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a b s t r a c t
This study presents a statistical model that assesses pollution in aquatic ecosystems based on heavy 
metal concentrations (dry weight). The model uses binary logistic regression to analyze factors 
like species, stations, seasons, and heavy metals associated with pollution. The method constructs 
a binary interest factor (“polluted” and “unpolluted”) based on World Health Organization stan-
dards. The results help to understand risks to human health from heavy metals in coastal areas of 
East-Algeria and provide a useful tool for monitoring pollution.
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1. Introduction

Minerals, essential fatty acids, and proteins are essential 
nutrients of people’s health [1]. Seafood is one of the main 
sources of these nutrients. However, seafood can also be a 
significant source of heavy metal contaminants [2]. Heavy 
metals have the ability to bind to short carbon chains [3] and 
can be bio-accumulated and easily assimilated by organ-
isms. Some heavy metals, such as nickel, lead, chromium, 
and cadmium, are particularly toxic even at small levels [4].

In the marine environment, mollusks and algae are 
frequently used for the biomonitoring of heavy metals 
pollution [5,6]. The choice of the species used for biomon-
itoring is constrained by specific requirements: the species 

must have a significant concentration of the pollutant 
being studied, must be widely distributed geographically 
for comparison across different locations, must ingest the 
pollution without dying from the concentrations it encoun-
ters, and must have a pollutant concentration that can be 
easily connected to the mean concentration in the sur-
rounding environment.

Metals can be accumulated in organisms through solu-
ble fractions, particulates, sediments in seawater, and food. 
Certain species of mollusks have specialized metabolic 
defense mechanisms that allow them to manage the amounts 
of these pollutants in their tissues [7]. In such situations, it 
is challenging to determine whether the variations reported 
at the sampling sites reflect actual environmental pollution 
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or are influenced by the sample size [8]. Therefore, eval-
uating the amounts of heavy metals in mollusk tissues is 
crucial due to the non-biodegradability of these metals.

Algae are well-suited organisms for studying heavy 
metal contamination in aquatic ecosystems as they are 
abundant, adaptable to environmental conditions [9,10] and 
can accumulate high quantities of heavy metals, serving as a 
sink for these pollutants [11].

In this study, we present a statistical model capable of 
assessing pollution in terms of metal concentration dry 
weight (DW). We aim to identify factors associated with the 
pollution phenomenon, including various potential explan-
atory variables such as species, stations, seasons, and met-
als. The study seeks to answer the following questions: 
(i) Which species are most associated with the pollution phe-
nomenon?; (ii) Does the season play a role in the phenom-
enon?; (iii) Which station is the most polluted?; (iv) What 
is the metal that pollutes the most?. This information, com-
bined with a bottom-up mechanical manner linking the 
concentrations distribution to physiological processes, can 
lead to a precise evaluation of existing risks. Our database 
consists of five qualitative variables described as follows:

•	 Stations: 4 level factors: St.1, St.2, St.3, and St.4, where St.4 
is a control station.

•	 Seasons: 4 level factors: winter, spring, summer, and 
autumn.

•	 Species: 4 level factors: Patella caerulea, Ulva lactuca, 
Stramonita haemastoma and Phorcus turbinatus.

•	 Heavy metals: 6 level factors: zinc (Zn), nickel (Ni), 
lead (Pb), chromium (Cr), copper (Cu), and cadmium 
(Cd), where metal concentrations are reported on a dry 
weight (DW) in mg·g–1.

•	 Pollution: to evaluate the degree of pollution, a binary 
interest factor (“polluted” and “unpolluted”), based on 
(DW) measurements through the use of well-established 
World Health Organization (WHO) standards, is built.

The “pollution” factor is coded as follows: If the DW 
measurement indicates at least one of the WHO and/or 
International Atomic Energy Agency (IAEA) risks T (toxic 
for health established by WHO), N (dangerous for envi-
ronment established by WHO), Xn (harmful established 
by WHO), C (corrosive established by WHO), Xi (irritant 
established by WHO) or D (exceed the norm established 
by IAEA) (indicating the presence of pollution from vari-
ous sources) the factor is set to 1, if the DW measurement 
indicates A (admissible established by WHO) or R (recom-
mended established by IAEA) (indicating the absence of 
pollution), the factor is set to 2.

Thus, “pollution” becomes the variable of interest (i.e., the 
factor to be explained) in our analysis. We will explore how 
the factors “stations”, “species”, “seasons”, and “heavy met-
als” influence the presence of “pollution” in the aquatic eco-
system. By understanding these relationships, we aim to gain 
insights into the potential risks posed by “heavy metals” 
contamination to human health and the environment. In the 
context of the study on pollution assessment using bio-mon-
itoring tools, we can provide a scientific basis to justify the 
use of the independent variables season, stations, heavy 
metals, and different organism (species) in the following way:

•	 Season scientific basis: Seasonal variations can influence 
the accumulation and distribution of heavy metals in 
aquatic ecosystems. Factors like temperature, precipi-
tation, and biological activities can affect metal concen-
trations. We can include a categorical variable for season 
with four levels: winter, spring, summer, and autumn.

•	 Stations scientific basis: Different sampling stations can 
represent distinct environmental conditions and poten-
tial pollution sources, leading to variations in metal con-
centrations. We can include a categorical variable for 
stations with four levels (St.1, St.2, St.3, St.4).

•	 Heavy metals scientific basis: Different metals may have 
different sources of contamination and behavior in the 
aquatic environment, leading to variations in metal con-
centrations. We can include a categorical variable for 
metals with six levels (Zn, Ni, Pb, Cr, Cu, Cd).

•	 Species scientific basis: Different organisms may have 
varying abilities to accumulate and eliminate heavy met-
als, making them suitable bio-indicators for pollution 
assessment. We can include a categorical variable for spe-
cies with four levels (P. caerulea, U. lactuca, S. haemastoma, 
P. turbinatus).

In this regard, a binary logistic regression, on the col-
lected data, is adopted. The binary logistic regression was 
first introduced in the 1970s to make up for the shortcom-
ings of ordinary least squares (OLS) regression to pro-
cess binomial outcomes [12]. The best-fitting function is 
presented depending on the maximum likelihood (ML) 
approach [13]. It has proven to be an effective tool for inter-
preting ubiquitous biomarker data, performing new stud-
ies to answer specific risk-based questions. It also allowed 
the integration of the maximum amount of information 
on the collected data which leads to a better understand-
ing of human health risks [14]. Particularly, in the present 
study the reasons for binary logistic regression choice are 
summarized in the following:

•	 The variable “pollution” to be explained is qualitative.
•	 There is a sufficient number of events (presence of pol-

lution) against the number of explanatory variables. 
Indeed, the number of recorded pollution cases is sig-
nificantly higher than the number of explanatory vari-
ables that are significantly associated with the explained 
variable (the general rule is to have at least 5 to 10 events 
per explanatory variable).

•	 The bioaccumulation of heavy metals by aquatic organ-
isms is considered “similar”.

2. Materials and methods

2.1. Study area

Biota were sampled at four stations along the Algerian 
East coast (36°56’44.19”N 6°15’39.08”E) and (36°50’38.18”N 
7°49’39.38”E) over a distance of almost 350 km as shown 
in Fig. 1. The stations St.1 (Bay of Collo: 37°00’07.50”N 
6°34’39.93”E) and St.2 (Gulf of Skikda: 36°53’32.33”N 
6°53’12.21”E) are near from Collo and Stora Port. They are 
characterized by intense maritime traffic. Furthermore, 
these sites are exposed to pollution by PAH due to the pres-
ence of a large petrochemical complex [15]. The station St.3 
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(Gulf of Annaba: 36°55’31.46”N 7°45’44.43”E), is exposed 
to pesticides and/or heavy metals emitted by the Fertial 
Factory and Port Operations [16] and it receives organic 
pollutants, in particular discharges of domestic wastewater 
[17]. Finally, station 4 (St.4) (Bay of Chetaibi: 37°02’26.27”N 
7°24’22.04”E), being far from any anthropogenic, is regarded 
as the control station [5].

2.2. Sampling and samples pretreatment

The study concerns four stations in the eastern coasts of 
Algeria (St.1: El Djerda beach, St.2: Military beach, St.3: Rizi 
Amor beach and St.4: Oued El Ganem beach). The six con-
sidered heavy metals are: Cd, Cr, Cu, Pb, Zn and Ni. The 
species included in the study are: “P. turbinatus” Born 1778 
(n = 161), “P. caerulea” Linné 1758 (n = 244), “S. haemastoma” 
(n = 90) and the algae “U. lactuca” (L.) Thivy 1960 (n = 84). 
Samples were collected in two field trips from Dec. 2011 to 
Sep. 2019, a month with the greatest average metal contents 
in adult mollusks [8]. Mollusks were carefully gathered, and 
only mature specimens within a rather restricted range of 
size (and weight) were chosen; the same method was fol-
lowed for station samples. All of these factors contribute to 
a high amount of heavy metal [18]. Before the examination, 
algal samples were rinsed with saltwater that had been fil-
tered, transported to polyethylene bags, and then frozen 
at –20°C. For the algae study, only mature leaves and thalli 
of comparable length were chosen [7]. Afterwards, sam-
ples were combined and subsamples of 0.7 g DW were 
microwave-mineralized (MDS 2000; CEM, Italy) with ultra-
pure HNO3 and H2O2 (6 + 2 mL; Merck, Germany) [18,19]. 
Every month, an average of twenty adult individuals of 
Monodonta, Patella and rapa whelks belonging to size class 
(30 and 40) mm, are manually collected in the intertidal zone. 
For 24 h, the collected species were immersed in filtered 
seawater for purification, to purify the mantle cavity and 
the digestive tract of the particulate matter residues [19,20].

Subsequently and in order to avoid metal contami-
nation, the extraction of the soft parts from the shell has 
been achieved using a spatula and plastic hammer, and 
then washed with deionized Milli-Q water. Once every res-
idue of shell was removed, samples have been kept frozen 
inside polyethylene bags. Microwave digestion has been 
applied individually to all the mollusk for their analysis [21]. 
All microwave-assisted mineralizations of algae were car-
ried out. Separate DW assessments were carried out on the 
various biota by oven drying them to a constant weight at 
105°C (20 replicates for each species). All chemicals utilized 
in sample treatments were of ultrapure quality. A Millipore 
Milli-Q system supplied the water used for solution prepa-
ration and cleaning. Before use, all glassware was cleaned 
by soaking in 10% HNO3 for 24 h and rinsing with Milli-Q 
water [21] Table 1. For soluble metal analysis, laboratory 

 

Fig. 1. Study area: (St.1: El Djerda beach, St.2: Military beach, St.3: Rizi Amor beach, and St.4: Oued El Ganem beach) during 
(Dec. 2011–Dec. 2019).

Table 1
Limits of detection (LoD)a and precision (CV)b for analyses 
conducted by the two techniques used [8]

Metal Algae Mollusks

(µg·g–1 DW) CV (µg·g–1 DW) CV

Cd 0.04 2.7 0.05 4.3
Cr 0.71 3.9 0.94 3.6
Cu 0.006a 4.5 0.01b 4.5
Pb 0.07 2.0 0.09 1.4
Zn 0.13c 2.5 0.09d 2.5

aCalculated on the basis of 10 determinations of blanks as three 
lines the standard deviation of the blank.
bPercentage referred to 10 determinations performed on the same 
sample.
cLoD for Cu and Zn was obtained by flame atomic absorption 
spectrometry (mg·L–1).
dLoD for Cu and Zn was obtained by flame atomic absorption 
spectrometry (mg·L–1).
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samples were filtered through an acid-precleared 0.45-lm 
membrane filter, acidified, and kept at 4°C [21] Table 1.

2.3. Trace metal determination and quality control

Measurements of trace metal concentrations have been 
taken on biota using a PerkinElmer AAnalyst 300 atomic 
absorption spectrometer with graphite furnace system 
(GFAAS) with HGA-800 autosampler and flame atomiza-
tion (FAAS). FAAS was employed for Cu and Zn, whereas 
GFAAS with an HGA-800 system was used for Cd, Cr, and 
Pb. Matrix modifier NH4-H2PO4 at 10% with 0.2 mg of PO4 
was used for Cd and Pb, and Mg(NO3)2 was employed for 
Cr; the method of standard additions for calibration was 
applied [21]. Ammonium pyrrolidine dithiocarbamate 
(APDC) and methyl isobutyl ketone (MIBK) were used to 
determine the concentration of dissolved metals [21]. 1% 
aqueous APDC solution (Eastman Chemical) was prepared 
each day and purified using an equal volume of MIBK, lead-
ing to separating phases. As metal complexes are highly 
soluble while APDC is only slightly soluble in MIBK, it is 
easy to purify the reagent in this manner. No further puri-
fication has been made throughout for reagent grade MIBK 
[8]. The control of the accuracy of the whole analytical proce-
dure has been done using certified reference materials: CRM 
279 (sea lettuce), ERM-CE 278 (mussel tissue), and CASS3 
(Nearshore Seawater; NRCC, Ottawa, Canada). Tables 1 and 
2 detail the analytical performance of the employed tech-
niques in terms of limits of detection and precision [18,22].

2.4. Statistical analysis

We aim to study the effect of the factors “species”, “sta-
tions”, “seasons” and “metals” on the presence of pollution. 
For this purpose, we use an ordinary logistic regression 
model [23] Subsequently, we first build a binary interest 
factor (“polluted” and “unpolluted”) based on (DW) mea-
surements through the use of well-established WHO 
joint [24]. The “pollution” to be explained.

The risk ranking for seafood and shellfish according 
to the reference [24] (food codex) [25] is coded by: T (toxic 
for health), N (dangerous for the environment), Xn (harm-
ful), C (corrosive), Xi (irritant) and A (admissible). The risk 
classification for the TME (trace metal element) according 

to the IAEA [26] standard for algae (U. lactuca) is coded by: 
R (recommended) and D (exceeds the norm).

Thus, we construct the factor “pollution” which will 
be the variable of interest (i.e., to be explained) that will be 
equal to 1 if the DW measurement indicates at least one of 
the risks T, N, D, Xn, C, or Xi (testifying to the presence of 
pollution of various origins) and equal to 2 if it has A or R 
(absence of pollution). Therefore, the factors “stations”, 
“species”, “seasons”, “metals” will be our explanatory  
variables.

Both logistic regression and chi-square tests are pow-
erful statistical techniques used to analyze categorical data 
and relationships between variables. In our study, they 
are commonly applied. Here are the steps for conducting 
logistic regression and chi-square tests. 

2.4.1. Logistic regression

•	 Data preparation: In this step, data are organized and 
cleaned.

•	 Data splitting: Here, the data is split into training set 
and a testing/validation set. The training set will be 
used to build the logistic regression model, while the 
testing set will be used to evaluate its performance.

•	 Model building: The training set is used to fit a logistic 
regression model. This involves estimating the coef-
ficients for each independent variable to predict the 
probability of the dependent variable being 1.

•	 Model evaluation: The performance of the logistic 
regression model is evaluated using the testing set. 
Common evaluation metrics include accuracy, precision, 
recall, and F1-score.

•	 Interpretation: Coefficients of the logistic regression 
model are interpreted to understand the relationship 
between the independent variables.

2.4.2. Chi-square tests

•	 Data preparation: Data should be cleaned and orga-
nized in a contingency table format.

•	 Null hypothesis: The null hypothesis should be for-
mulated, stating that there is no significant associa-
tion between the variables.

•	 Degrees of freedom: The degrees of freedom are deter-
mined for the chi-square test. For a contingency table 
with r rows and c columns, the degrees of freedom is 
(r–1) × (c–1).

•	 Expected frequencies: Calculate the expected frequen-
cies for each cell of the contingency table under the 
assumption of the null hypothesis.

•	 Chi-square statistic: The chi-square statistic is com-
puted by comparing the observed frequencies in the 
contingency table to the expected frequencies.

•	 P-value: The p-value associated with the chi-square sta-
tistic is calculated. It indicates the probability of observ-
ing the data or more extreme results under the assump-
tion of the null hypothesis.

•	 Conclusion: The p-value is compared to a significance 
level (e.g., 0.05). If the p-value is less than the signifi-
cance level, reject the null hypothesis and conclude that 
there is a significant association between the variables.

Table 2
Analysis of certified reference materials: certified and found 
values (mean ± SD) [8]a

Metal CRM 279
(sea lettuce) (µg·g–1 DW)

ERM-CE 278
(mussel tissue) (µg·g–1 DW)

Certified Found Certified Found

Cd 0.274 ± 0.022 0.272 ± 0.031 0.348 ± 0.007 0.340 ± 0.011
Cr (10.7)a 10.75 ± 0.64 0.78 ± 0.06 0.79 ± 0.03
Cu 13.14 ± 0.37 12.54 ± 0.59 9.45 ± 0.13 9.40 ± 0.21
Pb 13.48 ± 0.36 13.41 ± 0.22 2.00 ± 0.04 2.10 ± 0.05
Zn 51.3 ± 1.2 53.6 ± 1.5 83.1 ± 1.7 82.1 ± 1.6

aNot certified values.
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2.5. Logistic regression

In a multiple logistic regression analysis, we include 
multiple independent variables simultaneously to assess 
their combined impact on the dependent variable (pollu-
tion). In our context, the multiple logistic regression equation 
can be expressed as follows,

Logit(pollution) = β0 + β1 × (Season.winter) +...

+β4 × (Season.autumn) + β5 × (Station.St.1) +...

+β8 × (Station.St.4) + β9 × (Metal.Zn) +...

+β14 × (Metal.Cd) + β15 × (Species.Patella) +...

+β18 × (Species.Phorcus)

The logistic regression analysis will estimate the values of 
these coefficients based on the data, allowing us to quantify 
the impact of each independent variable on the likelihood 
of pollution occurrence (Logit(pollution)). By statistically 
analyzing the relationships between the independent vari-
ables and pollution, we can draw meaningful conclusions 
about the factors influencing pollution levels in the studied 
aquatic ecosystem. Indeed, each beta coefficient represents 
the impact of the corresponding independent variable on the 
likelihood of pollution occurrence, holding other variables 
constant. For example, if we estimate that β1 is positive and 
statistically significant, it means that the likelihood of pol-
lution occurrence is higher during winter compared to the 
reference season (e.g., autumn). Similarly, if β5 is negative 
and significant, it indicates that station St.1 is associated with 
a lower likelihood of pollution compared to the reference 

station (e.g., St.4, which is the control station). The same 
interpretation can be applied to the coefficients related to 
metals and species. By conducting the multiple logistic 
regression analysis on the data, we can obtain the estimates 
of these coefficients along with their standard errors, p-val-
ues, and confidence intervals. This information will help 
us to understand the relative importance of each indepen-
dent variable in predicting pollution levels in the coastal 
areas of East-Algeria as well as analyzing the correlation of 
this analysis technique with pollution-related factors.

Moreover, all the coefficients are determined relative 
to the reference modality, both for the explained variable 
and for the explanatory variables. For the explained vari-
able, the reference modality is that of the “no event”, in our 
case “absence of pollution”. For the explanatory variables, 
the choice is made by using the subject knowledge and the 
way we present the results. Given the objectives initially 
set, we choose to reference the modality that seems to be 
the weakest for each variable. We then perform a chi-square 
test applied to distributions according to the variable “pol-
lution” and each of the explanatory variables. The different 
tests will allow us to compare the numbers of 1 (presence 
of pollution) and 2 (absence of pollution) of the different 
groups of modalities of the explanatory variables in order to 
verify the hypothesis according to which, within the popu-
lation, the frequency of 1 is different from the frequency of 
2. Therefore, the modalities can be classified according to 
their importance in each case. The chi-square test results are  
given in Table 3.

3. Results and discussion

Regarding the variable “seasons”, the modality “1” 
appeared the least frequent with the modality “spring”, 

Table 3
Chi-square tests between the factor “pollution” and each of the four variables

Cross-tabulation ‘Pollution’ ~ ‘Heavy metals’

Cd Cr Cu Ni Pb Zn χ-squared df ρ-value

1 304 118 173 257 228 107 409.43 5 <2.2e−16

2 16 202 147 63 92 213

Cross-tabulation ‘Pollution’ ~ ‘Species’

Patella caerulea Phorcus turbinatus Stramonita haemastoma Ulva lactuca χ-squared df ρ-value

1 223 299 410 255 176.65 3 <2.2e−16

2 257 181 70 225

Cross-tabulation ‘Pollution’ ~ ‘Species’

Autumn Summer Winter Spring χ-squared df ρ-value

1 324 295 285 283 9.469 3 0.02366
2 156 185 195 197

Cross-tabulation ‘Pollution’ ~ ‘Stations’

St.1 St.2 St.3 St.4 χ-squared df ρ-value

1 331 298 305 253 27.864 3 3.878e−06

2 149 182 175 227
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with a total count of 283 occurrences compared to the other 
modalities. Therefore, “spring” was chosen as the reference 
modality for the “seasons” variable. Lastly, for the variable 
“stations”, the modality “1” appeared the least frequent 
with the modality “St.4”, with a total count of 253 occur-
rences compared to the other modalities. Thus, “St.4” was 
chosen as the reference modality for the “stations” variable.

By selecting appropriate reference modalities for each 
variable, we can make meaningful comparisons between 
the different groups and interpret the results accurately in 
subsequent analyses. We are now able to achieve our logis-
tic regression. The results of the logistic regression are given 
in Table 4.

Before proceeding to the environmental risk assessment 
of aquatic bio-metallic pollution, let’s first illustrate that the 
binary logistic regression is a suitable approach. Several 
reasons support this claim. First, the variable “pollution” 
that needs to be explained is qualitative in nature, as it 
represents the presence or absence of pollution. Moreover, 
logistic regression is well-suited for modeling binary out-
comes. Second, the study has an adequate number of pol-
lution events (cases) compared to the number of explana-
tory variables. It is crucial to have a sufficient number of 
events to ensure the reliability and stability of the logistic 
regression model. Then, the number of explanatory vari-
ables significantly associated with pollution is smaller than 
the number of pollution events. Having a limited number 
of explanatory variables relative to the number of events 
ensures a robust model. Finally, the study assumes that the 
bio-accumulation of heavy metals by aquatic organisms 
is similar. This assumption aligns with the binary logistic 
regression framework, where the relationship between the 
explanatory variables and pollution is modeled in a unified 
manner. By employing binary logistic regression, the study 
can effectively assess the environmental risk of aquatic 
bio-metallic pollution. The model will provide valuable 
insights into the factors associated with pollution presence, 

and the results can be used to inform management strate-
gies and mitigation efforts in the studied coastal areas of 
East-Algeria. In the context of a logistic model, we do not 
usually present the coefficients of the model but their expo-
nential value, the latter corresponding to the odds ratios. 
An odds ratio of 1 means no effect. An odds ratio much 
higher than 1 corresponds to an increase of the studied 
phenomenon and an odds ratio much lower than 1 corre-
sponds to a decrease of the studied phenomenon [27].

In the context of our study, the odds ratio helps us 
understand the extent to which each explanatory variable 
(species, stations, seasons, and heavy metals) influences 
the presence of pollution along the Eastern-Algerian coast. 
A value of the odds ratio greater than 1 indicates that the 
variable is positively associated with pollution, meaning that 
an increase in the variable is associated with an increase in 
the likelihood of pollution occurrence. Conversely, a value 
less than 1 indicates a negative association, implying that 
an increase in the variable is associated with a decrease in 
the likelihood of pollution occurrence.

The p-values associated with the odds ratios are used to 
determine if the odds ratio is statistically significant. A low 
p-value (usually less than 0.05) indicates that the odds ratio 
is significantly different from 1, suggesting a strong associ-
ation between the variable and pollution presence. On the 
other hand, a high p-value (greater than 0.05) indicates that 
the odds ratio is not statistically different from 1, suggest-
ing no significant association. By examining the magnitude 
and direction of the odds ratios, we can identify the most 
influential factors contributing to pollution and under-
stand their relative importance in the logistic regression  
model. 

Table 5 depicts the values of the odds ratios obtained 
with the corresponding p-value (Pr.(>|s|)) which allows 
knowing if an odds ratio differs significantly from 1. Fig. 2 
is a graphical representation that depicts the effects of each 
model variable. The scale range of the contamination 

Table 4
Results of binary logistic regression “pollution vs. species + stations + seasons + heavy metals”

Estimate Std. error z-value Pr.(>(2))

Intercept –2.55397 0.23404 –10.913 <2e−16***
Species[Phorcus turbinatus] 0.92534 0.15908 5.817 5.99e−09***
Species[Stramonita haemastoma] 2.54121 0.18760 13.546 <2e−16***
Species[Ulva lactuca] 0.39042 0.15678 2.490 0.012763*
Heavy metals[Cd] 4.17262 0.29942 13.936 <2e−16***
Heavy metals[Cr] 0.19180 0.18691 1.026 0.304824
Heavy metals[Cu] 1.07128 0.18459 5.804 6.49e−09***
Heavy metals[Ni] 2.52953 0.20590 12.285 <2e−16***
Heavy metals[Pb] 1.96239 0.19328 10.153 <2e−16***
Seasons[Autumn] 0.55831 0.16610 3.361 0.000776***
Seasons[Summer] 0.16047 0.16363 0.981 0.326731
Seasons[Winter] 0.02663 0.16319 0.163 0.870366
Stations [St.1] 1.04623 0.16750 6.246 4.21e−10***
Stations [St.2] 0.59317 0.16358 3.626 0.000288***
Stations [St.3] 0.68732 0.16421 4.186 2.84e−05***

Signif. Code: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘·’ 0.1 ” 1.
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levels in Fig. 2 varies for different logistic model variables. 
The unevenly distributed range of contamination levels in 
the graphical representation can be attributed to the varying 
impact of each logistic model variable on pollution levels. 
The ordinate contamination levels represent the probability 
of pollution presence or absence, ranging from 0 to 1, with 
0 indicating no pollution and 1 indicating complete pol-
lution. In the “species effect plot” and “metals effect plot”, 
the contamination levels range from 0.7 to 0.8. This range 
indicates that the variables “species” and “metals” have a 
moderate impact on pollution, resulting in contamination 
levels that are closer to the middle of the probability scale. 
On the other hand, in the “season effect plot” and “station 
effect plot”, the contamination levels range from 0.8 to 0.9. 
This range suggests that the variables “season” and “station” 
have a stronger impact on pollution, leading to contamina-
tion levels that are closer to the higher end of the probabil-
ity scale. The different scale ranges highlight the varying 
degrees of contribution of each variable to the overall con-
tamination levels. Variables with a stronger impact result in 
higher or lower contamination probabilities, while variables 
with a moderate impact lead to contamination probabilities 
that are more evenly distributed around the middle of the  
probability scale.

3.1. Identification of variables having an effect

In this subsection, the focus is on assessing the extent 
to which different variables affect the logistic regression 
model. The p-values associated with the odds ratios help 
determine if each variable has a significant effect on the out-
come (pollution) when compared to the reference category. 
However, merely looking at individual p-values does not 
give a comprehensive view of the overall effect of the vari-
ables on the model. To test the global effect of all the variables 
in the model, a technique involving the “drop1” function 
is used. This technique involves removing each variable 
from the model one at a time and performing an analysis 
of variance to see if the variance of the model changes sig-
nificantly. The results obtained from the “drop1” function 
are presented in Table 6. In this case, all the variables sig-
nificantly modify the model, indicating that each variable 
has an effect on the prediction of pollution. This means that 
the combination of season, stations, metals, and species all 
contribute significantly to the ability of the logistic regres-
sion model to predict pollution levels in the coastal areas  
of East-Algeria.

3.2. Results interpretation

Tables 4–6 and Fig. 2 provide a series of results that con-
firm the impact of the 4 explanatory variables on the pres-
ence of pollution:

•	 There is an additional risk of significant pollution asso-
ciated with all the modalities of the 2 variables “species” 
and “stations” with respect to each of their reference 
modalities. For the variable “seasons”, we notice that 
only the “autumn” modality is significantly associated 
with an additional risk of pollution. For the variable 

Table 5
Corresponding odds ratios and ρ-values for all categories

OR Pr.(>|z|)

Intercept 0.0777722 <2e−16***
Species[Phorcus turbinatus] 2.5227209 5.99e−09***
Species[Stramonita haemastoma] 12.6949909 <2e−16***
Species[Ulva lactuca] 1.4775977 0.012763*
Heavy metals[Cd] 64.8849225 <2e−16***
Heavy metals[Cr] 1.2114279 0.304824
Heavy metals[Cu] 2.9191163 6.49e−09***
Heavy metals[Ni] 12.5475470 <2e−16***
Heavy metals[Pb] 7.1162908 <2e−16***
Seasons[Autumn] 1.7477204 0.000776***
Seasons[Summer] 1.1740630 0.326731
Seasons[Winter] 1.0269897 0.870366
Stations [St.1] 2.8468871 4.21e−10***
Stations [St.2] 1.8097093 0.000288***
Stations [St.3] 1.9883794 2.84e−05***

Signif. Code: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘·’ 0.1 ” 1.

Fig. 2. Graphical representation of the effect of each logistic model variable.

Table 6
Results of analysis of variance after deletion, in turn, of each 
variable

df Deviance AIC LRT Pr.(>Chi)

<none> 1,799.5 1,829.5
Species 3 2,051.1 2,075.1 251.61 <2.2e−16***
Heavy metals 5 2,320.1 2,340.1 520.54 <2.2e−16***
Seasons 3 1,814.0 1,838.0 14.52 0.002278**
Stations 3 1,841.4 1,865.4 41.86 4.298e−09***

Signif. Code: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘·’ 0.1 ” 1.
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“heavy metals” all the modalities are significantly associ-
ated with an additional risk except the Cr modality.

•	 From the calculation of the odds ratios above we con-
clude that all things being equal:

•	 In stations 1, 2, and 3 (St.1, St.2, St.3), the level of pollution 
risk increases by approximately 3, 2, and 2 times, respec-
tively, compared to the test station (St.4). Moreover, 
Sampling station one (St.1) is El Djerda island a boat-
house (artisanal fishing ports), and anthropogenic wastes 
are released by local fisherman communities. Station 
two (St.2) is located about 70 km upstream from the 
Golfe of Skikda. It is a place where chemical wastes are 
released by petroleum. Station three (St.3) is located at 
about 200 km away from the Golfe of Annaba. It is a place 
where anthropogenic wastes are found. Station four 
(St.4) is a control station located at about 80 km away 
from the Chetaibi Bay [18].

•	 The species most associated with a presence of pollu-
tion is “S. haemastoma”. Its odd ratio is worth 12.695, it 
indicates then the presence of a risk of pollution almost 
13 times higher than the species “P. caerulea”. Likewise, 
“P. turbinatus” and “U. lactuca” were associated to a pres-
ence of pollution risk almost 2.5 and 1.5 times higher 
than the modality “P. caerulea”. Note that the same 
results were observed in a previous study on the heavy 
metals content in veined rapa whelks (Rapana venosa) 
from the Varna Bay. Indeed, authors Stancheva et al. [28] 
reported Pb, Cd and Hg concentrations of 0.12, 0.008 
and 0.08 mg·kg–1, respectively. On the other hand, the 
contents of Cd and Pb in R. venosa from the Black Sea in 
the	 research	of	 Jitar	 et	 al.	 [2]	were	1.10−1.64	µg·g–1 and 
0.27−1.29	µg·g–1, respectively.

Moreover, authors Das et al. [29] detected Pb and Cd 
concentrations of 0.14, 4.63 and 0.050 mg·kg–1 in Black Sea 
veined rapa whelks (R. venosa). We can also notice that our 
results are comparable to by the study of Zhelyazkov et al. 
[30] that provided evidence for higher Cd (0.02–41.13 µg·g–1) 
than Pb (0.5 µg·g–1) contents of Black Sea R. venosa. The Pb 
and Cd concentrations in veined rapa whelks (R. venosa) 
caught in the Black Sea ranged from 0.1 to 0.7 mg·kg–1, 0.1 
to 1.6 mg·kg–1 and 0.4 and 0.7 mg·kg–1 in the research of 
Mülayim	and	Balkıs	[31].	Our	results	were	in	agreement	with	
the study of Bat and Öztekin [32] specifying Cd content of 
4.4 mg·kg–1 and Pb contents 0.05 mg·kg–1.

•	 The Cd modality of the variable “heavy metals” multi-
plies by almost 65 the risk of the presence of pollution 
compared to the modality Zn. Cd accumulates mainly 
in the human liver and kidneys and is outlined with 
an exceptionally long half-life. It is nephrotoxic and 
induces dysfunction of renal tubules characterized 
with enhanced elimination of low-molecular proteins 
[24]. Commission Regulation [24] sets maximum con-
tent of Cd in bivalve molluscs of 1 mg·kg–1 but allow-
ances for rapa whelks are not specified. Then come, 
by order, the modalities Cu, Pb and Ni showing a risk 
of pollution almost 3, 7, and 12 times higher than the 
modality Zn, respectively. This means Cu levels accu-
mulation in Ulva St.2 (9.32 ± 0.67 µg·g–1 DW) bears a 
close resemblance with values in Ulva from the Gulf 

of Suez, Red Sea [1,33], and in Ulva fenestrata from the 
Great Bay, Sea of Japan. Also, our results are close to 
those in Ulva rigida from the Venice Lagoon [34] and 
are higher than values in Ulva of Tyrrhenian coastal 
areas [22] and Turkish coast [35]. Results of the present 
investigation are in accordance with those reported by 
the study of Chernova and Kozhenkova [36] in Ulva 
fenestrata from Peter the Great Bay, Sea of Japan, by the 
study of Al-Shwafi and Rushdi [37] in E. compressa from 
the Gulf of Aden, Yemen. Moreover, Ni values in this 
study were higher than those from previous studies of 
algae from the Turkish coast [35] and from the Gulf of 
Kutch, in the western part of India [33], but lower than 
most of the algae from different biotopes of the Aegean 
Sea [38]. Generally, a concentration of 410 mg·g–1 (DW) 
has been considered as a borderline between contami-
nated and uncontaminated species [39].

Finally, for the variable “seasons”, “autumn” is the 
only modality that influences the risk of the presence of 
pollution multiplying it by almost twice compared to the 
other 3 seasons. Optimal growth of green algae Ulvaceae 
in Mediterranean coastal areas has been observed at water 
temperatures between 12°C and 23°C, while tempera-
tures higher than 24°C are responsible for a halt in growth 
during summer [40]. In autumn, despite favorable tempera-
tures, the growth of this opportunistic ephemeral seaweed 
might have been moderate due to low nutrient availability 
[41]. Hence, that most element contents in this seaweed 
displayed no distinct seasonal trend from summer to win-
ter-early spring could be at least partly explained by a com-
paratively low variation in growth rate during this partic-
ular period of the year. Environmental factors, metabolic 
factors, or interactions between both kinds of factors may 
have contributed to the observed tissue element seasonal-
ity. That, as hypothesized, elevated tissue concentrations of 
some elements (e.g., Ba, Cd, Cr, Mo, Se) in spring or autumn 
were concurrent with relatively lower salinity values and, 
also, with markedly elevated levels of these elements in 
seawater and/or sediment, suggests that, seasonal variation 
in fluvial and terrestrial inputs may have induced marked 
changes in element load in the seawater/sediment which 
potentially influenced to some extent the seasonality of 
seaweed element contents [42]. That, as also hypothesized, 
tissue element concentrations generally showed a clear sea-
sonal pattern, mainly characterized by a decrease during 
spring and/or summer with increasing water temperature 
and solar irradiance suggests that tissue element season-
ality is markedly associated with the seasonal growth pat-
tern of the macroalgae. Higher growth rates during spring 
and or summer induced from higher temperature and light 
conditions may have diluted the accumulated elements 
and thus, reduced their concentrations.

3.3. Goodness of fit

One way to test the quality of a model is to compute 
a confusion matrix, that is, the cross-tabulation of the 
observed values and the predicted values by applying 
the model to the original data. Therefore, we applied our 
logistic model to the table data and calculated for each 
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individual the probability that he lived the phenomenon 
under study. Since the studied variable is of binary type, we 
collect the predicted probabilities in two groups according 
to whether they are greater or less than half. The confusion 
matrix is then given by Fig. 3a.

We therefore have 481 (334 + 147) incorrect predictions 
out of 1910, a misrating of 25.18% denoted EM. To judge 
whether the model is good with such an error rate, we will 
compare it to the error rate of the default model that does 
not use information from the explanatory variables. The 
confusion matrix of the default classifier is given by Fig. 3b.

The error rate associated with the default model is 
507/1,910 = 26.5% denoted ED. We can thus derive a mea-
sure of performance, denoted R, given by:

R = 1 EM ED (1)
The measure R is interpreted as follows: if R = 1 the model 

is perfect with a zero-error rate, if R is negative the studied 
model is worse than the default model and if R is positive 
the studied model is better than the default model. In our 
case R = 0.049, logistic regression is better than the default 
model which means that the fitted statistical model is very 
suitable for our analysis and highlights the critical role of 
heavy metals. Findings in green alga “Ulva rigida” at Bulgaria 
(e.g., [43,44]), the present data suggest that the relationships 
between trace element concentrations in seaweed tissues 
are a function of environmental variables affecting sea-
weed growth, and this interferes with the use of macroalgae 
as biomonitors of trace element contamination.

4. Conclusion

This paper has presented a new study to shed light on 
the presence of pollution along with four stations in the 
Eastern-Algerian coast. A statistical model was developed 
using a logistic regression where the explanatory variables 
were “species”, “stations”, “seasons”, and “heavy metals”. 
Binary logistic regression revealed that the factors asso-
ciated with high concentrations depend on each explana-
tory variable included in the study proving that there is an 
impact of the four explanatory variables on the presence of 
pollution. Nevertheless, for the variable “seasons” only the 
modality “autumn” was significantly associated with an 
increased pollution risk. On the other hand, the Cr modal-
ity of the variable “heavy metals” was the only modality 

that was not significantly associated with additional risk. 
Therefore, the logistic model was found to be useful for 
explaining the pattern of pollution observed at the coasts of 
Algeria. Overall, the study contributes to our understand-
ing of pollution patterns along the Algerian coast, providing 
valuable insights for environmental management strategies. 
The developed logistic regression model offers a promising 
approach for pollution assessment and holds the potential 
to be applied in diverse coastal regions for better environ-
mental protection and conservation.
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Appendix A: Spatio-temporal variations of metallic contents ‘Cr, Cd, Cu, Pb, Zn and Ni’ in rocky aquatic organisms 
all along the East-Algerian coasts from December 2011 to December 2019.

Appendix B: Spatio-temporal variations of metallic contents ‘Cr, Cd, Cu, Pb, Zn and Ni’ in algae “Ulva lactuca” all 
along the East-Algerian coasts from December 2011 to December 2019.
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