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a b s t r a c t
In the partial nitrification and anaerobic ammonia oxidation (Anammox), it was necessary to con-
trol ammonia oxidation, aiming to inhibit the activity of nitrite-oxidizing bacteria (NOB) to achieve 
the accumulation of NO2

––N. This review summarized methods of NOB inhibition which had been 
reported in the current literature. These methods included changing the dissolved oxygen concen-
tration and sludge retention time, adjusting the free nitrite acid and free ammonia levels, adding 
chemical inhibitors such as hydroxylamine (NH2OH) and hydrazine (N2H4), and using other inhi-
bition methods such as electromagnetic radiation and ultrasound. Most study revealed that NOB 
could be effectively inhibited by combining different inhibition methods and real-time control strat-
egies. Concurrently, the utilization of biofilm and granular sludge and multi-bacterial cooperation 
processes associated with anammox and denitrification could reduce or eliminate the effect of NOB 
on the performance of the biological nitrogen removal system. This review aimed to provide valu-
able information for optimizing the biological nitrogen removal process to ensure highly efficient and  
stable operation.

Keywords:  Biological nitrogen removal; Anammox; Nitrite-oxidizing bacteria inhibition; Multi-bacteria 
collaboration

1. Introduction

The volume of domestic wastewater and the difficulty of 
its treatment were constantly increasing with the growing 
economy. The total nitrogen content of the receiving waters 
increased as a result. This not only resulted in nutrient 
enrichment of the water body and pollution of the ecologi-
cal environment but was also harmful to human health [1]. 
Presently, mainstream wastewater nitrogen removal tech-
niques included traditional methods such as nitrification–
denitrification and derived processes rooted in anammox, 
such as partial nitritation-anammox.

For the traditional nitrification–denitrification pro-
cess reported by the study of Ran et al. [2], shown in Fig. 1, 
NH4

+–N was oxidized to NO2
––N by ammonia-oxidizing bac-

teria (AOB) and then to NO3
––N by nitrite-oxidizing bacteria 

(NOB) [2]. Subsequently, NO3
––N was reduced to NO2

––N 
by denitrifying bacteria. The partial nitritation-anammox 
(PN/A) process involved the conversion of half of the NH4

+–N 
to NO2

––N by AOB, followed by the utilization of the gen-
erated NO2

––N and the remained NH4
+–N by anaerobic 

ammonium oxidizing bacteria (AnAOB) in a series of met-
abolic pathways for nitrogen removal [3]. Compared with 
the nitrification–denitrification process, the PN/A process 
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could reduce about 60% of aeration, 80% of sludge produc-
tion, and 83% of N2O emission [4]. In recent years, the PN/A 
process was successfully applied in the treatment of sludge 
digestate, food industry, breeding, and animal husbandry 
wastewater, and presented excellent nitrogen removal  
performance [5].

To reduce wastewater treatment costs, the stability 
and adequality production of NO2

––N was the main obsta-
cle in the short-cut nitrification and denitrification pro-
cess or the partial nitritation (PN) process. In the activated 
sludge system, NOB would compete with AOB for dis-
solved oxygen (DO) and with AnAOB for NO2

––N. It was 
noted that the value of Ks-NH4

+ in AOB with the existence 
of NOB was three times higher than that without NOB [6]. 
This indicated a synergistic interaction between AOB and 
NOB, facilitating the oxidation of NH4

+–N [7]. Thus, inhib-
iting the activity of NOB rather than eliminating NOB  
would be necessary.

Recently, some effective methods were explored to 
inhibit the activity of NOB. The aims of this review were to 
summarize (1) methods of inhibiting the activity of nitrite- 
oxidizing bacteria and (2) mechanisms underlying these 
inhibition strategies briefly.

2. Methods and mechanisms of NOB inhibition

In order to inhibit the activity of NOB, researchers had 
explored various methods. This review divided these meth-
ods into three aspects, that is, change operation parameters 
of reactor, addition chemical inhibitor and other strategies.

2.1. Change operation parameters of reactor

2.1.1. Dissolved oxygen

The oxygen saturation constant of AOB was 0.25–
0.50 mg/L, while that of NOB was 0.72–1.84 mg/L [8]. This 
suggested that AOB could more efficiently acquire oxygen 
because of its lower oxygen saturation constant when com-
pared to NOB [9]. Therefore, limitation the concentration of 
DO had been commonly used to inhibit NOB activity. The 
specific operating parameters of the reactor that inhibit 
NOB activity by controlling dissolved oxygen were summa-
rized in Table 1.

Common methods of controlling DO concentrations were 
reduced aeration and intermittent aeration [10]. Zhu et al. 
[11] found that the production rates of NO3

––N decreased 
from 33.80 to 5.80 mg·N/(L·d) with dissolved oxygen reduc-
tion from 0.80 to 0.60 mg/L in a PN/A rotating biological 
contactor. Yao et al. [12] found that maintaining an aeration 
rate of 3.3 L/(min·L) resulted in the nitrite accumulation ratio 
(NAR) reaching more than 99% during PN process oper-
ation. In addition, Chen et al. [13] found that NOB activity 
could be suppressed using intermittent aeration at 8 L/h. 
Because NOB was inhibited in the anoxic stage, it was dif-
ficult to recover rapidly in the aerobic stage. In addition, 
the study of Wang et al. found that the relative abundance 
of NOB was lower under intermittent aeration conditions 
compared to continuous aeration [14]. It was noted that 
intermittent aeration was not applicable to all reactors. 
For example, intermittent aeration was unable to alter the 

dissolved oxygen distribution within the biofilm, resulting 
in the inability to suppress NOB activity [15].

Moreover, the method for suppressing NOB activity by 
controlling DO require further refinement and optimiza-
tion. The previous study found that under prolonged low 
dissolved oxygen conditions, the dominant NOB popula-
tion shifted from Nitrobacter to Nitrospira. Nitrospira demon-
strated a greater ability to adapt to low dissolved oxygen 
conditions, which contributed to this shift [16]. This change 
would increase the activity of NOB and further enhance the 
abundance of NOB, which ultimately impeded the stable 
operation of the PN/A process. In addition. some studies 
had shown that the PN process failed to initiate success-
fully under low dissolved oxygen conditions [17–20]. This 
might be due to the presence of substances such as refrac-
tory organic matter in the influent water or competition for 
DO by heterotrophic bacteria leading to inhibition of AOB. 
Therefore, the dissolved oxygen concentration needed to be 
rationally selected according to the actual situation.

2.1.2. Sludge retention time

For the biological nitrogen removal process, sludge reten-
tion time (SRT) was an essential control factor. Controlling 
sludge retention time had been commonly used to inhibit 
NOB metabolism due to the low cost. NOB washout could 
be achieved by selecting an SRT shorter than the NOB gen-
eration time but longer than the AOB generation time. For 
example, in Changi wastewater treatment plant, inhibition 
of NOB activity was achieved by shortening the sludge 
retention time [21].

However, a shorter SRT could reduce the biomass in the 
system and even cause it to crash [22]. In addition, nitrogen 
loading rate (NLR) and temperature both affected the effec-
tiveness of this strategy. At the lower NLR, SRT shortening 
might not inhibit NOB activity [23]. At temperatures between 
20°C–35°C, the growth rates of NOB were much lower than 
that of AOB, while the opposite was observed at tempera-
tures below 20°C [24]. Therefore, the adjustment of SRT 
could be employed in conjunction with other strategies to 
yield improved results.

2.1.3. Free ammonia and free nitrite acid

Previous studies showed that free ammonia (FA) and 
free nitrite acid (FNA) affect nitrification. The PN process 
could be achieved by selecting the appropriate concentra-
tion range since free ammonia and free nitrite acid exhibit 
different inhibitory concentrations for AOB and NOB. The 
FA and FNA concentrations varied with pH. In the PN sys-
tem, the optimal accumulation of free ammonia and free 
nitrite acid occurred at pH 8.30 and 6.30, respectively, result-
ing in a PN efficiency of 84% and the dominance of AOB in 
the sludge [25]. Generally, the FA inhibitory concentrations 
of common NOB such as Nitrobacter and Nitrospira were 
6.00–9.00 and 0.04–0.08 mg·NH4

+–N/L, respectively [25]. 
The dominant NOB population shifted from Nitrospira to 
Nitrobacter after the long-term application of the FA strategy, 
rendering the FA strategy ineffective due to the change in the 
NOB population. In response, increasing the concentration 
of free nitrite acid was considered to inhibit NOB activity, 
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primarily because free nitrite acid had a greater inhibitory 
effect on Nitrobacter [26]. However, increasing the levels of 
both FA and FNA in the matrix resulted in changes in the 
dominant NOB bacteria and their resistance to treatment 
[27]. As an alternative approach, initiating the PN process 
could be achieved by alternately increasing the amounts of 
free nitrite acid and free ammonia in the substrate [26].

Indeed, the method of inhibiting NOB activity using 
FA and FNA has not been systematically studied to date. 
Further research should focus on investigating the mech-
anisms through which FA and FNA inhibit NOB activity 
continuously, and provide scientifically accurate method 
to achieve NOB inhibition.

2.2. Chemical inhibitor addition

2.2.1. Hydroxylamine (NH2OH)

Hydroxylamine (NH2OH) was an intermediate prod-
uct of the nitrification process performed by AOB. Previous 
studies found that the addition of NH2OH to the reactor 
promoted the accumulation of NO2

––N [28–30]. The NAR 
achieved above 95% after addition of NH2OH, resulting 
in the rapid initiation of PN within 5 d [31]. Furthermore, 
when the value of mole ratio of NO3

––N production to 
NH4

+–N removal was more than 25%, exogenous 2 mg/L 
NH2OH could effectively restore the performance of nitro-
gen removal. Furthermore, it was observed that the inhib-
itory effect on NOB persisted even after the long-term 
addition of NH2OH was discontinued [32]. However, the 
activities of AOB and NOB could be inhibited by prolonged 
high NH2OH addition (10–15 mg/L) [33], and the relevant 
data were shown in Table 2.

Some studies suggested that the addition of NH2OH 
might only temporarily inhibit NOB activity [34,35]. Zhao 
et al. [36] observed that the relative abundance of Nitrospira 
reduced with the increasing of NH2OH concentration in the 
PN system. Then, the NOB activity returned to its initial 
level after NH2OH addition was stopped. This was mainly 
because Nitrospira inhibition by NH2OH was reversible.

Regarding the inhibitory mechanism of NH2OH on 
NOB, Feng et al. [29] found that NH2OH might inhibit the 
expression of the nxrB gene, the gene encoding nitrite oxi-
dase, and thereby inhibit the activity of NOB [29], as shown 
in Fig. 2. Finally, the addition of NH2OH increased NO gen-
eration in the activated sludge system [32]. As shown in 
Fig. 2, NOB (e.g., Nitrospira) was particularly susceptible to 
inhibition by NO due to its high affinity for NO2

––N [37].

2.2.2. Hydrazine (N2H4)

Hydrazine (N2H4), an intermediate product of anammox, 
to which NOB was less adapted than AOB [38,39]. The addi-
tion of N2H4 became an effective measure to inhibit NOB 
activity. It was found that sludge morphology affected the 
inhibition of NOB by N2H4, for example, flocculated sludge 
was superior to granular sludge system [40]. With respect to 
the addition model, the study of Xiang and Gao [41] found 
that the intermittent administration mode had a more stable 
inhibitory effect on NOB activity.

For the mechanism of NOB activity inhibition by N2H4, 
it had been suggested that the applied N2H4 might react Ta
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with NO2
––N to produce azide compounds that could 

inhibit nxrB gene expression to reduce NO3
––N production 

[42], as shown in Fig. 3a. In addition, the redox potential 
decreased rapidly after adding N2H4, with a longer oxida-
tion time for nitrite than ammonia, weakening the activity of 
NOB at this time, as shown in Fig. 3b [32,43].

2.2.3. Other inhibitors

In addition to the aforementioned intermediates involved 
in the nitrogen removal process, the inclusion of other 

substances such as sulfide and formic acid could also inhibit 
the activity of NOB.

Sulfide improved the nitrogen removal performance 
while inhibiting NOB. Semi-inhibitory concentrations of 
sulfide for AOB and NOB were 20.60 and 15.80 mg·S/g·VSS, 
respectively. Seuntjens et al. [44] suggested that sulfide 
selectively inhibited NOB activity while enriching AOB. 
However, the study of Kouba et al. [45] reported that the 
addition of sulfide prolonged the oxidation time of NH4

+–N. 
Therefore, the strategy of adding sulfide was only used to 
initiate or restart short-course nitrification processes.

Fig. 1. Nitrogen transformation pathways in the biological wastewater treatment system.

Fig. 2. NH2OH inhibiting NOB activity.
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Formic acid was also observed of inhibiting NOB 
activity. The study of Wang et al. [46] found that for-
mic acid could inhibit the expression of the nxrB gene. In 
addition, a stable PN process was achieved in the reactor 
treated with formic acid [46]. However, it was necessary 
to domesticate the sludge before choosing this inhibition 
method, as formic acid was an organic substance that could 
only be used by some bacteria, such as methylotrophic 
bacteria and aerobic denitrification bacteria.

2.3. Other methods

2.3.1. Electromagnetic radiation

In the 1980s, Moore [47] suggested that the presence of 
a magnetic field both inside and outside an organism could 
affect its metabolism, referred to as a biological effect of 
magnetism. Recent studies confirmed that introducing an 
electromagnetic field inhibited NOB activity [48,49]. Wang 
et al. [50] introduced a 0.06 µT magnetic field into the 
sequencing batch reactor (SBR) system, resulted in an over-
all 71.43% decrease in SOUR-NO3

––N and a 32.05% increase 
in SOUR-NO3

––N. The result showed that NOB activity was 
inhibited while AOB activity was promoted with the intro-
ducing of magnetic field [50]. In addition, it was shown that 
under weak magnetic field conditions, the relative abun-
dance of functional bacteria, except for Betaproteobacteria 
to which AOB belongs, appeared to decrease [49]. Jia et al. 
[51] showed that a 15 mT electromagnetic field reduced 
the abundance of the nxrB gene, which affected the meta-
bolic activity of NOB. In general, electromagnetic radiation 
could inhibit NOB activity, but the appropriate range of 
radiation intensity need to be further investigated.

2.3.2. Ultrasound

Studies showed that low energy (0.15 W/mL) inter-
val ultrasonic exposure for 10 min on PN sludge could 
effectively improve AOB activity while suppressing NOB 
metabolism, further increasing NAR to 85% [52]. Zheng 
et al. [53] discovered utilization of low energy density 
ultrasound (0.066 kJ/mg·VSS) effectively reduced the rel-
ative abundance of NOB in the SBR reaction. In addition, 
the structure of the activated sludge was loosened after 
the ultrasonic treatment, making it easier to transfer the 
substrate within the activated sludge.

However, long-term ultrasonic treatment of activated 
sludge was observed to inhibit the Nitrososphaera genus, which 
belonged to AOB. Interestingly, Nitrospira (a genus of NOB) 
would adapt to ultrasonic conditions, potentially dimin-
ishing the ultrasonic inhibitory [54]. Consequently, ultra-
sonication could be considered as one of the options when 
used in combination with other NOB inhibition methods.

2.3.3. Change in sludge morphology

Common forms of sludge used in wastewater treatment 
include flocculent sludge, biofilm and granular sludge. 
Li et al. [22] found that in the PN/A granular sludge sys-
tem, NOB was mainly present in the floc sludge, and the 
abundance of NOB could be effectively reduced by eluting 
the floc sludge. This phenomenon might be attributed to 
the lower Ks-O2 (oxygen half-saturation constant) of NOB 
compared to AOB. NOB in flocculated sludge displayed 
a greater affinity for oxygen than AOB, resulting in their 
enrichment within the floc sludge [55].

Additionally, biofilm and granular sludge had specific 
microbial distributions as shown in Fig. 4. NOB located out-
side the biofilm or granular sludge faced intense competi-
tion for oxygen from other bacteria. Conversely, those NOB 
situated within the biofilm or granules had restricted access 
to oxygen, which ultimately inhibited their activity [56,57]. 
To sum up, sludge forms like granular sludge or biofilm 
were more effective in suppressing NOB, thus aiding in the 
successful implementation of the PN process.

2.3.4. Improved multi-bacteria cooperation

Common forms of activated sludge included flocs, gran-
ular sludge, and biofilms. Zhang et al. [58] conducted cova-
riance network analysis and found that NOB was associated 
with other microorganisms, suggesting that NOB might 
be involved in a complex symbiotic relationship in acti-
vated sludge.

Quorum sensing was a communication mechanism 
between microorganisms, whereby microorganisms inter-
acted by secreting and sensing signaling molecules [59]. 
Acyl-homoserine lactone (AHLs) were common signaling 
molecules in microbial quorum sensing. It was found that 
AOB and NOB might secrete signaling molecules involved 
in quorum sensing [60]. Different signaling molecules could 

Fig. 3. Mechanism of NOB activity inhibition by N2H4, (a) inhibition the nxrB gene expression and (b) reduction the redox  
potential.
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produce different effects, for example, C4-HSL could pro-
mote NO2

––N accumulation, whereas C8-HSL could inhibit 
AOB activity [61]. In addition, Ma et al. [62] observed that 
while AHLs did not affect the bacterial abundance of NOB, 
it did induce changes in nitrite oxidation kinetics. In sum-
mary, quorum sensing played a pivotal role in regulating 
the balance between AOB and NOB populations. However, 
further research should be conducted on population sens-
ing or signaling molecules to effectively inhibit NOB activity.

3. Conclusion and prospects

3.1. Conclusion

(1) Suppression of NOB activity could be achieved by 
controlling the operating conditions of the reactor by 
adjusting the DO concentration, SRT, FA, and FNA.

(2) NOB suppression could be achieved by administer-
ing nitrogen removal process intermediates such as 
hydrazine and hydroxylamine.

(3) NOB suppression could also be achieved by exogenously 
applied electromagnetic radiation and ultrasound.

3.2. Prospects

Various combinations of suppression methods had been 
devised. While some of these methods could effectively 
inhibit the activity of NOB, the durability of this inhibi-
tion was closely linked to reactor operational parameters, 
the composition of the wastewater, the structure of acti-
vated sludge, and the composition of functional microbes. 
Consequently, there is a demand for the development of a 
combined suppression strategy to tackle the problem of 
NOB resilience in the future.

Besides regulating operating parameters and imposing 
external measures to inhibit NOB activity, microbial quorum 
sensing was the direction of extensive research attention. 
This meant that inhibition of NOB could be achieved by reg-
ulating the signaling between microorganisms. Additionally, 
apart from the inhibition of NOB activity, researchers were 
currently investigating alternative processes such as simul-
taneous partial nitrification-anammox-denitrification to 
achieve nitrogen removal with low energy consumption 
and high efficiency by modulating microbial colony col-
laboration. Therefore, in future research, attempts could be 
made to study the quorum sensing mechanism of microor-
ganisms. The collaborative regulation between NOB and 

other bacteria could be utilized to achieve the continuous 
development of nitrogen removal technology.
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NOB — Nitrite-oxidizing bacteria
NXR — Nitrite oxidase
PD/A — Partial denitrification-anammox
PN — Partial nitritation

Fig. 4. Distribution of bacteria in anaerobic granular sludge and biofilm reactor.
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