References

  1. T.A. Tomberlin, Beryllium – A Unique Material in Nuclear Applications, 36th International SAMPE Technical Conference, INEEL/Con-04-01869, 2004, Available at: http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=9622DD04578318D3090B7DFA7859EFA2?doi=10.1.1.543.4019&rep=rep1&type=pdf
  2. W. Speer, O.S.E. Said, Application of an Aluminium-Beryllium Composite for Structural Aerospace Components, 2003 Available at: http://materion.com/~/media/Files/PDFs/Beryllium/ApplicationsStructural-MAS/MAS-013SpeerReportAppsofanAlBeCompositeforStructuralAerospaceComponents.pdf
  3. R.G. Cooper, A.P. Harrison, The uses and adverse effects of beryllium on health, Indian J. Occup. Environ. Med., 13 (2009) 65–76.
  4. D.K. Verma, A.C. Ritchie, M.L. Shaw, Measurement of beryllium in lung tissue of a chronic beryllium disease case and cases with sarcoidosis, Occup. Med., 53 (2003) 223–227.
  5. W.T. Sanderson, E.M. Ward, K. Steenland, M.R. Petersen, Lung cancer case-control study of beryllium workers, Am. J. Ind. Med., 39 (2001) 133–144.
  6. M.K.S. Berigan, J.A. Deddens, J.R. Couch, M.R. Petersen, Risk of lung cancer associated with quantitative beryllium exposure metrics within an occupational cohort, Occup. Environ. Med., 68 (2011) 354–360.
  7. H.W. Peng, M.S. Kuo, Determination of trace amounts of beryllium(II) in drinking water and of beryllium vapour in air by graphite furnace atomic absorption spectrometry using acetyl acetone as a chelating agent, Anal. Sci., 16 (2000) 157–161.
  8. J. Ueda, T. Kitadani, Separation and concentration of beryllium by co-precipitation with hafnium hydroxide prior to determination by graphite furnace atomic absorption spectrometry, Analyst, 113 (1988) 581–583.
  9. N. Khan, T.G. Kazi, M. Tuzen, M. Soylak, A multivariate study of solid phase extraction of beryllium(II) using human hair as adsorbent prior to its spectrophotometric detection, Desal. Wat. Treat., 55 (2015) 1088–1095.
  10. A. Afkhami, T. Madrakian, E. Bozorgzadeh, M. Bahram, Spectrophotometric determination of beryllium in water samples after micelle-mediated extraction preconcentration, Talanta, 71 (2007) 1103–1109.
  11. L. Machackova, M. Zemberyova, Cloud point extraction for preconcentration of trace beryllium and chromium in water samples prior to electrothermal atomic absorption spectrometry, Anal. Methods, 4 (2012) 4042–4048.
  12. A. Beiraghi, A.R. Zarei, S. Babaee, Cloud point formation based on mixed micelles for the extraction, preconcentration and spectrophotometric determination of trace amounts of beryllium in water samples, Anal. Sci., 23 (2007) 527–531.
  13. A. Beiraghi, S. Babaee, Separation and preconcentration of ultra trace amounts of beryllium in water samples using mixed micelle-mediated extraction and determination by inductively coupled plasma-atomic emission spectrometry, Anal. Chim. Acta, 607 (2008) 183–190.
  14. M. Bahram, T. Madrakian, E. Bozorgzadeh, A. Afkhami, Micellemediated extraction for simultaneous spectrophotometric determination of aluminum and beryllium using mean centering of ratio spectra, Talanta, 72 (2007) 408–414.
  15. J.J. Charlton, N.C. Jones, R.A. Wallace, R.W. Smithwick, J.A. Bradshaw, I.I. Kravchenko, N.V. Lavrik, M.J. Sepaniak, Nanopillar-based enhanced-fluorescence detection of surfaceimmobilized beryllium, Anal. Chem., 87 (2015) 6814–6821.
  16. H. Tazoe, T. Yamagata, H. Obata, H. Nagai, Determination of picomolar beryllium levels in seawater with inductively coupled plasma mass spectrometry following silica-gel preconcentration, Anal. Chim. Acta, 852 (2014) 74–81.
  17. P.P. Francisco, I. Lavilla, C. Bendicho, Miniaturized preconcentration methods based on liquid-liquid extraction and their application in inorganic ultratrace analysis and speciation: a review, Spectrochim. Acta, Part B, 64 (2009) 1–15.
  18. H.M.A. Saidi, A.A.A. Emara, The recent developments in dispersive liquid–liquid microextraction for preconcentration and determination of inorganic analytes: a review, J. Saudi Chem. Soc., 18 (2014) 745–761.
  19. C. Ozdemir, S. Sacmaci, S. Kartal, M. Sacmaci, Determination of gold and palladium in environmental samples by FAAS after dispersive liquid–liquid microextraction pretreatment, J. Ind. Eng. Chem., 20 (2014) 4059–4065.
  20. S. Sacmaci, S. Kartal, S. Dural, Dispersive liquid-liquid microextraction procedure for the determination of palladium by flame atomic absorption spectroscopy, J. Braz. Chem. Soc., 23 (2012) 1033–1040.
  21. S. Sacmaci, S. Kartal, G. Kalkan, Determination of gold in various environment samples by flame atomic absorption spectrometry using dispersive liquid–liquid microextraction sampling, Croat. Chem. Acta, 88 (2015) 113–119.
  22. S. Sacmaci, M. Sacmaci, A new chelating reagent: its synthesis/ characterization and application for the determination of Cd(II) and Ni(II) in various food and make-up product samples by FAAS using simultaneous microextraction sampling, J. AOAC Int., 99 (2016) 1058–1065.
  23. N. Khan, M. Tuzen, T.G. Kazi, D. Citak, M. Soylak, Pressureassisted ionic liquid dispersive microextraction of vanadium coupled with electrothermal atomic absorption spectrometry, J. Anal. At. Spectrom., 28 (2013) 1441–1445.
  24. Z.A. Alothman, N.H. Al-Shaalan, M.A. Habila, Y.E. Unsal, M. Tuzen, M. Soylak, Dispersive liquid–liquid microextraction of lead(II) as 5-(4-dimethylaminobenzylidene) rhodanine chelates from food and water samples, Environ. Monit. Assess., 187 (2015) 1–8.
  25. M. Soylak, E. Kiranartligiller, A simple vortex-assisted dispersive liquid–liquid microextraction system for copper(II) to preconcentration and separation from natural water and table salt samples, Arabian J. Sci. Eng., 42 (2017) 175–181.
  26. S.M. Yousefi, F. Shemirani, Selective and sensitive speciation analysis of Cr(VI) and Cr(III) in water samples by fiber opticlinear array detection spectrophotometry after ion pair basedsurfactant assisted dispersive liquid–liquid microextraction, J. Hazard. Mater., 254–255 (2013) 134–140.
  27. M. Moradi, Y. Yamini, A. Esrafili, S. Seidi, Application of surfactant assisted dispersive liquid–liquid microextraction for sample preparation of chlorophenols in water samples, Talanta, 82 (2010) 1864–1869.
  28. J. Cheng, Y. Xia, Y. Zhou, F. Guo, G. Chen, Application of an ultrasound-assisted surfactant-enhanced emulsification microextraction method for the analysis of diethofencarb and pyrimethanil fungicides in water and fruit juice samples, Anal. Chem. Acta, 701 (2011) 86–91.
  29. M. Behbahani, F. Najafi, S. Bagheri, M.K. Bojdi, M. Salarian, A. Bagheri, Application of surfactant assisted dispersive liquid–liquid microextraction as an efficient sample treatment technique for preconcentration and trace detection of zonisamide and carbamazepine in urine and plasma samples, J. Chromatogr., A, 1308 (2013) 25–31.
  30. Q. Deng, M. Chen, L. Kong, X. Zhao, J. Guo, X. Wen, Novel coupling of surfactant assisted emulsification dispersive liquid– liquid microextraction with spectrophotometric determination for ultra trace nickel, Spectrochim. Acta, Part A, 104 (2013) 64–69.
  31. E.C. Lima, F.J. Krug, K.W. Jackson, Evaluation of tungstenrhodium coating on an integrated platform as a permanent chemical modifier for cadium, lead and selenium determination by electrothermal atomic absorption spectrometry, Spectrochim. Acta, Part B, 53 (1998) 1791–1804.
  32. S. Segota, D. Tezak, Spontaneous formation of vesicles, Adv. Colloid Interface Sci., 121 (2006) 51–75.
  33. R. Saha, P.K. Verma, R.K. Mitra, S.K. Pal, Structural and dynamical characterization of unilamellar AOT vesicles in aqueous solutions and their efficacy as potential drug delivery vehicle, Colloids Surf., B, 88 (2011) 345–353.
  34. J.I. Briz, M.M. Vel´azquez, Effect of water-soluble polymers on the morphology of aerosol OT vesicles, J. Colloid Interface Sci., 247 (2002) 437–446.
  35. A.R. Farahmand, S.R. Yousefi, N.S. Fumani, S. Mirza, M. Shamsipur, J. Hassan, Preconcentration of beryllium via octadecyl silica gel microparticles doped with aluminon, and its determination by flame atomic absorption spectrometry, Microchim. Acta, 166 (2009) 89–94.