inter-
actions between predictor variables, and the availability of 
multiple training algorithms [28]. Currently, one of the best 
forecasting and optimization strategies is the use of artificial 
intelligent models in addition to evolutionary algorithms, 
like artificial neural networks (ANNs) and particle swarm 
optimization (PSO) technique, which have been applied in 
many studies [29].

ANN is an information processing model containing by 
many interconnected neurons that was generally inspired 
of the human brain [30]. Recently, ANNs are becoming a 
popular further owing to their decreased computation time, 
great precision, and capability to non-linearly map relation-
ships among the inputs and outputs of a system. The usage 
of ANNs is not only limited to function estimation but also 
involve classification, prediction, pattern recognition, and 
image processing [31]. PSO technique is a relatively recent 
empirical search method whose mechanics are stimulated 
by the crowding or cooperation behavior of biological pop-
ulations. The PSO algorithm could be applied to dissolve 
barriers that are not truly suited for standard optimization 
algorithms, including problems in which the objective func-
tion is discontinuous, accidental, or extremely non-linear 
[29]. Therefore, the aim of this study was to investigate the 
efficiency of the integrated process of ultraviolet, peroxy-
monosulfate and microwave for degradation of ATN from 
aqueous solutions by using the response surface method. 
Moreover, for prediction and optimization of experi-
mental data ANN and PSO algorithm were used, respec-
tively. Also, in order to investigate the trend of changes 
in the concentration of ATN over time, the kinetics of the 
reaction was investigated.

2. Materials and methods

2.1. Materials and reagents

Atenolol chemical name known as 2-[4-[2-hydroxy-
3-(propan-2-ylamino)propoxy]phenyl]acetamide [32], 
with reported purities of >98%, was obtained from Raha 
Pharmaceutical Factory (Isfahan, Iran). Its properties are 
reported in Table 1. Potassium peroxymonosulfate (KHSO5), 
potassium dihydrogen phosphate (PDP) and humic acid 
(HA) were purchased from Merck. High-performance liq-
uid chromatography (HPLC)-grade acetonitrile and metha-
nol (for rinsing injection needle) also were purchased from 
Merck (Germany).

ATN stock solution was prepared by adding 1 g of ATN 
powder to 1 L of deionized water and well mixed with a 
magnetic stirrer. HA stock solution was prepared by add-
ing 0.3 g of dry HA powder to 1 L of deionized water, and 
stirring overnight. The pH of solutions was adjusted with 
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0.1 M HCl for pH < 6 and buffered with 0.1 M NaOH for 
6 < pH < 12.

2.2. Experimental procedures

The experiments were accomplished in a sealed 1.5 L, 
two-chamber reactor containing 0.5 L of sample in the inner 
chamber. In the outer chamber, water was placed to keep 
the sample cool. Three low-pressure mercury UV lamp 
(Osram, G6T5/OF, 6W, ozone-free) was set in the middle 
of the reactor. ATN and PMS were mixed with deter-
mined concentrations and pH was adjusted for each sam-
ple. Then the sample was injected into the pilot. Due to the 
UV lamp, the pilot was completely enclosed by aluminum 
foil. Immediately after the initial contact time, the sample 
was transferred to a round bottom flask and placed in the 
microwave. Graham’s condenser was also connected to the 
flask from the center of the microwave. All of the tests were 
accomplished in an air-conditioned room about 23°C ± 2°C.

2.3. Analytical methods

The samples were analyzed by HPLC (Jasco Pu-2080, 
Japan) provided with a UV-Vis detector and a C18-Waters-
spbcri-sorb column. The analysis was performed with a 
30/70 (v/v) PDP as a buffer and acetonitrile as a mobile 
phase that set in pH 3.5 and the flow rate was set at 1.0 mL/
min. The injection volume was 50 µL. The UV-Vis detector 
(Jasco UV-2075, Japan) was set in 231 nm.

2.4. Experimental design

In this study, central composite design (CCD) was used to 
design the experiments. Some proposed levels were slightly 
modified through user-defined mode to make them feasible 
in the laboratory. Experimental design was performed in 
Design–Expert 11.0 software. In this method, 5 levels were 
considered for each variable. Table 2 shows the considered 
variables and levels.

2.4.1. ANN modeling

The ANN was used to determine non-linear relations 
between variables. For the ANN modeling, MATLAB 

software R2017a version was applied with the neural net-
work workbox (nnool). A three-substrate feed onward back 
propagation neural network was developed by exerting the 
tangent sigmoid (tansig) and linear (purelin) transfer func-
tions in hidden and output layers, respectively, with the tra-
ditional Levenberg Marquardt training algorithm. The ANN 
model was comprised of six input parameters including ini-
tial concentration, pH, PMS, UV time, MW time and power. 
The input data were scaled within the range of –1 to 1. The 
output layer consists of a neuron that shows the degrada-
tion efficiency. The 54 samples were randomly divided into 
three groups: training (70%), validation (15%) and experi-
mental (15%). The equations presented by Mohammadi et 
al. [33] were applied to determine the number of neurons 
in the hidden layer. The precision of the optimized ANN 
model was specified by computing the specification factor 
(R2) as well as the mean square errors (MSE) as reported by 
equations presented in the other studies.

2.4.2. PSO optimization

In particle swarm optimization, simple factors, called 
particles, move in the search area of an optimization issue. 
The situation of a particle shows a possible answer to the 
optimization obstacle. Every particle search toward higher 
situation in the search area via modifying its speed in 
accordance with laws basically inspired by behavioral pat-
tern of birds group. PSO belongs to the class of congestion 
intellect techniques that are used to dissolve optimization 
issues. In this study, the PSO algorithm was implemented in 
MATLAB software R2017a version. PSO was used to spec-
ify the optimal conditions for ATN degradation using ANN 
model developed in this study as objective function. Fig. 1 
shows the algorithm pseudo code of PSO generally [34].

In the PSO algorithm, the number of ingredients, iner-
tia weight (ω) and cognition in addition to social learning 
factors (C1 and C2) were improved by testing and mistake. 
The outcomes are described below:

• The number of particles are between 10 and 100 with the 
optimal number of 20.

• C1 between 1 and 2 with the optimum value of 1.5.
• C2 between 1 and 2 with the optimum value of 1.5.
• ω between 0 and 1 with the optimum value of 0.4.
• Maximum number of repetitions: 100 [32].

Table 1
Properties of atenolol

Properties Amount

Chemical formula C14H22N2O3

Chemical structure

Solubility (mg/mL) 13.3
Molecular weight (g/mol) 266.34
pKa 9.6
logKow 0.16

Table 2
Variables and that levels in this study

Name Minimum Maximum Levels

pH 3 11 3, 5, 7, 9, 11
Atenolol, mg/L 1 60 1, 10, 30, 50, 60
Time (UV), min 5 30 5, 10, 15, 20, 30
Power, W 150 850 150, 300, 450, 

600, 850
Peroxymono-
sulfate, mg/L

0.20 3.20 0.2, 0.4, 0.8, 
1.6, 3.2

Time (MW), min 5 30 5, 10, 15, 20, 30
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3. Result and discussion

3.1. Modeling with ANN

Based on the intersection of mentioned equations in 
materials and methods section, a range of the number of 
hidden neurons is obtained, which in this research is equal 
to 4–8 neurons in hidden layer. To determine the best neu-
ral network topology, several networks with different num-
bers of hidden neurons [4–8] were developed and finally the 
6:6:1 topology showed the best performance.

Fig. 2A shows the structure of a triple layer neural net-
work that has 6 parameters in the input layer, 6 neurons in 
the hidden layer, and one parameter in the output layer.

Fig. 2B represents the training, validation and exper-
iment errors against number of repetitions for the ANN 
models. In general, the error decreases after some epochs of 
training and the training algorithm terminates if the valida-
tion error enhance after six subsequence repetitions, or the 
restrictions of utmost error/epoch are trespassed. As demon-
strated in the Fig. 2B the training algorithms for ANN are 
terminated in 5 epochs (because of validation error), whereas 
the training errors are tiny. The trial and validation error 
plots display resembling specifications; this is a symptom 
of properly apportioned data in this study. The MSE values 
of the validation step was equal to 2.625 × 10–4.

The regression plots in Fig. 2C displays the network 
outputs with attention to purposes for training, validation, 
and experiment sets. For a thorough fit, the data should fall 
along a 45° line, where the network outputs are identical to 

Initialize particles 

 

      I) For each particle 

 

    1) Calculate fitness value 

2) If the fitness value is better than the best fitness 

value (pBest) in history 

3) Set current value as the new pBest 

      End 

 

      II) For each particle 

 

1) Find in the particle neighborhood, the particle 

with the best fitness 

2) Calculate the particle velocity according to the 

velocity equation  

3) Apply the velocity constriction 

4) Update particle position according to the 

position equation 

5) Apply the position constriction 

      End 

 

While maximum iterations or minimum error criteria is 

not attained. 

Fig. 1. Particle swarm optimization algorithm pseudo code.

Fig. 2. (A) Developed artificial neural network structure, (B) performance, (C) regression plots, and (D) comparison of experimental 
and predicted results.
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the purposes. It is apperceived that the output tracks the 
targets very good for training (0.998), validation (0.994), 
and experiment (0.993). Also, the coefficient of determina-
tion for the whole data was obtained 0.995. In this study, the 
network response is satisfying, and imagery could be used 
for entering new inputs. It is clear from the ANN results 
that no overfitting has occurred in developed network [35]. 
In Fig. 2D, a comparison diagram of the experimental and 
predicted results for 54 runs is presented.

3.2. Optimization with PSO

The PSO algorithm was used to optimize the input 
parameters to achieve the highest degradation efficiency. 
The designed neural network model was introduced as an 
objective function to PSO. Fig. 3B represents the optimum 
values of input parameters in the best iteration. Therefore, 
the optimal value of the input parameters, which are ATN, 
pH, PMS, UV time, MW time and power, were equal to 
28.80 mg/L, 6.20 mg/L, 3.05 mg/L, 14.30 min, 19.90 min and 
630 W, respectively, which leads to the highest degradation 
efficiency of 99.99%.

3.3. AOP performance in ATN degradation using ANN 
3-dimensional graphs

Fig. 4A shows the interaction between ATN concen-
tration and pH parameters on the ATN degradation rate 
within the changes in pH 3 to 11. It is clear that the initial 
concentration of ATN has non-linear relationship with the 
degradation efficiency, and by increasing it, the efficiency 
was improved initially, and after reaching the optimal 
efficiency, the degradation efficiency was reduced. In dif-
ferent pH values, the effect of the initial concentration on 
the degradation efficiency was the same. While in Yu et 
al. [5] study the ATN degradation slowly reduce with the 
increase of primary concentrations. On the other hand, the 
results of Vibhu research show an increase in degradation 
by increasing the concentration of ATN [36]. Generally, pH 

plays a significant role in AOPs as it affects the specification 
of organics and the production of basic radical species [37]. 
pH has a non-linear relationship with the degradation effi-
ciency, and increasing it to about 7 increases the degrada-
tion efficiency, but then decreases with increasing pH. These 
conditions have been observed in all concentrations exam-
ined. It’s obvious that, in different initial concentration, 
the effect of the pH values on the degradation efficiency 
was the same. According to Hapeshi et al. [38], the pKa of 
ATN is 9.6, that at 6 < pH < 9.6, the amino group could be 
protonated, while PMS ions are dominant in acidic condi-
tions [39]. Therefore, the electrostatic attraction is increased 
and then the removal efficiency is increased. The results 
are consistent with the work of Liu et al. [40], wherein the 
most advantageous achievement has been detected in the 
pH range of 3–7 and also declined from 7.0 to 9.0. In addi-
tion, in the study of Gayathri et al. [41], RhB dye degrada-
tion increases slowly in pH 3 to 5 and strongly increases  
up to pH 7.

Fig. 4B shows the interaction between ATN concentra-
tion and PMS on the ATN degradation rate. PMS has a linear 
relationship with the ATN degradation at all initial concen-
trations. This means that increasing PMS increases deg-
radation efficiency, regardless of the initial concentration. 
Liu et al. [40] found that there may be two reasons for this 
correlation. First, SO4

•2– reacted fast with ATN (the reported 
value is kSO4•–ATN = 2.2 × 1010 L/(mol·s)). Second, SO4

•2– has a 
long half-life which generally because of its preference for 
electron transfer reaction [40]. The results are similar to 
those reported by Miao et al. [42]. This situation was dif-
ferent from that reported by Wu et al. [37], who found the 
Kobs visibly increased when the PMS concentration changed 
from 0 to 0.1 mM and further increase in PMS reduce the 
Kobs [37]. Fig. 5 shows the mechanism of ATN degradation 
by UV/PMS/MW process.

Fig. 4C explains the interaction between the initial con-
centration and UV irradiation time on the ATN degrada-
tion rate. At all initial concentrations, with the increase of 
irradiation time, initially the degradation efficiency was 

Fig. 3. Particle swarm optimization algorithm results, the optimal value of the input parameters and highest degradation efficiency. 
(ATN = 28.80 mg/L, pH = 6.20, PMS = 3.05 mg/L, UV time = 14.30 min, MW time = 19.90 min, and MW power = 630 W).
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Fig. 4. 3-Dimensional graphs of artificial neural network prediction showing the interaction effects of input variables on the 
atenolol degradation rate.
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increased with a steep slope. However, after reaching the 
optimal time, which is about 15 min, the slope of the effi-
ciency decreased with the increase of time, and after that the 
efficiency remained constant. Also, according to Shi et al. [43] 
research, on the degradation of 4 drugs, including atenolol, 
by UV/H2O2, the results showed that the components may 
absorb UV light and react with OH•, which would reduce the 
steady-state concentration of radicals in wastewater, so UV 
causes degradation. Also two different mechanisms might 
be involved in the activation of PMS by UV radiation. The 
first one is the rift of the O–O bond by energy input of UV, 
and the other PMS activation assumption is the production 
of the electron by the interaction of UV radiation with water 
molecule [44], as shown in Eqs. (1)–(3).

HSO SO OH5 4
� �� �� �  (1)

H O H OH2 � �� �  (2)

HSO H SO H O5 4 2
� � ��� � �  (3)

Fig. 4D shows the interaction between ATN initial con-
centration and MW power on the ATN degradation rate. It is 
understood that, the MW power is almost linearly related to 
the degradation efficiency, at all ATN initial concentrations. 
With the enhancement of this parameter, the degradation 
efficiency has increased. Ai et al. [45] worked on degrada-
tion of 4-chlorophenol by microwave irradiation. The study 
shows that 4-CP could not be degraded by MW alone but 
the efficiencies of other AOPs can be sharply increased in the 
presence of MW. Also, according to Liu et al. [46], the MW 
efficacy on the degradation of ofloxacin has been as follows; 
the reaction speed increases as the microwave power from 
100 to 400 W. However, the degradation rate of ofloxacin was 
reduced to very high microwave power conditions (600 W) 
[46]. In conformity with Yang et al. [47], MW radiation gen-
erate sulfate free radicals by provide the needed activation 
energy for breaking down the chemical bonds. Then, gener-
ated SO4

•– may react straightly with organic molecules also 
OH may be created due to the SO4

•– and the created OH 
may also play a part in the degradation too, MW energy 
behave as an effectual activator of PMS to produce SO4

•–, as 
shown in Eq. (4) [48].

 
Fig. 5. Atenolol degradation mechanism by UV/PMS/MW process.
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HSO SO OHMW
5 4
� �� �� ��� �  (4)

The interaction between the UV time and MW time vari-
ables on the ATN degradation rate can be seen in Fig. 4E. 
The effect of MW time on degradation efficiency is similar 
to UV radiation time, which is non-linear. With increasing 
MW time, the degradation efficiency initially was increased 
with a steep slope, but after reaching the optimal time, which 
is about 20 min, the efficiency was decreased with increas-
ing slope time, and after that the efficiency remained con-
stant. Both parameters have had similar and identical effects 
on each other, so that ATN degradation rate has increased 
with increase of both variables. Table 3 shows the results 
for the present study in comparison with the previous  
studies.

3.4. Sensitivity analysis

Sensitivity analysis was performed by Pearson correla-
tion method to determine which parameter has the greatest 
effect on degradation efficiency. Fig. 6 reveals that the order 
of effect of the input parameters on the degradation effi-
ciency based on the correlation coefficient were as follows: 
pH, ATN, PMS, power, MW-time and UV-time.

3.5. Kinetics reaction

Kinetics study is necessary to evaluate the degrada-
tion rate and conduct of ATN as subordinate of reaction 
time. Table 4 presents the equation of pseudo-zero, first- 
order and second-order kinetic models used in this research. 
Kinetic diagrams and those proportion to the results of 
ATN degradation efficiency by UV/PMS/MW are shown 
in Fig. 7. As the degradation rate constants (k) and correla-
tion coefficients (R2) are displayed in Table 5, second-order 
explained ATN degradation (R2 > 0.9016) better in compar-
ison of other kinetic models. The result was similar with Yu 
et al. [5] who worked on degradation of ATN via integrated 
UV/ozone/peroxymonosulfate process.

3.6. Effect of water matrix

Nitrate (NO3
–), chloride (Cl–) and HA as regular com-

pound of natural dissolved organic matter (NDOM), are 
present in surface and underground waters. HA and nitrate 
can attract light in the UV range [40]. Fig. 8 shows the 

 
Fig. 6. Sensitivity analysis using Pearson correlation.

Fig. 7. Kinetic fitted plots of atenolol degradation: zero-order, 
first-order, and second-order, in optimal condition.

Table 3
Comparative evaluation of the results for this study with previous studies

Pollutant Degradation 
method

pH Initial con-
centration of  
pollutant

PMS con-
centration

UV 
time 
(min)

MW 
time 
(min)

MW 
power 
(W)

Efficiency 
(%)

References

Atenolol UV/PMS 7 20 µM 80 µM 30 – – 99.85 [49]
Atenolol PMS/BiOCl@Fe3O4 6.5 2.5 mg/L 0.1 mM – – – 99.99 [37]
Atrazine PMS/HA/WTRs 3 10 µM 0.5 mM – – – 95 [50]
P-nitrophenol PMS/MnFe2O4/MW 7 20 mg/L 2 mM – 2 500 97 [51]
Atenolol PMS/UV/MW 6.2 28.8 mg/L 3.05 mg/L 14.30 19.90 630 99.99 Present study

Table 4
Kinetic equations in the present study

Kinetic type Equation Integrated form Eq. 
No.

Pseudo-zero-order rc � � �
dc
dt

k0 C C k te � � �0 0 (5)

Pseudo-first-order rc � � �
dc
dt

k C1 ln
C
C

k te

0
1

�

�
��

�

�
�� � � (6)

Pseudo-second-order rc � � �
dc
dt

k C2 2

1 1

0
2C C
k t

e

�

�
��

�

�
�� �

�

�
��

�

�
�� � (7)



137M. Razaghi et al. / Desalination and Water Treatment 304 (2023) 129–139

influence of these three confounders in various concentra-
tions on the degradation of ATN. As clearly seen, the pres-
ence of 1–4 mg/L HA decreased the degradation rate of ATN 
from 97.3% to 95.26%. Also, further addition of HA up to 
8 mg/L reduced ATN degradation to 87.76%. On the other 
hand, increasing NO3

– to 7 mg/L has reduced the efficiency 
to 80.5%. As shown in Fig. 7, increasing chloride did not sig-
nificantly alter the degradation of ATN, so that at the high-
est concentration decreased only about 2%. Nitrate and HA 
showed scavenging effect in high concentration for sulfate 
radical. They can absorb light in the UV range and act as 
a filter for the UV radiation [14]. Also, the chloride ion can 
scavenge free radicals produced in AOPs. Chloride has an 
inhibitory effect on the use of PMS and sulfate radicals in the 
process and leads to the formation of Cl• and Cl2, which are 
less reactive oxidants [Eqs. (8)–(13)] [52–54].

SO Cl SO Cl M s4 4
2 8 1 13 1 10�� � � � � �� � � � �k .  (8)

Cl Cl Cl M s M s� � �� � � � �� � � � � �2
9 1 1 10 1 16 5 10 2 1 10k . .  (9)

Cl Cl Cl Cl2 2 22�� �� �� � �  (10)

Cl Cl Cl M s M s� � � � � �� � � � � �2
9 1 1 10 1 16 5 10 2 1 10k . .  (11)

Cl HSO SO HOCl� � �� � �5 4
2  (12)

2 5 4
2

2Cl HSO H SO Cl H O2
� � � �� � � � �  (13)

4. Conclusion

The results of using hybrid UV/PMS/MW processes 
revealed that enhancing the PMS dosage or MW power 
increased ATN degradation efficiency. ATN can be 
degraded at neutral pH, which makes heat-activated PMS 
oxidation as a feasible choice to eliminate it from wastewa-
ter. The optimal value of the input parameters, which are 
ATN, pH, PMS, UV time, MW time and power, were equal 
to 28.80 mg/L, 6.20 mg/L, 3.05 mg/L, 14.30 min, 19.90 min 
and 630 W, which leads to the highest degradation efficiency 
of 99.99%. HA and NO3

– limited ATN degradation, and the 
restrictive effect was increased with the increase of their 
concentrations, while the presence of Cl– had not inhibitory 
effect on the degradation process. According to the obtained 
results from sensitivity analysis, pH was the most import-
ant parameter, and after that, the initial ATN concentration 
affect positively on ATN degradation efficiency. The kinetic 
investigation demonstrated that the adsorption process fol-
lowed the second-order model. UV/PMS/MW proved to be 
an efficient method for ATN degradation as this method 
has high removal efficiency and it is relatively easy and 
fast. Perhaps the biggest disadvantage of the AOP pro-
cess is its costs. The most significant are the operating and 
maintenance costs from the necessary energy and chemical 
reagents to operate the system.

In the future, UV/PMS/MW process, with very high 
efficiency on the finding of this study, will be an excellent 
advanced oxidation process for degradation of emerging 
pollutants such as atenolol, with low biodegradability in 
pre and post treatments units of municipal and industrial 
water and wastewater treatment plants.
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