References

  1. I. Perez-Silva, C.A. Galan-Vidal, M.T. Ramirez-Silva, J.A. Rodriguez, G.A. Alvarez-Romero, M.E. Paez-Hernandez, Phenol removal process development from synthetic wastewater solutions using a polymer inclusion membrane, Ind. Eng. Chem. Res., 52 (2013) 4919–4923.
  2. X.G. Hao, M. Pritzker, X.S. Feng, Use of pervaporation for the separation of phenol from dilute aqueous solutions, J. Membr. Sci., 335 (2009) 96–102.
  3. M. Medir, A. Arriola, D. Mackay, F. Giralt, Phenol recovery from water effluents with mixed solvents, J. Chem. Eng. Data, 30 (1985) 157–159.
  4. V.K. Krishnakumar, M.M. Sharma, A novel method of recovering phenolic substances from aqueous alkaline waste streams, Ind. Eng. Chem. Process Des. Dev., 23 (1984) 410–413.
  5. M.T. Ravanchi, T. Kaghazchi, A. Kargani, Application of membrane separation processes in petrochemical industry: a review, Desalination, 235 (2009) 199–244.
  6. G. Busca, S. Berardinelli, C. Resini, L. Arrighi, Technologies for the removal of phenol from fluid streams: a short review of recent developments, J. Hazard. Mater., 160 (2008) 265–288.
  7. P. Wu, R.W. Field, R. England, B.J. Brisdon, A fundamental study of organofunctionalised PDMS membranes for the pervaporative recovery of phenolic compounds from aqueous streams, J. Membr. Sci., 190 (2001) 147–157.
  8. T. Gupta, N.C. Pradhan, B. Adhikari, Separation of phenol from aqueous solution by pervaporation using HTPB-based polyurethaneurea membrane, J. Membr. Sci., 217 (2003) 43–53.
  9. M. Xiao, J.T. Zhou, Y.G. Zhang, X.J. Hu, S.F. Li, Pertraction performance of phenol through PDMS/PVDF composite membrane in the membrane aromatic recovery system (MARS), J. Membr. Sci., 428 (2013) 172–180.
  10. N.C. Pradhan, C.S. Sarkar, S. Niyogi, B. Adhikari, Separation of phenol-water mixture by membrane pervaporation using polyimide membranes, J. Appl. Polym. Sci., 83 (2001) 822–829.
  11. F. Lipnizki, S. Hausmanns, P.K. Ten, R.W. Field, G. Laufenberg, Organophilic pervaporation: prospects and performance, Chem. Eng. J., 73 (1999) 113–129.
  12. M. Hoshi, M. Ieshige, T. Saitoh, T. Nakagawa, Separation of aqueous phenol through polyurethane membranes by pervaporation. II. Influence of diisocyanate and diol compounds and crosslinker, J. Appl. Polym. Sci., 71 (1999) 439–448.
  13. B. Sinha, U.K. Ghosh, N.C. Pradhan, B. Adhikari, Separation of phenol from aqueous solution by membrane pervaporation using modified polyurethaneurea membranes, J. Appl. Polym. Sci., 101 (2006) 1857–1865.
  14. Y. Tamai, H. Tanaka, K. Nakanishi, Molecular simulation of permeation of small penetrants through membranes. 2. Solubilities, Macromolecules, 28 (1995) 2544–2554.
  15. E. Kucukpinar, P. Doruker, Molecular simulations of small gas diffusion and solubility in copolymers of styrene, Polymer, 44 (2003) 3607–3620.
  16. S.S. Jawalkar, T.M. Aminabhavi, Molecular modeling simulations and thermodynamic approaches to investigate compatibility/incompatibility of poly(l-lactide) and poly(vinyl alcohol) blends, Polymer, 47 (2006) 8061–8071.
  17. J. Brandrup, E.H. Immergut, E.A Grulke, Polymer Handbook, Wiley, New York, 1999.
  18. I.M.D. Arenaza, E. Meaurio, B. Coto, J.R. Sarasua, Molecular dynamics modelling for the analysis and prediction of miscibility in polylactide/polyvinilphenol blends, Polymer, 51 (2010) 4431–4438.
  19. L.Q. Liao, Y.Z. Fu, X.Y. Liang, L.Y. Mei, Y.Q. Liu, Diffusion of CO2 molecules in polyethylene terephthalate/polylactide blends estimated by molecular dynamics simulations, Bull. Korean Chem. Soc., 34 (2013) 753–758.
  20. F.S. Moolman, M. Meunier, P.W. Labuschagne, P.A. Truter, Compatibility of polyvinyl alcohol and poly(methyl vinyl ether-co-maleic acid) blends estimated by molecular dynamics, Polymer, 46 (2005) 6192–6200.
  21. A. Bottino, G. Capannelli, S. Munari, A. Turturro, Solubility parameters of poly(vinylidene fluoride), J. Polym. Sci., Part B: Polym. Phys., 26 (1988) 785–794.
  22. Y.H. Wu, G.Q. Tian, H.F. Tan, X.T. Fu, Pervaporation of phenol wastewater with PVDF-PU blend membrane, Desal. Wat. Treat., 51 (2013) 5311–5318.