References

  1. N. Rahbar, J.A. Esfahani, A. Asadi, An experimental investigation on productivity and performance of a new improved design portable asymmetrical solar still utilizing thermoelectric modules, Energy Convers. Manage., 118 (2016) 55–62.
  2. A. Heydari, N. Rahbar, Energy and life cost analysis of a wet wall solar still with various pump working conditions, Environ. Prog. Sustain., 36 (2017) 532–538.
  3. O. Mahian, A. Kianifar, S.Z. Heris, D. Wen, A.Z. Sahin, S. Wongwises, Nanofluids effects on the evaporation rate in a solar still equipped with a heat exchanger, Nano Energy, 36 (2017) 134–155.
  4. P. Refalo, R. Ghirlando, S. Abela, The effect of climatic parameters on the heat transfer mechanisms in a solar distillation still, Heat Transfer Eng., 35 (2014) 1473–1481.
  5. S. Rashidi, J. Abolfazli Esfahani, N. Rahbar, Partitioning of solar still for performance recovery: experimental and numerical investigations with cost analysis, Sol. Energy, 153 (2017) 41–50.
  6. N. Rahbar, A. Gharaiian, S. Rashidi, Exergy and economic analysis for a double slope solar still equipped by thermoelectric heating modules – an experimental investigation, Desalination, 420 (2017) 106–113.
  7. N. Rahbar, A. Asadi, Solar intensity measurement using a thermoelectric module; experimental study and mathematical modeling, Energy Convers. Manage., 129 (2016) 344–353.
  8. S. Rashidi, M. Bovand, N. Rahbar, J.A. Esfahani, Steps optimization and productivity enhancement in a nanofluid cascade solar still, Renew. Energy, 118 (2018) 536–545.
  9. M.M. Rahman, H.F. Öztop, A. Ahsan, M.A. Kalam, Y. Varol, Double-diffusive natural convection in a triangular solar collector, Int. Commun. Heat Mass Transfer, 39 (2012) 264–269.
  10. A. Heydari, M. Shateri, S. Sanjari, Numerical analysis of a small size baffled shell-and-tube heat exchanger using different nanofluids, Heat Transfer Eng., 39 (2018) 141–153.
  11. R. Sabbagh, N. Rahbar, Numerical study on the effect of geometrical parameters on flare tip wall temperature and emission, J. Model. Eng., 13 (2015) 43–57.
  12. N. Rahbar, M. Shateri, M. Taherian, M.S. Valipour, 2D numerical simulation of a micro scale Ranque-Hilsch vortex tube, J. Heat Mass Transfer Res., 2 (2015) 39–48.
  13. N. Rahbar, M. Taherian, M. Shateri, S.M. Valipour, Numerical investigation on flow behavior and energy separation in a micro-scale vortex tube, Therm. Sci., 19 (2015) 619–630.
  14. S. Rashidi, N. Rahbar, M. Sadegh Valipour, J. Abolfazli Esfahani, Enhancement of solar still by reticular porous media: experimental investigation with exergy and economic analysis, Appl. Therm. Eng., 130 (2018) 1341–1348. https://doi. org/10.1016/j.applthermaleng.2017.11.089.
  15. J. LeFevre, W.J. Bowman, M.R. Jones, Numerical simulation of convection in triangular cavities to predict solar still performance, J. Thermophys. Heat Transfer, 27 (2013) 482–488.
  16. R. Chouikh, L. Ben Snoussi, A. Guizani, Numerical study of the heat and mass transfer in inclined glazing cavity: application to a solar distillation cell, Renew. Energy, 32 (2007) 1511–1524.
  17. M.I. Ahmed, M. Hrairi, A.F. Ismail, On the characteristics of multistage evacuated solar distillation, Renew. Energy, 34 (2009) 1471–1478.
  18. S. Xu, X. Ling, H. Peng, Simulation of heating cell in a new integrated solar plate-fin desalination unit by fluent, Inf. Technol. J., 10 (2011) 2446–2451.
  19. M.M. Rahman, R. Saidur, S. Mekhilef, M.B. Uddin, A. Ahsan, Double-diffusive buoyancy induced flow in a triangular cavity with corrugated bottom wall: effects of geometrical parameters, Int. Commun. Heat Mass Transfer, 45 (2013) 64-74.
  20. Y.C. Ching, H.F. Öztop, M.M. Rahman, M.R. Islam, A. Ahsan, Finite element simulation of mixed convection heat and mass transfer in a right triangular enclosure, Int. Commun. Heat Mass Transfer, 39 (2012) 689–696.
  21. K. Ghachem, L. Kolsi, C. Mâatki, A.K. Hussein, M.N. Borjini, Numerical simulation of three-dimensional double diffusive free convection flow and irreversibility studies in a solar distiller, Int. Commun. Heat Mass Transfer, 39 (2012) 869–876.
  22. N. Rahbar, J.A. Esfahani, Productivity estimation of a singleslope solar still: theoretical and numerical analysis, Energy, 49 (2013) 289–297.
  23. N. Rahbar, J.A. Esfahani, Estimation of convective heat transfer coefficient in a single-slope solar still: a numerical study, Desal. Wat. Treat., 50 (2012) 387–396.
  24. N. Rahbar, J. Abolfazli Esfahani, E. Fotouhi-Bafghi, Estimation of convective heat transfer coefficient and water-productivity in a tubular solar still – CFD simulation and theoretical analysis, Sol. Energy, 113 (2015) 313–323.
  25. R. Alvarado-Juárez, G. Álvarez, J. Xamán, I. Hernández-López, Numerical study of conjugate heat and mass transfer in a solar still device, Desalination, 325 (2013) 84–94.
  26. R. Alvarado-Juárez, J. Xamán, G. Álvarez, I. Hernández-López, Numerical study of heat and mass transfer in a solar still device: effect of the glass cover, Desalination, 359 (2015) 200–211.
  27. S.A. El-Agouz, Experimental investigation of stepped solar still with continuous water circulation, Energy Convers. Manage., 86 (2014) 186–193.
  28. V. Velmurugan, K.N. Kumar, T.N. Haq, K. Srithar, Performance analysis in stepped solar still for effluent desalination, Energy, 34 (2009) 1179–1186.
  29. A.M. Radhwan, Transient performance of a stepped solar still with built-in latent heat thermal energy storage, Desalination, 171 (2005) 61–76.
  30. M. Dashtban, F.F. Tabrizi, Thermal analysis of a weir-type cascade solar still integrated with PCM storage, Desalination, 279 (2011) 415–422.
  31. F.F. Tabrizi, M. Dashtban, H. Moghaddam, Experimental investigation of a weir-type cascade solar still with built-in latent heat thermal energy storage system, Desalination, 260 (2010) 248–253.
  32. F. Sarhaddi, F.F. Tabrizi, H.A. Zoori, S.A.H.S. Mousavi, Comparative study of two weir type cascade solar stills with and without PCM storage using energy and exergy analysis, Energy Convers. Manage., 133 (2017) 97–109.
  33. F.F. Tabrizi, M. Dashtban, H. Moghaddam, K. Razzaghi, Effect of water flow rate on internal heat and mass transfer and daily productivity of a weir-type cascade solar still, Desalination, 260 (2010) 239–247.
  34. F.B. Ziabari, A.Z. Sharak, H. Moghadam, F.F. Tabrizi, Theoretical and experimental study of cascade solar stills, Sol. Energy, 90 (2013) 205–211.
  35. Z.M. Omara, A.E. Kabeel, M.M. Younes, Enhancing the stepped solar still performance using internal and external reflectors, Energy Convers. Manage., 78 (2014) 876–881.
  36. Y. El-Samadony, A. Abdullah, Z. Omara, Experimental study of stepped solar still integrated with reflectors and external condenser, Exp. Heat Transfer, 28 (2015) 392–404.
  37. Y.A. Cengel, M.A. Boles, Thermodynamics: an engineering approach, Sea, 1000 (2002) 8862.
  38. M.J. Moran, H.N. Shapiro, D.D. Boettner, M.B. Bailey, Fundamentals of Engineering Thermodynamics, John Wiley & Sons, West Sussex, England, 2010.
  39. R.E. Sonntag, C. Borgnakke, G.J. Van Wylen, S. Van Wyk, Fundamentals of Thermodynamics, Wiley, New York, 2003.
  40. M. Asbik, O. Ansari, A. Bah, N. Zari, A. Mimet, H. El-Ghetany, Exergy analysis of solar desalination still combined with heat storage system using phase change material (PCM), Desalination, 381 (2016) 26–37.
  41. X. Wang, Y. Tang, Exergetic analysis on the two-stage reverse osmosis seawater desalination system, Desal. Wat. Treat., 51 (2013) 2862–2870.
  42. A. Sethi, V. Dwivedi, Exergy analysis of double slope active solar still under forced circulation mode, Desal. Wat. Treat., 51 (2013) 7394–7400.
  43. K.R. Ranjan, S.C. Kaushik, Energy, exergy and thermo-economic analysis of solar distillation systems: a review, Renew. Sustain. Energy Rev., 27 (2013) 709–723.
  44. V. Manikandan, K. Shanmugasundaram, S. Shanmugan, B. Janarthanan, J. Chandrasekaran, Energy, exergy and entropy analysis of a single-slope floating-cum-tilted wick-type solar still, Int. J. Ambient Energy, 53 (2013) 2–12.
  45. S. Kaushik, K. Ranjan, N. Panwar, Optimum exergy efficiency of single-effect ideal passive solar stills, Energy Effic., 6 (2013) 595–606.
  46. H. Aghaei Zoori, F. Farshchi Tabrizi, F. Sarhaddi, F. Heshmatnezhad, Comparison between energy and exergy efficiencies in a weir type cascade solar still, Desalination, 325 (2013) 113–121.
  47. A. Kianifar, S. Zeinali Heris, O. Mahian, Exergy and economic analysis of a pyramid-shaped solar water purification system: active and passive cases, Energy, 38 (2012) 31–36.
  48. V.G. Gude, N. Nirmalakhandan, S. Deng, A. Maganti, Desalination at low temperatures: an exergy analysis, Desal. Wat. Treat., 40 (2012) 272–281.
  49. G. Tiwari, V. Dimri, A. Chel, Exergetic analysis of passive and active solar stills, Int. J. Exergy, 5 (2008) 360–373.
  50. A. Bejan, Entropy Generation Through Heat and Fluid Flow, Wiley, New York, 1982.
  51. W.M. Kays, M.E. Crawford, B. Weigand, Convective Heat and Mass Transfer, 4th ed., McGraw-Hill, Singapore, 2005.
  52. P. Talukdar, C.R. Iskra, C.J. Simonson, Combined heat and mass transfer for laminar flow of moist air in a 3D rectangular duct: CFD simulation and validation with experimental data, Int. J. Heat Fluid Flow, 51 (2008) 3091–3102.
  53. H.F. Oztop, K. Al-Salem, A review on entropy generation in natural and mixed convection heat transfer for energy systems, Renew. Sustain. Energy Rev., 16 (2012) 911–920.
  54. A. Bejan, The thermodynamic design of heat and mass transfer processes and devices, Int. J. Heat Fluid Flow, 8 (1987) 258–276.
  55. S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, USA, 1980.
  56. H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Prentice Hall, New York, 2007.
  57. A. Omri, Numerical investigation on optimization of a solar distiller dimensions, Desalination, 206 (2007) 373–379.
  58. M.M. Rahman, H.F. Öztop, A. Ahsan, J. Orfi, Natural convection effects on heat and mass transfer in a curvilinear triangular cavity, Int. J. Heat Mass Transfer, 55 (2012) 6250–6259.
  59. C. Beghein, F. Haghighat, F. Allard, Numerical study of doublediffusive natural convection in a square cavity, Int. J. Heat Mass Transfer, 35 (1992) 833–846.
  60. M. Hasani, N. Rahbar, Application of thermoelectric cooler as a power generator in waste heat recovery from a PEM fuel cell – an experimental study, Int. J. Hydrogen Energy, 40 (2015) 15040–15051.