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a b s t r a c t
Red mud is a red-coloured, mud-like solid waste discharged from the industrial aluminium pro-
duction process, which has a high output and is a pollutant. It exhibits a small particle size and a 
large specific surface area and contains active oxides. In this study, “red mud” and “phosphate” 
were used as keywords to retrieve research hotspots and progress for the red mud as a phosphate 
adsorbent in the past 10 y. CiteSpace and VOSviewer visual literature analysis software were used 
to cluster countries, institutions, authors, and keywords. Related patents showed that research on 
the phosphate adsorption performance of red mud has considerably increased since 2013 and that 
China has made a significant contribution. This paper summarises the main chemical composition 
and modification methods of red mud and collects from literature the relevant mechanism research 
and data on phosphate adsorption/desorption using red mud as an adsorbent. Summarising data 
on the microstructure of red mud adsorbent, it is found that there are few reports on red mud as 
adsorbent based on density functional theory. This study suggests that the problem of the steric 
hindrance of the red mud adsorbent in the phosphate adsorption process needs further research.
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1. Introduction

In order to explore the dynamic and evolution track of 
the overall development of red mud adsorption phosphate 
in the past 10 y, this paper studies the journal literature, 
mainly from the aspects of literature, country, institution, 
author, and keyword for information integration and data 
mining. This paper summarizes the development charac-
teristics of related research and deeply understanding the 
dynamic and focus issues in the field, which have import-
ant reference significance for researchers to perform rele-
vant theoretical research.

A12O3 is a necessary raw material for petroleum refin-
ing, automobile exhaust treatment, nitrogen oxide removal, 
hydrogenation catalyst, reforming reaction, photocatalysis, 

and other industries. Its increasing demand has led to an 
increasing scale of red mud production, with about 70 mil-
lion tons of red mud being produced worldwide each 
year. China is the world’s fourth largest A12O3 industrial 
country, which emits up to 30 million tonnes of red mud 
per year, but its utilization rate is less than 10%. Red mud 
particles have a diameter of 0.088–0.25 mm, a specific grav-
ity of 2.7–2.9, a bulk density of 0.8–1.0, a melting point of 
1,200°C–1,250°C and contain various trace elements. Red 
mud has internal and external illumination indices that are 
greater than 2.0. It exhibits a certain radioactivity and is cat-
egorised as a dangerous solid waste [1,2]. Red mud has a pH 
value of 10.29–11.83 and fluoride content of 4.89–8.6 mg/L. 
The pH value of a red mud solution is greater than 12.5. The 
comprehensive sewage discharge is divided into excessive 
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wastewater. Thus, red mud (containing liquid) belongs to 
harmful waste residue. The primary red mud pollutants are 
alkali, fluoride, sodium and aluminium, which are present 
in considerable amounts. When these pollutants reach the 
groundwater and subsequently into the food chain and the 
human body, the pollution ions will gradually accumu-
late in the human body and cause harm to it. Particularly, 
the effect of alkali on some parts of the human body is 
considerably serious. Highly alkaline sewage penetrating 
into groundwater or surface water, which increases the 
pH of the water and effects the toxicity of compounds in 
water. Due to the small amount of radioactive substances 
and their fine particle size, long-term storage pollutes the 
atmosphere. Excessive fluoride content in red mud can 
cause problems such as skeletal fluorosis and dental fluo-
rosis. The harm of aluminium to the human body is mainly 
reflected in reducing digestive function, affecting liver 
function, and also having adverse effects on human brain 
nerves. In addition, when the red mud filter water enters 
the groundwater body, in addition to bringing in its own 
pollutants, it also brings a large amount of SO4

2–and Ca2+ into 
the groundwater body through the action of the solution, 
resulting in secondary pollution. Red mud stacking occu-
pies a large area of land and is easy to pollute the soil.

Red mud has a complex mineral composition. Its chem-
ical composition forms a unique cemented porous overhead 
structure with a large porosity, a large specific surface, and 
a low tightness. It has good compression resistance and 
overall strength. The cementing and crystal connection 
components in red mud make it have a strong water-stable 
connection strength [3], which can be used for environmen-
tal pollution control. Several scholars have confirmed that 
red mud has an effective removal performance for various 
water pollutants. It has been used to prepare porous cer-
amsite filter material for water treatment, which is used as 
a wastewater decolourisation and clarification agent and 
an adsorption material for the adsorption and removal of 
heavy metal ions (such as Cu2+, Pb2+, Zn2+, Ni2+, Cr6+, and 
Cd2+) and anionic pollutants (such as F, As(V), and P(V)) in 
wastewater [4]. The red mud has fine particles and a large 
specific surface area, which can effectively fix sulfur com-
ponents (Fe2O3, Al2O3, CaO, MgO, and Na2O). It has strong 
adsorption capacity and reactivity for H2S, SO2, NOX, and 
other polluting gases, so it can replace lime/lime milk to 
treat waste gas. Because red mud still has some soluble 
alkali, its waste gas evolution effect is better. The meth-
ods of red mud treatment of waste gas are divided into 
dry method and wet method. The dry method is to use the 
activity of minerals on the surface of red mud to directly 
adsorb waste gas. The wet method is to use the alkali and 
acid components in red mud to react.

In recent years, a large amount of domestic sewage and 
agricultural wastewater rich in nitrogen, phosphorus, and 
other nutrients has entered the water. Industrial phospho-
rus-containing wastewater has a large discharge capacity, 
high phosphorus content, complex composition, difficult 
reuse, and high treatment costs. Phosphorus is the main 
limiting factor, causing serious eutrophication. The com-
monly used phosphorus removal methods mainly include 
the chemical [5,6], biological [7], crystallization [8], ion 
exchange [9], and adsorption methods. Although a lot of 

basic research work has been done on the adsorption of 
phosphorus in wastewater by red mud as an adsorbent, 
there are still some limitations. Firstly, the problem between 
the cost and environmental benefits of red mud treatment 
and modification technology in the preparation of phos-
phorus adsorbents. It is not cheap to treat and modify red 
mud into phosphorus adsorbents, and most of the time it is 
energy-intensive. The need for toxic reagents has had some 
negative effects on environmental protection. Secondly, the 
impact of red mud treatment and modification technology 
on the environment and public health. In the process of red 
mud treatment and modification, a large amount of harmful 
gases and wastewater will be produced. In addition, if not 
handled properly, it may also lead to the release of harm-
ful substances such as heavy metals, threatening public 
health. In addition, if not handled properly, this may cause 
the release of harmful substances such as heavy metals, 
threatening a public health. Therefore, in the process of pro-
moting red mud treatment and modification technology, its 
environmental risks should be fully accessed. Furthermore, 
from a technical and economic point of view, the compre-
hensive utilization of red mud project, red mud treatment, 
and modification technology in the practical application 
of phosphorus removal has no obvious economic benefits. 
Because of its large investment and high cost, the project 
investment in comprehensive utilization of less than 1 mil-
lion tons of red mud is more than 100 million yuan, and the 
added value of the products produced is generally not high, 
the market competitiveness is poor, and the economic ben-
efits of the project are poor. Due to the lack of support for 
national standards or industry standards, it can only refer 
to other similar product standards with low market recog-
nition and limited product application, which is difficult 
to promote on a large scale. Most of the technologies are 
still in the laboratory stage or individual pilot stage. At this 
time, costs should be reduced and environmental protection 
achieved better. The life cycle assessment of red mud is as  
follows:

•	 In the process of red mud production, blast furnace steel-
making is the main environmental impact factor, includ-
ing CO2, SO2, NOX, and other gas emissions, as well as 
dust, noise, and other pollution.

•	 In the treatment process of red mud, both wet treatment 
and dry treatment have certain environmental impacts, 
but compared with the storage and idle of red mud, the 
environmental impact in the treatment process is small.

•	 In the process of comprehensive utilization of red mud, 
the production of building materials such as cement 
and bricks has a high resource utilization rate, but the 
resource utilization rate of agricultural products such as 
fertilizers and soil conditioners is low.

2. Literature novelty analysis

2.1. Data sources

All the literature data analysed in this paper are obtained 
from the core collection of the Web of Science. The jour-
nal time span is set from 2012-01-01 to 2023-01-01, and the 
advanced search conditions are as follows: TS = (red mud) 
and TS = (phosphorus). A total of 167 records were retrieved. 
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The literature data from 2013 to 2022 was selected for the 
visual analysis.

2.2. Literature type

Through the analysis of the type of literature, the main 
form of the results of the research on the adsorption of phos-
phate by red mud adsorbent is obtained. According to the 
classification of literature types, the number of journal arti-
cles in more than 160 articles was the largest (147), account-
ing for 85.5% of the total number of documents. Followed 
by conference proceedings papers (13), accounting for 7.6% 
of the total number of documents. According to the analy-
sis, red mud adsorbed phosphate accounted for the largest 
proportion in the water treatment, about 38%. Others are 
mineral and metal processing, about 20.5%. Other neighbor-
hoods such as soil science (9%), pollution and phytoreme-
diation (8.4%), bioengineering (6%), concrete science (3%), 
catalysts (2.4%), marine biology (2.4%), and energy and 
fuel (1.8%).

Fig. 1 presents the results for “red mud” and “phospho-
rus” obtained by searching the IPRDB patent query network 
for 2013–2022. China possesses the most patents, with 116 
inventions published and eight invention authorisations, 
followed by the USA (23), Japan (16), WIPO (16), EU (11), 
and Republic of Korea (8). Among the applicants, Guizhou 
University has the largest number of applications, with eight 
applications, followed by Dow Global Technologies LLC 
and Anhui New COSCO Chemical Technology Co., Ltd. 
with five published applications. The applicant types are 
divided into four categories-enterprises (114), others (44), 
schools (35), and research institutes (4). The applicants are 
mainly from China (136) and USA (21). The patent mainly 
improves the phosphorus status in the soil by compound-
ing red mud and solid waste materials and uses red mud 
as the basic raw material to prepare a modified red mud 
adsorbent. It elaborates on the adsorption performance of 

phosphorus in domestic sewage, the preparation of porous 
red mud pavement materials for improving the purification 
of phosphorus-containing pollutants in road rainwater run-
off and the addition of ordinary clay to red mud as a filler 
for improving the adsorption efficiency of phosphorus. The 
patent invention has high economic, social, and environ-
mental benefits. Chen Xiaohu, an inventor from Guizhou 
University in China, published the most patents with nine 
articles. He primarily studies the manufacture of flame 
retardants and compound fertilisers from phosphogyp-
sum and red mud to improve the utilisation rate of phos-
phogypsum and red mud waste residue for achieving the 
effect of “treating waste with waste”.

2.3. Active countries, institutions, and authors

Understanding the number of relevant articles pub-
lished in different countries is conducive to the research 
and analysis of countries that have considerably contrib-
uted to the red mud phosphate adsorption. A visual co-oc-
currence analysis was performed in 16 of these countries 
(Fig. 2a). Each node represents a country, and the connec-
tion between two nodes represents a connection between 
the two countries and node size represents the number of 
documents issued by the country. From the perspective of 
the paper output, the People’s Republic of China (77 (38%)), 
Australia (19 (8%)), and the USA (10 (5%)) published the 
most number of articles in the research field of phosphate 
adsorption on red mud. Among them, the People’s Republic 
of China cooperates with Taiwan, Japan, and Egypt. The 
thickness of the connections between the nodes in Fig. 2 
shows the cooperative relationship between the countries, 
reflecting that China’s research on this aspect has been 
greatly developed and deepened in the past decade and has 
played an important role.

Fig. 2b shows that the publication of various institu-
tions enabled the obtainment of important research institu-
tions and potential collaborators and allowed the effective 
use of the literature resources of various institutions. It also 
provided an opportunity for well-known scholars between 
institutions to communicate and study with each other. A 
total of 302 institutions participated in the study of sphaler-
ite flotation, and Fig. 2 presents the research institutions 
with more than three publications. Each node represents the 
number of articles published by each institution. The con-
nection between the nodes indicates the cooperative rela-
tionship among these institutions. The Chinese Academy 
of Sciences closely cooperates with other institutions. Since 
the publication in 2013, the number of articles published in 
2016 has increased to three, accounting for 3.31% of the total 
number. Guizhou University began publishing papers in 
2019 and will have published seven papers by 2022, but it 
does not have close cooperation with other institutions. They 
mainly perform independent research using their internal 
resources. The Centre National de la Recherche Scientifique 
has published five papers from 2014 to 2022, accounting 
for 2.32% of the total number of publications. Meanwhile, 
Qingdao University of Technology has published five 
papers from 2020 to 2022, indicating that its research on 
phosphate adsorption by red mud adsorbent has increased 
and rapidly developed and has strong independence.
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Fig. 2. Co-occurrence analysis of visual knowledge graph (a) the country, (b) the institution and (c) the author.
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The node size shown in Fig. 2c represents the num-
ber of papers published by the author, and the connection 
between the nodes represents the cooperative relationship 
between the authors. Research on phosphate adsorption on 
red mud is primarily divided into four teams, represented 
by Wei Zhang, Chuanping Feng, Mengyan Guo and Gruiz, 
Katalin, and other individual studies. Zhang studied the 
adsorption method combined with photocatalytic reduc-
tion and bio-modified red mud to remove phosphorus from 
domestic sewage. Feng investigated phosphorus removal 
from water using ceramic biomaterials synthesised in scal-
lop shells. Guo investigated the adsorption of organic and 
inorganic phosphorus in aqueous solution using a poly-
pyrrole-modified red mud adsorbent. Meanwhile, Gruiz 
studied the effect of red mud as a chemical stabiliser on soil 
pollution. Li studied the dephosphorization of red mud-
based flux in steelmaking process. Deiana used various 
water treatment residues to adsorb phosphate anions from 
an aqueous solution. Healy treated red mud with gypsum 
and seawater to study the phosphorus adsorption in aqueous  
solution.

2.4. Research keywords

To better refine research hotspots, VOSviewer software 
was used to classify keywords related to phosphate adsorp-
tion by red mud adsorbents into five categories, as shown 
in Fig. 3. Nodes with the same colour in the graph represent 
the same cluster. Cluster 1 illustrates the mechanism and per-
formance of the adsorption of wastewater by adding fly ash, 
concrete, and steel slag to red mud raw materials. Cluster 2 
shows that the main study of red mud adsorption to remove 
phosphate. The keywords focus on “adsorption”, “waste-
water”, “adsorption removal”, “phosphorus removal”, and 
“phosphate adsorption”. Cluster 3 shows that red mud can 
bind slag and biochar to adsorb aqueous solution. The key-
words are “adsorbent”, “slag”, “biochar”, and “removal”. 
Cluster 4 shows that red mud can be used as an adsorbent 
to recover heavy metals in aqueous solution. The keywords 
focuses on “phosphorus”, “aluminium”, “bauxite reside”, 
“water”, “arsenic”, “metals”, “vanadium”, and “recovery”.

Fig. 4 depicts a map of the emergent words generated by 
the sample literature, drawing 13 emergent words from 2013 
to 2022. From the prominent words, it can be seen that the 
duration of its hot spots shows a trend from long to short. 
“Year” represents the year in which the keyword appears 
for the first time, “Begin” and “End” represent the starting 
and ending years of the keyword as the frontier, respectively, 
and “Strength” represents the burst strength. The highest 
burst strength is recovery, yielding a strength value of 3.38, 
and the initial burst strength was in 2013. The utilization 
rate of solid waste such as red mud, phosphogypsum and 
fly ash is still low. It is necessary to promote solid waste 
source reduction, resource recycling and harmless disposal, 
and promote the comprehensive utilization of resources to 
achieve new development. From 2016 to 2022, the average 
duration of coal fly ash, recovery, phosphate adsorption, 
vanadium, acid, and alumina is 2 y. From 2018 to 2022, per-
formance, bauxite residue, iron and phosphate highlight 
the development context and trend of the research field of 
phosphate adsorption by red mud in the future.

3. Adsorption mechanisms

3.1. Raw material

The chemical composition of the red mud raw material 
mainly includes SiO2, Al2O3, Fe2O3, CaO, MgO, Na2O, TiO2, 
and other substances (Table 1). Red mud is a grey and dark 
red powder that changes colour depending on the amount 
of Fe2O3 contained in it. The main mineral composition 
of red mud is calcite, cancrinite, andradite, hematite, and 
katoite, in which clay minerals mainly refer to montmo-
rillonite, illite, kaolinite, and so on. The layered structure 
of these clay minerals contains abundant adsorption sites 
and has a strong adsorption capacity for phosphate. It also 
includes clay minerals containing iron oxides, which are 
mainly composed of Fe2O3 and Fe(OH)3. These components 
form considerable Fe2O3 and Fe(OH)3 crystals on the red 
mud surface, which have a strong adsorption capacity and 
can effectively adsorb phosphate. Considerable iron oxide 
hydrates can be found on the iron oxide surface, which can 

Fig. 3. Studies the co-occurrence analysis of hot words. Fig. 4. Top 13 most prominent words.
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form hydrogen or chemical bonds with phosphate ions in 
phosphate to achieve adsorption. The iron hydroxide sur-
face has a certain positive charge, which can form an elec-
trostatic interaction with the negative charge of a phosphate 
ion; thereby achieving adsorption. Appropriate amounts of 
Al3+ can considerably improve the phosphate removal rate of 
the red mud adsorbent, but excessive amounts of Al3+ reduce 
the adsorption performance of the red mud adsorbent. The 
organic matter in the red mud adsorbent can change its 
surface properties and form a complex with phosphate to 
further improve its adsorption performance.

The structural characteristics of the red mud adsorbent 
primarily include pore structure, chemical properties, and 
surface electrical properties. The silicon and A12O3 in red 
mud are sintered at high temperatures to form a tightly 
arranged crystal structure that forms multiple micropores 
and mesopores, thereby providing a large surface area for 
adsorption. The pore structure of the modified red mud 
adsorbent is more developed, further improving the adsorp-
tion performance. The active components, such as silicate 
and Fe2O3 in red mud can be coordinated and adsorbed 
with phosphate. An acid–base neutralisation reaction occurs 
during the contact process between phosphate solution and 
red mud, reducing the H+ concentration in the phosphate 
solution, thereby promoting phosphate adsorption. The 
main principle of phosphate adsorption on red mud is the 
surface electrical effect. The surface of red mud particles is 
negatively charged, while the phosphate ions are positively 
charged. Due to the attraction of heterogeneous charges, the 
red mud particles can effectively adsorb phosphate ions. 
Furthermore, the adsorption performance of the red mud 
adsorbent is affected by several factors, such as adsorbent 
content, adsorption reaction time, adsorption reaction tem-
perature, initial phosphorus concentration, pH value, and 
coexisting ions (Cl−, SO4

2−, and NO3
−).

Red mud can be divided into Bayer [26], sintering [27], 
and Bayer-sintering [28] red muds according to different 

treatment methods. Fig. 5 illustrates the treatment process. 
The Bayer red mud directly uses the circulating mother 
liquor containing a large amount of caustic alkali to treat 
bauxite. Alumina in the bauxite is dissolved to obtain the 
sodium aluminate solution, and then the aluminium hydrox-
ide (Al(OH)3) seed crystal is added to the sodium alumi-
nate solution. After long-term stirring and decomposition, 
the Al(OH)3 crystal is precipitated, and then it is roasted to 
obtain alumina. The Bayer red mud has higher Al2O3 and 
Fe2O3 contents, followed by CaTiO3, CaCO3, and Na5AlO4. 
Its production process is simple, with low energy consump-
tion, low cost, good product quality, and high purity. To form 
a furnace burden, limestone and soda ash were added to 
bauxite using the sintering method. The furnace burden was 
sintered at high temperature to obtain a clinker containing 
solid sodium aluminate (sodium aluminate, sodium ferrite, 
calcium orthosilicate, and calcium titanate). Subsequently, 
the clinker was dissolved in water or a dilute alkali solution 
to obtain a sodium aluminate solution. After the purifica-
tion of the sodium aluminate solution, carbon dioxide was 
introduced to decompose and crystallise Al(OH)3, which 
was then calcined to alumina. Meanwhile, the sintering red 
mud contains higher CaO and SiO2 contents, followed by 
Ca2SiO4, CaCO3, CaTiO3, and Fe3O4. However, it has a com-
plex process, large investment, high energy consumption, 
and slightly poor product quality. The Bayer–sintering com-
bined method utilises the sintering method to partially treat 
the Bayer red mud. The main advantages of this method 
are the high total recovery rate of alumina, low alkali con-
sumption, and small production of the sintering method. 
However, during the sintering part, the alumina content in 
the red mud furnace charge is low and the clinker conver-
sion ratio is high, and thus the sintering is difficult.

Scholars have performed extensive research on phos-
phorus adsorption by red mud, mainly studying the effects 
of phosphorus concentration, pH, temperature, and coex-
isting ion concentration on the adsorption effect. Most of 

Table 1
Chemical composition of red mud from different sources (wt.%)

Source of materials SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O TiO2 References

China 25.66 18.12 13.50 26.63 4.31 9.55 – 2.22 [10]
China 24.86 15.80 15.44 28.32 2.34 8.70 0.25 4.04 [11]
China 18.63 13.72 14.42 31.12 2.80 13.35 0.22 4.83 [12]
Guinea 5.5 26.6 48.4 1.2 0.9 – – 2.8 [13]
China 18.25 21.58 12.31 22.12 0.56 8.61 – 3.71 [14]
China 21.3 37.6 29.2 6.3 4.2 – – [15]
China 19.14 6.93 12.76 46.02 1.15 2.37 1.20 3.43 [16]
Australia 5 15 60 – – 16 – 5 [17]
China 18.08 8.26 15.30 38.02 1.63 3.55 0.36 4.51 [18]
Hungary 20.00 14.30 37.00 7.70 0.53 4.80 – 3.80 [19]
India 6.58 15.47 58.78 1.49 – 3.63 – 4.39 [20]
India 4.24 16.44 54.6 1.99 – 2.76 – 6.82 [21]
Iraqi commercial markets 8.52 18.94 26.41 21.84 – 4.75 0.068 7.40 [22]
Turkey 13.8 20.9 32.1 12.2 2.7 6.7 – 3.6 [23]
China 19.1 6.93 14.93 36.82 1.15 2.37 1.20 1.08 [24]
China 8.88 22.38 47.39 0.86 – 12.76 0.05 7.33 [25]
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the phosphorus-containing wastewater used is simulated 
wastewater, that is, simulated phosphorus-containing 
wastewater after dissolving KH2PO4 or soluble phosphorus 
in deionized water. The research theory has certain lim-
itations for industrial wastewater treatment. The Ca2+ and 
SO4

2− concentrations in industrial phosphorus-containing 
wastewater are relatively high. Furthermore, the concen-
trations of F and As compounds, chemical oxygen demand, 
and pH value exceed the standard limit. The concentra-
tions of H2PO4

−, HPO4
2−, and PO4

3− increase with an increase 
in pH value in a certain range.

Several methods are available for the determination of 
phosphate content in water, among which the most com-
monly used methods are molybdenum–antimony anti-spec-
trophotometric method, ion chromatography, stannous 
chloride reduction molybdenum blue method, malachite 
green spectrophotometric method, and electroanalytical 
method [30] (Table 2). Molybdenum–antimony anti-spec-
trophotometry is a traditional method commonly used in 
the laboratory, but it has the disadvantages of a short sta-
bility time, low sensitivity and high detection limit, and 
cannot detect the presence of trace phosphorus. Ion chro-
matography has the advantages of high resolution, high 
sensitivity, and simple operation. It can determine the 
inorganic and organic phosphates in water and provide an 
effective means for determining the phosphate content of 
some complex water bodies. Moreover, it has been widely 
used to determine the phosphate content in water. The stan-
nous chloride reduction molybdenum blue method has a 
higher sensitivity in determining the phosphate content 
in water and can detect lower phosphate concentrations. 
The traditional molybdenum blue method must be per-
formed under strong acidic conditions. In contrast, the stan-
nous chloride reduction molybdenum blue method has a 

narrower acidity range and is safer and more convenient to 
operate. The method of reducing molybdenum blue using 
stannous chloride has a stronger anti-interference ability 
than Fe3+ and can effectively eliminate the interference of 
iron ions. Additionally, the colour development is more 
stable and can be measured in a wide temperature range, 
improving the determination accuracy. Meanwhile, mala-
chite green spectrophotometry has high accuracy and sen-
sitivity. The stability time of the ion complex is longer than 
that in molybdenum–antimony spectrophotometry, making 
it more conducive to observation and recording. However, 
malachite green spectrophotometry can be performed on 
water samples only under specific conditions. Only in the 
presence of polyvinyl alcohol can the chromogenic agent 
molybdenum–antimony anti-malachite green be combined 
with phosphate to form a green complex.

3.2. Red mud modification method

Various red mud modification methods exist, and the 
ultimate aims of these methods are to optimise and improve 
its adsorption characteristics. Acid activation, oxidation, 
thermal activation, metal ion activation, and other techniques 
are primarily used to improve the adsorption capacity of 
red mud. Mechanical activation [11] is the simplest modifi-
cation method. In this method, red mud is broken, ground, 
sieved, and dried without mineral transformation to increase 
its specific surface area, improve the uniformity of its par-
ticles and remove residual water and impurities. Oxidation, 
pyrolysis, and reduction reactions were performed via heat 
treatment approaches such as heating, high-temperature 
and microwave calcinations, and the hydrothermal method 
[34–36]. High-temperature pore formation and mass transfer 
resistance reduction enable Al(OH)3→Al2O3, Fe2O3→Fe3O4, 

Fig. 5. Red mud treatment process diagram.
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and CaCO3→CaO. Table 3 shows that the adsorption capac-
ity of phosphate in wastewater changes after different red 
mud modifications. The primary modification method 
is acid modification. After the complexation reaction is 
obtained by adding organic or inorganic acid, the Ca2+ con-
centration increases. Furthermore, the specific surface area 
of red mud increased after acid activation [37], consequently 
changing the point of zero charge. Loading metal ions such 
as aluminium, lanthanide, cerium, and cobalt activate red 
mud [38] and increases the adsorption sites and surface- 
active functional groups of red mud to improve its adsorp-
tion capacity. As a catalyst [39,40], red mud can achieve 
the effects of carbon attachment and phase transformation 
simultaneously. Adding H2O2, Na2S2O8, and other modified 
red mud [41] enables a redox reaction that converts Fe2+ 
into Fe3+ to change the phase valence and increase affinity 
with pollutants. Moreover, the red mud can be modified 
by adding concentrated hydrochloric acid + silane and con-
centrated hydrochloric acid + FeCl3 + CTAB [18,42], which 
can increase the affinity with pollutants and improve the 

adsorption capacity of a single layer. In addition to the 
abovementioned modification methods, adding activators 
and foaming agents is an effective modification method.

3.3. Mechanism research method

Scholars have studied the phosphorus adsorption mech-
anism of the red mud adsorbent. At the macro level, the 
adsorption performance of the adsorbent is evaluated and 
its adsorption mechanism is discussed by combining the 
adsorption kinetics, adsorption isotherm and, adsorption 
thermodynamics. At the micro-level, the phosphorus adsorp-
tion mechanism of the red mud adsorbent is discussed using 
various modern instrument analysis techniques. However, 
the adsorption process of the red mud adsorbent on phos-
phorus-containing wastewater is a complex system that 
includes physical and chemical adsorption and synergistic 
effects (Fig. 6).

Physical adsorption refers to the adsorption of heavy 
metal ions by the red mud adsorbent through the pore 

Table 2
Method for determination of phosphate

Method Reagent Principle

Molybdenum 
antimony 
spectropho-
tometry [29]

Sulfuric acid, anti-blood acid 
solution, silverate solution, 
turbidity-color compensation 
liquid, phosphate reserve solution, 
phosphate standard solution

Under acidic conditions, orthophosphate reacts with ammonium 
molybdate and potassium antimonate tartrate to form phosphomolyb-
date heteropoly acid, which is reduced by reducing agent ascorbic acid 
and becomes a blue complex, commonly known as phosphomolybdate 
blue. An appropriate amount of water sample filtered or digested by 
the filter membrane (the phosphorus content does not exceed 30 μg) 
were added to a 50 mL colorimetric tube and diluted with water to the 
standard line. The following color development and measurement are 
performed according to the steps of drawing the calibration curve. Then 
subtract absorbance of the blank test and check the phosphorus content 
from the calibration curve.

Malachite 
green spectro-
photometric 
method [31]

Ammonium molybdate solution, 
malachite green solution, polyvinyl 
alcohol solution, phosphate reserve 
solution, phosphate standard 
solution, 5% potassium persulfate 
solution, concentrated sulfuric 
acid solution

Under neutral conditions, the sample was digested with potassium per-
sulfate, and all the total phosphorus was oxidized to orthophosphate. 
In acidic medium, orthophosphate reacted with ammonium molybdate. 
After a series of reactions, the substance reacted with the chromogenic 
agent. The absorbance was measured by spectrophotometer, and the 
total phosphorus content was calculated from the standard curve.

Ion chromato-
graphy [32]

Potassium hydroxide, potassium 
dihydrogen phosphate, metha-
nol, phosphate reserve solution, 
phosphate standard solution for use

Various forms of orthophosphate in in the test sample entered the anion 
chromatographic column with the strong alkaline eluent. After being 
separated in the form of phosphate (PO4

3–), it was detected by conductiv-
ity detector. According to the retention time, the total phosphorus con-
tent was calculated according to the same chromatographic conditions 
as the calibration curve.

Stannous 
chloride 
reduction 
molybdenum 
blue method [33]

Sulfuric acid solution, stannous 
chloride glycerin solution, ammo-
nium molybdate-sulfuric acid mixed 
reagent, ammonium molybdate 
solution, phosphate reserve 
solution, phosphate standard 
solution for use

Under strong acidic conditions, the active phosphate in the water 
sample reacts with ammonium molybdate to form a pale-yellow phos-
phorus molybdenum yellow. Phosphomolybdate yellow is reduced to 
blue phosphomolybdate blue by stannous chloride. The blue shade is 
proportional to the content of active phosphate, and has the maximum 
absorption value at the wavelength of 690 nm. The content of active 
phosphate in water samples can be measured by colorimetry.
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structure and specific surface area, which also becomes a van 
der Waals adsorption. Because the van der Waals force exists 
between any two molecules, physical adsorption can occur 
on any solid surface (multi-layer adsorption) and desorption 
can easily occur due to the small binding force. The larger 
the pore structure and specific surface area of the red mud 
adsorbent, the stronger its ability to adsorb heavy metal ions. 
By changing the pore structure and surface properties of 
red mud, its physical adsorption capacity can be improved. 
Chemical adsorption refers to the formation of chemical 
bonds between adsorbate molecules and atoms or mole-
cules in adsorbents through electron transfer, exchange, and 
sharing. Common chemical adsorption mechanisms include 
ion exchange, coordination bonds, and covalent bonds. By 
modifying red mud, new active components can be intro-
duced that will enhance its chemical adsorption capacity. 
Chemical adsorption usually occurs on the surface of metal 
oxides such as alumina and iron oxide. Physical adsorption 

Table 3
Adsorption capacity of phosphate in wastewater by modified red mud

Raw material Modifying methods pH BET (m2·g–1) Adsorption quantity (mg·g–1) References

Red mud 1,000℃ 3–6 – 6.64 [12]
Red mud HCl 7 19.35 24.67 [13]
Red mud ZrOCl2 8 – 13.64 [19]
Red mud HCl 2 28.63 205.13 [20]
Red mud 900℃ 3.5–11.5 – 149.29 [23]
Bauxite HCl 8.2–8.6 80.63 55.72 [24]
Carbide slag, red mud – 7 42.46 16.06 [43]
Red mud, boron mud NaOH 6–9 – 96.81% [44]
Red mud HCl 6–8.5 – 33.56 [45]
Red mud HCl 7.7 232.634 7.63 [46]
Red mud HCl 2 28.63 112 [47]
Red mud HCl 4.5 80.63 492.46 [48]
Red mud HCl 5.5 28.48 0.58 [17]
Red mud – 3–7 18.3 17.0 [49]
Red mud Ca(NO3)2

NaCl
5.5 – 8.153 [50]

Clay, kaolin, red mud, zeolite 
and volcanic corrosive soil

NaOH
HCl

7 1.049–0.693 420  [51]

Red mud Polypropylene 6.5–7.5 – 14.47 [52]
Red mud, phosphogypsum Ca(NO3)2

NaCl
5.5 ± 0.2 – 94% [53]

Red mud, fly ash Na2SiO3·9H2O
RnOCH2COONa

5.64–11.24 25.1871 26.77 [54]

Red mud Polypyrrole 2–5 102.24 28.57 [55]
Straw, red mud – 3.0 90.52 11.78 [56]
Red mud HCl 2.5–3 – 12.9 [57]
Red mud 700℃ 2–10 37.1 93.1% [58]
Red mud HCl 4.0 – 192.62 [59]
Red mud HCl – 113.54 86.69 [60]
Red mud ZrOCl2 3–7 96.97 33.14 [61]
Lime slurry HCl 7 – 160.7 [62]
Red mud MgO 3.4 65.72 128.05 [63]

 

Fig. 6. Simulation process of red mud adsorbing phospho-
rus-containing wastewater.
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and chemical adsorption often occur at the same time in the 
adsorption process of red mud. These two promote each 
other and work together to achieve an efficient adsorption 
effect. The adsorption process of red mud on phosphorus 
is dominated by physical adsorption and accompanied by 
chemical adsorption, mainly including ion exchange, pre-
cipitation, and surface deposition. Red mud contains a large 
amount of Fe3+ and Al3+, which have a high positive charge 
that can effectively reduce or eliminate the zeta potential of 
the suspended particles in water, reduce the electric double 
layer thickness, and decrease the repulsion between phos-
phorus particles, such that the physical stability of the par-
ticles decreases and they aggregate into floccules, forming 
a loose fibrous structure, thereby resulting in flocculation 
precipitation. The chemical action occurring in the adsorp-
tion process is primarily the complex exchange mechanism 
between the phosphate anion and the calcium-containing 
hydroxyl oxide on the red mud surface. The surface hydrox-
ylation process is the hydration of the phosphate solution 
and Al2O3 and Fe2O3 on the red mud surface. The hydroxide 
complex loses water molecules and directly interacts with 
the red mud surface to form a metal hydroxide adsorption 
configuration, which hydroxylates the adsorbent surface.

The main forms of phosphate ions in the solution under 
low pH conditions are H2PO4

− and HPO4
2−. The chemical 

reaction at different pH values is as follows:
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where	 ≡S	 represents	 the	 adsorption	 site	 on	 the	 red	 mud	
surface.

Scholars have performed extensive research work and 
made multiple control measures to improve the red mud 
adsorption capacity for phosphate. These approaches include 
shape and component control, acid and thermal activation, 
specific surface, and pore control and wettability and zeta 
potential control. These research works laid a good founda-
tion for the application of red mud adsorption of phosphate 
ions in phosphorus-containing wastewater. The adsorption 
of phosphate ions in water by red mud primarily depends 
on	the	surface	physical	or	chemical	adsorptions	of	γ-Al2O3, 
α-Fe2O3, SiO2, CaO, calcite, nepheline, microcline, diaspore, 
and phosphate ions in red mud [64].

Shape control refers to the shape of the adsorbent formed 
in the production process, which can be divided into cate-
gories such as powder, columnar, granular, and flake. The 
adsorption effect is better for adsorbents with powder shape. 
The adsorbents with columnar, granular, and flake shapes 
have good regeneration, mechanical properties, and water 
pulverisation rate; furthermore, the acid and alkali resistance 
is high. However, after powder adsorption, the product 
can easily form colloids with water, which cannot be easily 
dehydrated and regenerated. The adsorbents with colum-
nar, granular, and flake shapes can easily form plugging 
holes on the surface to reduce the adsorption rate.

Component control refers to the addition of other sub-
stances to red mud, which increases its useful adsorption 
components. Commonly used component control additives 
include calcined gypsum, volcanic ash, diatom mud, blast 
furnace slag, plant ash, fly ash, vanadium–titanium mag-
netite tailings, and phosphorus slag having a porous struc-
ture, a large specific surface area, and a strong adsorption 
capacity. However, excessive fly ash addition will cause the 
adsorbent strength to decrease. Xiao et al. [43] prepared a 
carbide slag red mud composite (CR-LDH) to adsorb phos-
phate. The adsorption test results revealed that the opti-
mum adsorbent dosage and phosphate pH were 5 g·L–1 and 
7, respectively. The maximum adsorption capacity obtained 
using the Langmuir isotherm model at 25°C was 16.06 mg·g–

1. Microscopic analysis and adsorption mechanism studies 
revealed that phosphate binds to CR-LDH through synergis-
tic effects, such as physical adsorption, ion exchange, anion 
intercalation, and chemical precipitation. For phosphate 
adsorption, Hu et al. [44] used a layered double-hydroxide 
adsorbent prepared using boron and red mud under alka-
line conditions, and a phosphate removal rate of 93% was 
achieved. The results show that phosphate is transferred 
from the aqueous solution to the site on the adsorbent, and 
the ion exchange between the interlayer CO3

2− and the phos-
phate species is adsorbed by the electrostatic attraction of 
the active site. The adsorption mechanism is shown in Fig. 7. 
The Freundlich isotherm fitting of phosphate adsorption is 
better than the Langmuir isotherm, indicating that adsorp-
tion is primarily a multi-layer adsorption. Wang et al. [45] 
studied phosphorus adsorption using three industrial solid 
wastes, namely, fly ash, red mud and jarosite water treat-
ment residue, and their modified materials. The experi-
ment results revealed that the pH value strongly affects the 
phosphorus species and the surface charge of the adsor-
bent. The dissolved organic matter (DOM) in water may 
promote the phosphate adsorption, which is attributed to 
the combined effects of humic-related Al and Fe complexes 
with a higher adsorption capacity, pH buffering function 
of DOM and competitive adsorption.

Currently, the acid activation method of the red mud 
particle adsorbent is the dominant activation method. Acid 
activation refers to the activation of red mud by soaking 
it in acid before the adsorbent production. The most com-
monly used acids are hydrochloric, sulfuric, nitric, and 
citric acids. The corrosion resistance of equipment materi-
als is high due to the strong oxidation and corrosion resis-
tance of sulfuric and nitric acids. Hydrochloric and citric 
acids are usually used for acid activation. Fig. 8 displays 
the adsorption mechanism of the acid-modified red mud. 
The acid activation of red mud at an appropriate concen-
tration can enhance the positive charge on the metal oxide 
surface in red mud, which is conducive to the phosphate 
adsorption on the surface of active red mud (ARM). Under 
acidic conditions, calcium and other acid-soluble salts are 
partially dissolved. Furthermore, large external pores and 
new pores will appear during acidification. Ye et al. [48,65] 
used hydroxypropyl methyl cellulose and powdered 
straw as the main components of the granular acid-acti-
vated neutralisation red mud production for phosphorus 
removal. Based on the results of the ion exchange, precip-
itation, and surface deposition mechanism studies, >60% of 
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phosphate is adsorbed by precipitation and ion exchange 
mechanisms with strong chemical bonds, while <40% of 
phosphate is adsorbed by surface deposition mechanisms 
with weak chemical bonds. Tengfei et al. [46] obtained 
ARM via acid treatment, and its surface area increased 
from 10–28 to 220–350 m2·g–1. The phosphate adsorptions 
by the Langmuir and Freundlich constants among the sin-
tered red mud (GZ3), hydrochloric acid–activated high-iron 
Bayer red mud (AGX), high-iron rock Bayer red mud (GX), 
and hydrochloric acid–activated sintered red mud (AGZ3) 
were compared. Tangde et al. [47] used hydrochloric acid 
to activate red mud and used the Langmuir adsorption iso-
therm to obtain the maximum adsorption capacity of phos-
phate (112 mg·g–1). The adsorption data analysis revealed 
that the Langmuir isotherm provided a better fit than the 
Freundlich isotherm. Huang et al. [17] treated raw red 
mud using acid and acid heat treatments and found that all 
ARM samples exhibited a higher surface area and total pore 
volume as well as a higher phosphate removal adsorption 
capacity. Low pH value solution can enhance phosphate 

adsorption and high temperature increases the adsorption  
capacity.

Refers to an adsorbent synergistic method in which the 
adsorbent loses bound, crystal, and structural water by high 
temperature, microwave, or sintering heating and removes 
organic impurities, thereby increasing the specific surface 
area, dredging the adsorbent pores and exposing the active 
sites. The adsorption mechanism of thermally activated 
red mud is shown in Fig. 9. After thermal activation, the 
mechanical properties are good, the specific surface area is 
large, the regeneration performance is strong, the pore dis-
tribution is uniform, the phosphorus removal effect of the 
adsorbent is improved and the strength and pulverisation 
resistance of the adsorbent are increased. However, the 
energy consumption in the sintering process is considerably 
high, easily causing air pollution. Thus, finding an alterna-
tive method for activating the adsorbent using the non-ther-
mal activation method is urgent. Tie et al. [67] improved the 
adsorption capacity of the alum sludge using heat treatment 
and affected its adsorption performance by changing the 

 

Fig. 7. Adsorption mechanism of layered hydroxide modified red mud.

Fig. 8. Adsorption process of acid modified red mud.
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physical and chemical properties of the alum sludge adsor-
bent. The phosphorus adsorption by the alum sludge adsor-
bent conforms to the Freundlich isotherm. A higher solution 
temperature and a lower pH are favourable for phosphorus 
adsorption. Deng et al. [68] studied the relationship between 
the phosphate adsorption by the ceramsite prepared from 
unburned and activated red mud and the dosage, pH value, 
and reaction time. The phosphate adsorption on red mud 
during the roasting process conforms to the Langmuir iso-
therm. The phosphorus removal mechanism in red mud and 
ARM is the surface complexation mechanism of the metal 
oxides; it also includes co-precipitation. Lu et al. [58] used 
carbon-rich, alcohol-based distiller’s grains to reduce and 
roast red mud to prepare the magnetic adsorption materi-
als. The phosphorus removal mechanism includes chemi-
cal precipitation, coordination exchange, physical adsorp-
tion, and electrostatic attraction, improving the adsorption 
performance of RM for low-concentration phosphorus in 
water and promoting adsorbent separation and recovery. 
Table 4 shows the adsorption isotherm results of activated 
red mud on phosphate.

The specific surface and pore regulation methods primar-
ily include the sintering and foaming methods. The sinter-
ing control method thermally activates the adsorbent before 
and after granulation for improving the phosphorus removal 
capacity, while the foaming method mainly adds the foam-
ing agent to the foam during the adsorbent granulation for 
increasing its specific surface area and active adsorption site. 
Non-sintered foaming is divided into cold and hot foam-
ing. Cold foaming uses hydrogen peroxide as the foaming 
agent, manganese dioxide as the catalyst, and silicone amide 
foam stabiliser for foaming. Thermal foaming is a foaming 
method that heats the material to ~40°C and adds aluminium 
and foaming powder.

Wettability adjustment refers to the addition of a wet-
ting agent and a surfactant to the adsorbent. A good cor-
relation exists between wettability and adsorption capacity. 
The better the wettability of the adsorbent surface, the bet-
ter the adsorption effect. In the adsorption process, on the 
surface with a small wetting angle, water is more likely to 

immerse into the adsorbent pores and carry considerable 
target adsorbates into them, thereby reducing the liquid film 
tension, enhancing the interaction with the adsorbate and 
producing a better adsorption effect. The wettability regu-
lation method involves the addition of wetting agents (such 
as GSK-588, Tween, and Span) or anionic surfactants (such 
as SDBS and sodium dodecyl sulphate) for reduce the sur-
face wetting angle of the adsorbent and regulate the surface 
wetting activity. Research on the wettability regulation of the 
red mud adsorbent is in the initial stage.

Zeta potential is an important index for measuring the 
adsorption system’s stability and determining its electro-
chemical properties. Its value indicates the degree of elec-
trostatic repulsion between the adjacent charged particles 
in the dispersion. A low zeta potential weakens the electro-
static repulsion between the particles, causing the van der 
Waals attraction between the particles to exceed the repul-
sion, thereby resulting in particle coagulation and colloid 
destruction. At a high zeta potential, the repulsive force 
between particles is dominant, thus, it resists aggregation 
and stabilises the dispersion. Therefore, colloids with a 
high zeta potential are stable, while those with a low zeta 
potential tend to flocculate. The main factors affecting the 
zeta potential are pH, ionic strength, and additives. For 
particles with a negative zeta potential, the particles tend 
to obtain more negative charges if alkali is added to the 
suspension. In contrast, the particles will reach the point 
of charge neutralisation if acid is added to the suspension. 
The zeta potential can be used to quantitatively represent 
the charged properties of the particle surface. Based on the 
phosphorus adsorption of substances with different charges, 
the variation of zeta potential in the adsorption process 
and its correlation with the adsorption capacity were dis-
cussed. The application of the zeta potential regulation in 
the RM granular adsorbent is still in the initial research stage.

3.4. Research status of phosphorus removal agents

There are several types of adsorption phosphorus 
removal agents. Based on the source, they can be divided 

 

Fig. 9. Adsorption mechanism of thermally activated red mud.
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into categories such as natural, industrial waste, and syn-
thetic phosphorus removal agents. According to the mate-
rial properties, it can be divided into inorganic phosphorus 
removal agents and organic phosphorus removal agents 
(biomass and carbon-based phosphorus removal agents)  
(Table 5).

Natural inorganic phosphorus removal agents mainly 
include zeolite [70], attapulgite, bentonite, montmorillonite, 
vermiculite, and iron oxide minerals. Factors affecting their 
adsorption performance include the type and ratio of metal 
ions, lattice structure, and surface functional groups of the 
adsorbent. The pore volume and specific surface area of the 
goethite–kaolinite complex [71], which is an efficient phos-
phate adsorbent, increase the surface-active sites. The neg-
ative effect of bacteria on phosphate adsorption by goethite 
may be due to the bacteria-induced surface charge modifi-
cation and competitive adsorption [72]. Phosphate adsorp-
tion by La(III)- and Fe(III)-modified montmorillonite [73] 
depends on the content of La, and the cation determines 
its adsorption capacity. Dolomite [74] removes phosphate 
via chemical bonding or chemical adsorption. Kaolinite, 
montmorillonite, and vermiculite natural clay were modi-
fied using Zr [75] to enhance the adsorption sites and form 
inner surface complexes for phosphate adsorption. Aphanitic 
magnesite-bentonite nanocomposites [76] adsorb phosphate 

in wastewater via monolayer adsorption. The concentration 
of Ca2+ in heat-treated, calcium-rich palygorskite [77] affects 
its phosphorus removal capacity. Additionally, the types 
of Ca–P precipitates formed under different phosphorus 
concentrations may be different.

Renewable resource-based phosphorus removal agents 
(biomass materials) mainly include straw, peel, eggshell, oys-
ter shell, clam shell, and shrimp skin, which usually need to 
be modified by loading treatment, chemical grafting modifi-
cation, calcination, and other modification treatments. Zhang 
et al. [78] found that straw can produce porous structures, 
and biochar made by pyrolysis can be used to neutralize 
acidic wastewater. Biochar (BC) supports layered double 
hydroxides (LDHs) composites (LDH-BC). Fulazzaky et al. 
[79] showed that the mass transfer resistance of phosphate 
adsorption on iron-loaded waste mussel shells depends 
on porous diffusion and membrane mass transfer through 
dynamic column experiments. A La(OH)3 modified canna 
biochar (CBC-La) [80] was prepared by the co-precipitation 
method (impregnation method). In the presence of NO3

−, 
HCO3

−, and CO3
2−, the removal rate can still maintain >99.8%. 

The main mechanisms of phosphate adsorption by CBC-La 
are electrostatic adsorption, ion exchange, ligand exchange, 
and inner layer complexation. In the phosphate adsorp-
tion process by the oyster shell–modified tobacco straw 

Table 4
Adsorption isotherm results of activated red mud on phosphate

Categories Adsorbents Adsorbate Temperature 
(°C)

Langmuir Freundlich References

Qm 
(mg·g–1)

b 
(L·mg–1)

n KF 
(mg·g–1)

Component 
regulation

Red mud Phosphate 25 16.06 1.53 8.12 9.45 [43]
35 16.59 2.19 8.07 9.97

Layered double hydroxide adsorbent Phosphate 25 2.615 0.0312 1.270 3.244 [44]
Red mud Phosphorus – 29.12 0.01 0.75 0.33 [45]
Acid-activated red mud 108.58 0.005 0.10 18.32
Organic modified red mud 91.32 0.002 0.53 1.39

Acid 
activation

Activation neutralization red mud Phosphate 40 162.687 0.015 0.258 25.329 [57]
Sintered red mud Phosphate – 5.4765 0.0827 1.3243 0.4423 [38]
Activation of high iron bayer red mud by 
hydrochloric acid

7.6278 5.7500 3.8344 5.4075

High-speed rail rock bayer red mud 2.8490 0.0904 1.4355 0.2622
Sintered red mud activated by hydro-
chloric acid

6.6578 0.7284 2.3218 2.4831

Red mud activated by hydrochloric acid Phosphate 30 112.36 0.042 3.74 3.82 [39]
Activation neutralization red mud Phosphate – 396.355 0.016 0.315 48.580 [40]
Red mud activated by hydrochloric acid Phosphate 30 0.346 545.24 5.302 0.477 [17]
Red mud activated by hydrochloric acid 40 0.462 146.39 4.281 0.623
Red mud 30 0.271 2.73 1.675 0.242
Red mud 40 1.106 0.407 1.241 0.325

Thermal 
activation

Alum sludge Phosphorus 5 12.66 0.049 3.080 2.220 [67]
20 16.10 0.066 3.384 3.404
35 19.08 0.081 3.192 3.980

Calcined activated red mud Phosphate 900 149.29 0.013 – [58]
Magnetic adsorbents Phosphorus – 17.02 0.025 3.800 3.376 [69]
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biochar [81], CaO was converted into Ca(OH)2 and chemi-
cally precipitated by neutralization with H+.

Solid waste-based adsorption phosphorus removal 
agents can be divided into water plant sludge (water sup-
ply sludge and sludge ceramsite), industrial waste residue 
(steel slag, fly ash, and red mud) and other wastes (potas-
sium silicon powder and biogas slurry). The waste is usually 
modified via granulation–calcination and acid activation. Yu 
et al. [82] found that CaCO3 and iron salts in sludge were 
converted into CaO and Fe3O4 through pyrolysis at high 
temperature. CaO is the active site of chemical precipitation, 
exhibiting a synergistic effect with iron oxide compounds 
(Fe3O4 and α-Fe2O3) to remove phosphate through chemi-
cal precipitation, ligand exchange and complexation. The 
problem of cementation and blockage of slag in water treat-
ment was solved by using bacteria combined with alkaline 
oxygen furnace slag [83] to strengthen phosphorus removal 
from wastewater. The adsorption of phosphorus by Cu/Fe 
modified fly ash [84] is mainly achieved by heterogeneous 
chemical adsorption and electrostatic interaction.

The synthetic inorganic phosphorus removal primarily 
includes metal hydroxide, mesoporous silica, hydrotalcite, 
etc., represented by iron hydroxide, iron oxide, activated 
alumina, etc. The phosphorus removal capacity depends 
on the pore structure and can be improved by chelating 
treatment, grafting modification, doping modification, and 
coating modification. A new adsorbent, bagasse iron oxide 
biochar (BIBC) [85], was prepared to remove phosphate 
from an aqueous solution. It was stable in the pH range of 
4.0–10.0 without secondary pollution. The new Al-Ti bime-
tallic composite adsorbent [86] had the advantages of a large 
adsorption capacity and easy regeneration. In the adsorp-
tion process of lanthanum carbonate hydroxide/magnetite 
nanoparticles functionalized porous biochar [87], the ligand 
exchange (inner complexation) and electrostatic attrac-
tion between phosphate and carbonate/hydroxyl groups of 

La(CO3)OH play a leading role. MgO in the biochar of MgO 
nanoparticles [88] promotes the formation of micropores 
and mesopores, which can distribute the active sites on the 
outer surface and is conducive to the removal and recovery 
of phosphate in aqueous solution.

Carbon-based phosphorus removal agents mainly 
include porous carbon [89], activated carbon fiber [90], 
expanded graphite [91], carbon nanotubes [92] and graphene 
[93]. The modification methods are mainly considered based 
on the pore structure, surface chemical properties of the car-
bon materials and effective matching with other materials. 
In recent years, rare earth-based phosphorus removal agents 
represented by lanthanum oxide and hydrated lanthanum 
oxide have been studied in depth towing to their excellent 
phosphorus removal abilities. In addition to the abovemen-
tioned adsorbent types, metal–organic framework materials, 
polymer nanofibers, and biopolymers represented by chi-
tosan can have good adsorption and phosphorus removal 
performances. Plasticized magnetic starch-based Fe3O4 clay 
polymer nanocomposites [94] can be synthesised to adsorb 
phosphate in an aqueous solution. They exhibit a heteroge-
neous porous surface, mainly through multi-layer adsorp-
tion such as electrostatic and ion exchange. Diatomite/
polyethylene glycol hydrogel nanocomposites [95] adsorb 
phosphate through hydrogen bonding, electrostatic, and 
pore filling. Iron-loaded cross-linked chitosan-montmo-
rillonite composite [96] enhances the adsorption capacity 
of montmorillonite for phosphate by changing the lattice  
structure.

Adsorption materials can also be divided into adsorption 
materials containing rare earth elements (REE) and adsorp-
tion materials without REE. Adsorption materials without 
rare earth elements include natural minerals, metal oxides, 
and carbon materials. Materials containing rare earth ele-
ments are usually modified by adding Zr, La, Ce, and other 
rare earth elements to the adsorbent, so that the rare earth 

Table 5
Comparison of inorganic phosphorus removal agent and organic phosphorus removal agent

Classification Organic phosphorus removal agent Inorganic phosphorus removal agent

Composition It includes crop waste and organic waste in life, such as wood 
fiber, corn stalk, straw, sawdust, bark and crop straw.

It is composed of inorganic substances, such as 
metal oxides, metal salts and so on.

Adsorption 
property

It usually has high selectivity and can selectively adsorb 
phosphate without affecting other components. It is suitable 
for low concentration phosphorus adsorption. Phosphorus 
release and recycling performance of regeneration can also be 
achieved.

The selectivity is low, and it may adsorb other 
ions or substances at the same time. It usually 
has high adsorption capacity and fast adsorption 
rate, which is suitable for high concentration 
phosphorus adsorption.

Adsorption 
mechanism

It interacts with phosphates through chemical bonds or phys-
ical adsorption, such as hydrogen bonds and ionic bonds. It 
refers to organic compounds with phosphate groups, such as 
polymers and resins.

It interacts with phosphate by surface adsorption, 
ion exchange or chemical reaction. Inorganic 
materials with high specific surface area, such as 
iron manganese oxides and alumina.

Applications It is usually used in water treatment, environmental pollution 
control and other fields, such as removing phosphate from 
wastewater. It is mainly used in the field of agriculture and 
can be used as a fertilizer additive or soil amendment to pro-
vide phosphorus for plants.

It is widely used in catalysts, adsorbents and 
separation materials, such as gas separation 
and catalytic reactions. It can also be applied to 
wastewater treatment, lake and river restoration 
and farmland drainage treatment, which can effi-
ciently remove phosphorus pollutants in water.
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adsorbent has a high adsorption capacity, fast adsorption 
rate, strong anti-interference ion ability, good selectivity, 
and wide pH tolerance range, as shown in Fig. 10.

The red mud contains a large amount of REE (La, Ce, Nd, 
Sc, Y), which are mainly leached by nitric acid, hydrochlo-
ric acid, or sulfuric acid. However, there are some problems 
in the recovery method, such as the large investment, high 
energy consumption, and high cost. It is not economical and 
has not reached industrial application. It is still in the aca-
demic research stage. Compared with the adsorption pro-
cess of phosphorus removal from red mud and other solid 
wastes, steel slag has a high adsorption efficiency and a wide 
application range owing to its rich metal oxides. Red mud 
has potential advantages in the field of phosphate adsorption 
treatment owing to its abundant resources and low cost. Fly 
ash has a slow adsorption rate, making it suitable for treating 
low-concentration phosphate wastewater. In contrast, red 
mud has a fast adsorption rate, making it suitable for treat-
ing high-concentration phosphate wastewater. Sludge often 
contains particles and organic matter, reducing the adsorp-
tion sites for effective phosphorus removal, thereby causing 
a decrease in the adsorption capacity. The heat energy and 
chemical agents required in the modification process and 
the dried sludge increase the adsorption cost. Biomass waste 
must first be carbonised to make porous material biochar; 
however, the carbonisation process requires heat energy 
and the adsorption cost is relatively high. Moreover, the 
process produces organic tail gas, which must be treated to 
reduce environmental pollution. Red mud contains a certain 
amount of heavy metal ions, such as lead and cadmium. 

During phosphate adsorption, heavy metal ions may enter 
the water body and cause secondary environmental pollu-
tion. Additionally, the phosphate adsorption capacity of red 
mud is relatively low and must be used in large quantities, 
which is not conducive to resource conservation. Therefore, 
the use of red mud as a phosphorus removal agent to remove 
phosphate in water is the mainstream trend of ‘treating 
waste with waste’. However, in practical applications, its 
cost and environmental problems limit the promotion of this 
technology.

Therefore, to realize better environmental protection 
while reducing costs, other economical and eco-friendly 
technological means should be considered. Simultaneously, 
new environmental protection technologies should be con-
tinuously explored to provide more effective means of 
environmental protection and sustainable development.

3.5. Status of research on regeneration of adsorbents for desorbed 
phosphorus

Phosphorus adsorbent regeneration refers to the desorp-
tion or removal of phosphate substances adsorbed in the 
adsorbent from the adsorbent without destroying the origi-
nal structure of the adsorbent. The adsorption performance 
of the adsorbent can be restored, so that the adsorbent can 
be restored to a reusable state. The commonly used regener-
ation methods include heating method, solvent method, ozo-
nation method and biological method as shown in Table 6.

Adsorbent adsorption of phosphorus includes physical 
adsorption and chemical adsorption. Physical adsorption 

Fig. 10. Distinguish between adsorption materials containing rare earth elements and adsorption materials without rare earth 
elements.
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refers to the adsorption of phosphorus on the surface of the 
adsorbent through van der Waals force and electrostatic 
interaction. Chemical adsorption refers to the chemical reac-
tion between phosphorus and adsorbent and the formation 
of chemical bonds. Phosphorus usually exists in water as 
HPO4

–, and the active sites on the adsorbent will react with 
H+ in phosphorus to form P–O chemical bonds, so that 
phosphorus is firmly adsorbed on the surface of the adsor-
bent. Pickling is one of the most commonly used regener-
ation methods in the regeneration process of phosphorus 
adsorbent. The strong acidity of acid can be used to release 
phosphorus ions on the adsorbent. The influencing factors 
in the regeneration process of the adsorbent include the 
selection, concentration and temperature of the regenerant, 
and the contact time between the adsorbent and the regen-
erant. The desorption methods of phosphate mainly include 
acid desorption, alkali desorption agent and salt desorption  
agent (Table 7).

Adding an acid desorption agent (HCl) and a phos-
phorus-containing adsorbent reduces the pH of the whole 
system and produce a large amount of H+, which first dis-
solves the soluble salt on the adsorbent surface and enters 
the pores to dissolve the phosphorus adsorbed on the pore 
surface. The effective adsorption site of the red mud adsor-
bent is exposed to the surface to achieve desorption (Fig. 11). 
However, adding HCl makes the desorption solution turbid. 

This is because HCl not only dissolves phosphorus sub-
stances but also dissolves the active components of phos-
phorus adsorption (Al2O3, Fe2O3, and CaCO3) during the 
desorption process, resulting in the reduction of adsorp-
tion active sites and altering the effect of re-adsorption after 
desorption. Thus, HCl is used as a desorption agent, and 
the desorption solution concentration must be controlled 
under the actions of adsorption and desorption. To a certain 
extent, the low acid concentration dredges the pores of the 
particles due to the action of acid and the effective points 
inside the particles are exposed and re-adsorbed. Thus, 
the low-concentration HCI solution is an ideal desorption  
agent.

After NaOH desorption (Fig. 12), the pH value of the 
desorption solution decreased and the pH value of the 
granular adsorbent increased. A large amount of OH− dis-
solved the phosphate ions, hydroxylated the adsorbent sur-
face, formed a ligand exchange reaction and reduced the 
adsorption capacity of the adsorbent. The surface material 
of the desorption process undergoes chemical changes. The 
surface structure is improved, such that the regenerated 
adsorbent has a higher adsorption activity, and the phos-
phorus re-adsorption is better than the HCl desorption and  
re-adsorption.

Salt desorption agents such as NaCl and KCl desorb 
phosphate through an ion exchange process. However, 

Table 6
Methods of adsorbent regeneration

Methods Principle Feature

Acid/alkali 
regeneration

It can change the pH and react directly with 
some adsorbates.

It is only applicable to adsorbents affected by pH. Using the 
reversible adsorption process, the adsorption capacity of the 
adsorbent cannot be completely regenerated, but the transfer 
of pollutants is not completely removed.

Bio-regeneration The adsorption saturated adsorbent is treated 
by microorganisms, and the adsorbate adsorbed 
on the surface of the adsorbent is degraded 
by microorganisms into CO2 and H2O, so as to 
achieve the purpose of regeneration.

It is suitable for adsorbate of organic matter which is easy 
to be biodegraded, has adsorption reversibility and easy to 
desorb. Biofilm aggregation is easy to block the pores of the 
adsorbent, reducing the adsorption performance, long regen-
eration time and low efficiency.

Ozone 
regeneration

The regeneration medium is O2/O3 mixed gas. At present, it is mainly used for the regeneration of saturated 
activated carbon. Activated carbon cannot be regenerated by 
ozone method when its adsorption saturation is high.

Microwave 
regeneration

The organic pollutants on the adsorbent were 
carbonized by high temperature produced by 
microwave to restore its adsorption capacity.

With the increase of regeneration times, the porosity of 
the adsorbent continues to decrease and the average pore 
size increases. It can be used to adsorb saturated activated 
carbon and carbon nanotubes. The regeneration time is 
short, the energy consumption is low, and the regeneration 
efficiency is high.

Organic solvent 
regeneration

Organic solvents such as acetone, methanol, 
dichloromethane and ethyl acetate were used 
to extract the substances on the saturated 
adsorbent.

The reversible adsorption process cannot completely release 
the adsorption capacity of the adsorbent and cannot be 
completely removed.

Electrochemical 
regeneration

The regeneration range is narrow, which is 
mainly suitable for carbon-based adsorption 
materials with high porosity.

The regeneration efficiency is high and has little effect on the 
adsorbent. At present, most of the electrode materials are 
graphite and precious metals, but graphite has large volume, 
high resistance and high cost of precious metals.
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Table 7
Phosphate desorption agents

Adsorbent Desorbing agent Desorption efficiency References

Mesoscopic structure of zirconium sulfate surfactant micelle 0.1 M NaOH 90% [97]
Chitosan/Ca organic modified montmorillonite 0.1 M NaOH 84% [98]
Magnetic ZrO2 0.1 M NaOH + 1 M NaCl 91.2% [99]
Zirconium iron and iron modified biochar (NH4)2SO4

NaOH
(NH4)2SO4: 70.43%
NaOH: 74%

[100]

A type of La(OH)3 loaded magnetic MAPTAC-based cationic 
hydrogel

3.0 M NaOH + 3.0 M NaCl 76.8% [101]

HFeO 6% NaCl 97% [102]
Magnetic polymer 0.5 M NaOH 66.43% [103]
Graft copolymer 0.1 M Na2CO3 99.2% [104]

Fig. 11. Desorption regeneration process of acid desorption agent.

Fig. 12. Desorption regeneration process of alkali desorption agent.
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because NaCl is a soluble salt, the addition will increase the 
Cl− in the solution system, corrode the metal structures, and 
deteriorate the quality of the comprehensive utilisation of red 
mud after desorption. High salt concentrations are used for 
effective desorption, resulting in the phosphate recovery in 
desorbed solution, which is then used for fertilisation and 
irrigation of crops due to the high salinity risk. Salts can-
not effectively desorb phosphate from strongly phosphate- 
adsorbed sorbents through specific adsorption mechanisms.

The efficiency and economy of using the red mud adsor-
bent to remove phosphate from wastewater have been con-
siderably improved; however, less attention has been paid to 
the recovery of used adsorbents and phosphorus resources. 
Scholars have studied the use of different desorption 
agents, but the research is limited. Only a limited adsorp-
tion–desorption cycle can be performed. Moreover, only 
a few studies have focused on the recovery of the phos-
phate adsorption–desorption resources using the red mud 
adsorbents, considering the resource utilisation of waste  
adsorbents.

4. Research progress on test calculation of red mud as an 
adsorbent

Molecular dynamics simulation can establish a position 
suitable for biochemical molecular systems, polymers, met-
als, and non-metals, improving the accuracy of calculating 
complex system structures. The particle motion simulation 
has the correct physical basis and can be used to study vari-
ous surface-related characteristics. The mechanism of the red 
mud adsorbent on phosphorus adsorption is revealed from 
a microscopic point of view by establishing an adsorption 
model of the red mud adsorbent + phosphate + water. Taking 
the non-thermally activated red mud granular adsorbent 
(ARMFA) [105] as an example, the effects of the surface and 
granular adsorbent properties on phosphorus adsorption 
were studied herein from a microscopic viewpoint. First, 
the single crystal cell of each mineral was constructed and 
the structure of the main adsorption components of the 
adsorbent was optimised. The ARMFA adsorption on the 
phosphorus-containing wastewater was explored based on 
two aspects: surface and porous adsorption. The results are 
shown in Fig. 13. Materials Studio software was used to sim-
ulate the periodic repetitive cells of the ARMFA mass com-
ponents—Fe2O3, CaCO3, Ca2Fe2O5, Ca(Si6Al2)O16, Ca3Al2O6, 
Al2O3, and SiO2—using the amorphous cell module to 
adsorb the PO4

3−, HPO4
2−, and H2PO4

− in wastewater.
The adsorption mechanism is further explained from a 

microscopic viewpoint. For example, the quantum mechan-
ics density functional method [106,107] is used to reveal the 
adsorption mechanism of adsorbent components on phos-
phorus. Liu et al. [108] studied the structure and energet-
ics of benzene adsorbed on the surface of transition metals 
based on density functional theory (DFT). The collective 
screening effect leads to strong adsorption of Bz at Pd(111), 
Pt(111), Rh(111), and Ir(111). Bz molecules are adsorbed on 
all metal surfaces in a flat arrangement, so that Bz is weakly 
adsorbed at Cu(111), Ag(111), and Au(111). Hu et al. [109] 
analyzed that Fe3+ doping promoted the N2 photofixation 
ability of the honeycomb graphite carbon nitride through 
experiments and DFT simulations. The Fe3+ site was not 

only used as an active site for adsorbing and activating N2 
molecules but also promoted the interface charge transfer 
from the catalyst to the N2 molecules, thereby considerably 
improving the photofixation ability of nitrogen. Peng et al. 
[110] studied the effects of head group type and alkyl chain 
length on the adsorption of alkylamine cations on montmo-
rillonite (001) surface by using DFT, sedimentation, contact 
angle, and adsorption capacity measurements. The calcula-
tion shows that the cationic form is easily adsorbed on the 
quartz surface by electrostatic attraction. Zou et al. [111] 
synthesized a new type of high-efficiency glycerol-modi-
fied nanoscale-layered double hydroxide with an excellent 
adsorption capacity for aqueous U(VI) under various envi-
ronmental conditions. Furthermore, the DFT calculations 
demonstrate that the higher adsorption energy is mainly 
attributed to the stronger hydrogen bonds and electro-
static interactions. Dzade et al. [112] studied the benzene 
adsorption on the hematite (α-Fe2O3) surface using DFT and 
showed that the adsorption geometry parallel to the surface 
is more stable in energy than the vertical geometry. Benzene 
molecules interact with the hematite surface through the 
π	bonds	in	the	parallel	adsorption	geometry	and	the	weak	
hydrogen bonds in the vertical geometry. Chen et al. [113] 
studied the interaction between Ni(II) and graphene oxide 
by theoretical DFT calculations. The results show that the 
adsorption of Ni(II) on graphene oxide is mainly attributed 
to –COH and –COC groups.

Based on the DFT [114–118], the electronic structure of 
the composite phase was revealed by analyzing the energy 
band structure, density of states, and Mulliken population 
of the red mud composite. The microscopic adsorption 
mechanism of phosphorus by red mud in a complex sys-
tem was calculated and analyzed by DFT. The quantum 
theory model of adsorbent surface interaction was estab-
lished. The DFT was used to study the surface coordina-
tion of multi-component mineral pores in a red mud-based 
granular adsorbent [49] and the influence of the spatial 
structure on the residual valence bond structure as well as 
the electronic properties of surface phosphorus-absorbing 
active atoms. The effects of the surface spatial structure and 
residual valence bond properties on the molecular struc-
ture and phosphorus substance adsorption were studied. 
The thermodynamic model, reaction microcalorimetry, and 
adsorption kinetic model of the interaction between the 
phosphorus substances and the surface atoms of the red 
mud–based adsorbents were established. The steric hin-
drance thermal effect and the adsorption entropy change 
effect of the phosphorus substances in the phosphate ore 
dressing wastewater on the pore surface of the adsorption 
materials were investigated. Moreover, the adsorption and 
desorption mechanisms of the red mud on phosphorus 
were studied from a macro perspective.

5. Prospect

By summarising research data from the past decade 
on phosphate adsorption using red mud adsorbent mate-
rials in the past decade, red mud adsorbents simultane-
ously and stably adsorb polymorphic phosphate and have 
an integrated chemical phosphorus removal capability 
suitable for pan-concentration of wastewater and removal 
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of polymorphic phosphorus. The red mud adsorbent after 
adsorption saturation can not only be regenerated sim-
ply but also be used as a phosphorus-rich compound fer-
tiliser that is returned to the field to improve the acidic soil. 
Secondary pollution is less, and the resource recycling of red 
mud is realised in line with the circular economy concept. 
With increasing research on the comprehensive application 
of red mud, scope for the development of red mud adsorbent 
materials still exists. The following conclusions are drawn 
from this work:

•	 Combined with the quantum chemistry calculation pro-
gramme based on the density functional method, the 

adsorption energy of the phosphate ions and red mud 
adsorbents with different structures at different spatial 
structure positions and the geometric deformation of the 
structure were studied to determine the steric hindrance 
effect of the adsorption process, which has broad promo-
tion prospects and application value.

•	 The microscopic adsorption mechanism of red mud 
is not sufficiently clear. Due to the relatively complex 
composition of red mud adsorbent, the current simu-
lation calculation mainly starts with a relatively simple 
single mineral; however, the typical mineral composi-
tion of different regions and production processes needs 
to be expanded. There are few molecular dynamics 

 
Fig. 13. Adsorption process of non-thermal activated red mud granular adsorbent.
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studies on phosphorus adsorption and desorption by the 
micro-spatial structure of the red mud adsorbent, which 
is worthy of further study.

•	 In industrial applications, only a few studies have been 
performed on the desorption of phosphorus resource 
recovery after phosphate adsorption by the red mud 
adsorbent. At present, complete adsorption and desorp-
tion equipments are lacking. Furthermore, the regener-
ation process of the red mud adsorbent for phosphorus 
desorption remains to be studied.
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