References

  1. A. Demirbas, Agricultural based activated carbons for the removal of dyes from aqueous solutions: a review, J. Hazard. Mater., 167 (2009) 1–9.
  2. M. Ilayaraja, N.P. Krishnan, R. Sayee Kannan, Adsorption of Rhodamine-B and Congo red dye from aqueous solution using activated carbon: kinetics, isotherms, and thermodynamics, IOSR J. Environ. Sci. Toxicol. Food Technol., 5 (2013) 79–89.
  3. M.P. Shah, K.A. Patel, S.S. Nair, A.M. Darji, S. Maharaul, Microbial degradation of Azo dye by Pseudomonas spp. MPS-2 by an application of sequential microaerophilic & aerobic process, Am. J. Microbiol. Res., 1 (2013) 105–112.
  4. S.S. Moghaddam, M.R.A. Moghaddam, M. Arami, Coagulation/flocculation process for dye removal using sludge from water treatment plant: optimization through response surface methodology, J. Hazard. Mater., 175 (2010) 651–657.
  5. B. Rodrıguez-Cabo, I. Rodrıguez-Palmeiro, R. Rodil, E. Rodil, A. Arce, A. Soto, Synthesis of AgCl nanoparticles in ionic liquid and their application in photodegradation of Orange II, J. Mater. Sci., 50 (2015) 3576–3585.
  6. M. Abbasi, N.R. Asl, Sonochemical degradation of Basic Blue 41 dye assisted by nanoTiO2 and H2O2, J. Hazard. Mater., 153 (2008) 942–947.
  7. L. Fan, Y. Zhou, W. Yang, G. Chen, F. Yang, Electrochemical degradation of aqueous solution of Amaranth azo dye on ACF under potentiostatic model, Dyes Pigm., 76 (2008) 440–446.
  8. M. Benadjemia, L. Millière, L. Reinert, N. Benderdouche, L. Duclaux, Preparation, characterization and Methylene Blue adsorption of phosphoric acid activated carbons from globe artichoke leaves, Fuel Process. Technol., 92 (2011) 1203–1212.
  9. M. Ghaedi, B. Sadeghian, A.A. Pebdani, R. Sahraei, A. Daneshfar, C. Duran, Kinetics, thermodynamics and equilibrium evaluation of direct yellow 12 removal by adsorption onto silver nanoparticles loaded activated carbon, Chem. Eng. J., 187 (2012) 133–141.
  10. C. Djilani, R. Zaghdoudi, F. Djazi, B. Bouchekima, A. Lallam, A. Modarressi, M. Rogalski, Adsorption of dyes on activated carbon prepared from apricot stones and commercial activated carbon, J. Taiwan Inst. Chem. Eng., 53 (2015) 112–121.
  11. M.A. Ahmad, N.A.A. Puad, O.S. Bello, Kinetic, equilibrium and thermodynamic studies of synthetic dye removal using pomegranate peel activated carbon prepared by microwaveinduced KOH activation, Water Resour. Ind., 6 (2014) 18–35.
  12. J. Gao, Y. Qin, T. Zhou, D. Cao, P. Xu, D. Hochstetter, Y. Wang, Adsorption of methylene blue onto activated carbon produced from tea (Camellia sinensis L.) seed shells: kinetics, equilibrium, and thermodynamics studies, J. Biomed. Biotechnol., 14 (2013) 650–658.
  13. P.K. Malik, Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: a case study of Acid Yellow 36, Dyes Pigm., 56 (2003) 239–249.
  14. M.M. Hamed, M.M.S. Ali, M. Holiel, Preparation of activated carbon from doum stone and its application on adsorption of 60Co and 152+154Eu: equilibrium, kinetic and thermodynamic studies, J. Environ. Radioact., 164 (2016) 113–124.
  15. I.A.W. Tan, A.L. Ahmad, B.H. Hameed, Adsorption of basic dye using activated carbon prepared from oil palm shell: batch and fixed bed studies, Desalination, 225 (2008) 13–28.
  16. G.O. El-Sayed, M.M. Yehia, A.A. Asaad, Assessment of activated carbon prepared from corncob by chemical activation with phosphoric acid, Water Resour. Ind., 7–8 (2014) 66–75.
  17. N. Bouchelkia, L. Mouni, L. Belkhiri, A. Bouzaza, J. Bollinger, K. Madani, F. Dahmoun, Removal of lead(II) from water using activated carbon developed from jujube stones, a low-cost sorbent, Sep. Sci. Technol., 51 (2016) 1645–1653.
  18. H.M. Chiang, T.C. Chen, S.D. Pan, H.L. Chiang, Adsorption characteristics of Orange II and chrysophenine on sludge adsorbent and activated carbon fibers, J. Hazard. Mater., 161 (2009) 1384–1390.
  19. N. Douara, B. Bestani, N. Benderdouche, L. Duclaux, Sawdustbased activated carbon ability in the removal of phenol-based organics from aqueous media, Desal. Wat. Treat., 57 (2016) 5529–5545.
  20. J. Jagiello, J.P. Olivier, A simple two-dimensional NLDFT model of gas adsorption in finite carbon pores. Application to pore structure analysis, J. Phys. Chem. C, 113 (2009) 19382–19385.
  21. J. Jagiello, M. Thommes, Comparison of DFT characterization methods based on N2, Ar, CO2, and H2 adsorption applied to carbons with various pore size distributions, Carbon, 42 (2004) 1227–1232.
  22. S. Attouti, B. Bestani, N. Benderdouche, D. Laurent, Application of Ulva lactuca and Systoceira stricta algae-based activated carbons to hazardous cationic dyes removal from industrial effluents, Water Res., 47 (2013) 3375–3388.
  23. A. Belayachi, B. Bestani, A. Bendraoua, N. Benderdouche, L. Duclaux, The influence of surface functionalization of activated carbon on dyes and metal ion removal from aqueous media, Desal. Wat. Treat., 57 (2016) 17557–17569.
  24. Y. Shinogi, Y. Kanri, Pyrolysis of plant, animal and human waste: physical and chemical characterization of the pyrolytic products, Bioresour. Technol., 90 (2003) 241–247.
  25. D. Angın, Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake, Bioresour. Technol., 128 (2013) 593–597.
  26. P. Chuenklang, S. Thungtong, T. Vitidsant, Effect of activation by alkaline solution on properties of activated carbon from rubber wood, J. Met. Mater. Miner., 12 (2002) 29–38.
  27. W.M.A.W. Daud, W.S.W. Ali, M.Z. Sulaiman, Effect of activation temperature on pore development in activated carbon produced from palm shell, J. Chem. Technol. Biotechnol., 78 (2002) 1–5.
  28. S.M. Yakout, G. Sharaf El-Deen, Characterization of activated carbon prepared by phosphoric acid activation of olive stones, Arabian J. Chem., 9 (2016) S1155–S1162.
  29. L.Y. Meng, S.J. Park, Investigation of narrow pore size distribution on carbon dioxide capture of nanoporous carbons, Bull. Korean Chem. Soc., 33 (2012) 3749–3754.
  30. M. Mohammadi, A.J. Hassani, A.R. Mohamed, G.D. Najafpour, Removal of Rhodamine B from aqueous solution using palm shell-based activated carbon: adsorption and kinetic studies, J. Chem. Eng. Data, 55 (2010) 5777–5785.
  31. C. Xu, N. Hedin, Ultramicroporous CO2 adsorbents with tunable mesopores based on polyimines synthesized under off-stoichiometric conditions, Microporous Mesoporous Mater., 222 (2016) 80–86.
  32. D. Graham, Characterization of physical adsorption systems III. The separate effects of pore size and surface acidity upon the adsorbent capacities of activated carbons, J. Phys. Chem., 59 (1955) 896–900.
  33. M.R.R. Kooh, M.K. Dahri, L.B.L. Lim, The removal of Rhodamine B dye from aqueous solution using Casuarina equisetifolia needles as adsorbent, Cogent Environ. Sci., 2 (2016) 1–14.
  34. N. Thinakaran, P. Baskaralingam, M. Pulikesi, P. Panneerselvam, S. Sivanesan, Removal of acid violet 17 from aqueous solutions by adsorption onto activated carbon prepared from sunflower seed hull, J. Hazard. Mater., 151 (2008) 316–322.
  35. Z.M. Abou-Gamra, H.A.A. Medien, Kinetic, thermodynamic and equilibrium studies of Rhodamine B adsorption by low cost biosorbent sugar cane bagasse, Eur. Chem. Bull., 2 (2013) 417–422.
  36. F. Güzel, H. Sayğılı, G.A. Sayğılı, F. Koyuncu, Elimination of anionic dye by using nanoporous carbon prepared from an industrial biowaste, J. Mol. Liq., 194 (2014) 130–140.
  37. A.A. Said, A.A.M. Aly, M.M. Abd El-Wahab, S.A. Soliman, A.A. Abd El-Hafez, V. Helmey, M.N. Goda, Potential application of propionic acid modified sugarcane bagasse for removing of basic and acid dyes from industrial wastewater, Resour. Environ., 2 (2012) 93–99.
  38. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  39. M. Arami, N.Y. Limaee, N.M. Mahmoodia, Evaluation of the adsorption kinetics and equilibrium for the potential removal of acid dyes using a biosorbent, Chem. Eng. J., 139 (2008) 2–10.
  40. H. Freundlich, Of the adsorption of gases. Section II. Kinetics and energetics of gas adsorption. Introductory paper to section II, Trans. Faraday Soc., 28 (1932) 195–201.
  41. L. Ding, B. Zou, W. Gao, Q. Liu, Z. Wang, Y. Guo, X. Wang, Y. Liu, Adsorption of Rhodamine-B from aqueous solution using treated rice husk-based activated carbon, Colloids Surf., A, 446 (2014) 1–7.
  42. S. Ramuthai, V. Nandhakumar, M. Thiruchelvi, S. Arivoli, V. Vijayakumaran, Rhodamine B adsorption-kinetic, mechanistic and thermodynamic studies, J. Chem., 6 (2009) S363–S373.
  43. D.L. Postai, C.A. Demarchi, F. Zanatta, D.C.C. Melo, C.A. Rodrigues, Adsorption of rhodamine B and methylene blue dyes using waste of seeds of Aleurites Moluccana, a low cost adsorbent, Alexandria Eng. J., 55 (2016) 1713–1723.
  44. L. Abramian, H. El-Rassy, Adsorption kinetics and thermodynamics of azo-dye Orange II onto highly porous titania aerogel, Chem. Eng. J., 150 (2009) 403–410.
  45. J. Ma, J. Zou, B. Cui, C. Yao, D. Li, Adsorption of Orange II dye from aqueous solutions using phosphoric-acid modified clam shell powder, Desal. Wat. Treat., 51 (2013) 6536–6544.
  46. X.G. Chen, S.S. Lv, Y. Ye, J.P. Cheng, S.H. Yin, Preparation and characterization of rice husk/ferrite composites, Chin. Chem. Lett., 21 (2010) 122–126.
  47. K.V. Kumar, Linear and non-linear regression analysis for the sorption kinetics of methylene blue onto activated carbon, J. Hazard. Mater., 137 (2006) 1538–1544.
  48. W.J. Weber Jr., J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div. ASCE, 89 (1963) 31–59.
  49. B. Koumanova, P. Peeva-Antova, Z. Yaneva, Adsorption of 4-chlorophenol from aqueous solutions on activated carbon – kinetic study, J. Univ. Chem. Technol. Metall., 40 (2005) 213–218.
  50. A.S. Ozcan, B. Erdem, A. Ozcan, Adsorption of Acid Blue 193 from aqueous solutions onto BTMA-bentonite, Colloids Surf., A, 266 (2005) 73–81.
  51. K. Liu, H. Li, Y. Wang, X. Gou, Y. Duan, Adsorption and removal of Rhodamine B from aqueous solution by tannic acid functionalized graphene, Colloids Surf., A, 477 (2015) 35–41.
  52. P. Panneerselvam, N. Morad, K.A. Tan, R. Mathiyarasi, Removal of Rhodamine B dye using activated carbon prepared from palm kernel shell and coated with iron oxide nanoparticles, Sep. Sci. Technol., 47 (2012) 742–752.
  53. A. Ouldmoumna, L. Reinert, N. Benderdouche, B. Bestani, L. Duclaux, Characterization and application of three novel biosorbents Eucalyptus globulus, Cynara cardunculus, and Prunus cerasefera to dye removal, Desal. Wat. Treat., 51 (2013) 3527–3538.
  54. Q. Li, Q.-Y. Yue, Y. Su, B.-Y. Gao, H.-J. Sun, Equilibrium, thermodynamics and process design to minimize adsorbent amount for the adsorption of acid dyes onto cationic polymerloaded bentonite, Chem. Eng. J., 158 (2010) 489–497.