References

  1. Market and Policy Analyses of Raw Materials, Horticulture and Tropical (RAMHOT) Products Team, Trade and Markets Division, Food and Agriculture Organization of the United Nations, World Statistical Compendium for Raw Hides and Skins, Leather and Leather Footwear, 1999–2015. Available at: http://arewhich.org/tag/world-statistical-compendium-for-rawhides-and-skins-leather-and (Accessed 18 September 2017).
  2. K. Kolomaznik, M. Adamek, I. Andel, M. Uhlirova, Leather waste—potential threat to human health, and a new technology of its treatment, J. Hazard. Mater., 160 (2008) 514–520.
  3. A. Pati, R. Chaudhary, S. Subramani, A review on management of chrome-tanned leather shavings: a holistic paradigm to combat the environmental issues, Environ. Sci. Pollut. Res., 21 (2014) 11266–11282.
  4. A. Malek, M. Hachemi, V. Didier, New approach of depollution of solid chromium leather waste by the use of organic chelates: economical and environmental impacts, J. Hazard. Mater., 170 (2009) 156–162.
  5. M.J. Ferreira, M.F. Almeida, S.C. Pinho, I.C. Santos, Finished leather waste chromium acid extraction and anaerobic biodegradation of the products, Waste Manage., 30 (2010) 1091–1100.
  6. A. Malek, M. Hachemi, Effect of the detoxification on the shrinkage temperature and pH of chromium leather waste, another promising way for the tannery pollution, Am. J. Appl. Sci., 5 (2008) 1329–1335.
  7. B.R. Mann, The chemistry of the leather industry. Available at: http://www.nzic.org.nz/ChemProcesses/animal/5C.pdf (Accessed 18 September 2017).
  8. J. Luo, C. Wu, T. Xu, Y. Wu, Diffusion dialysis-concept, principle and applications, J. Membr. Sci., 366 (2011) 1–16.
  9. Z. Palatý, A. Žáková, P. Prchal, Continuous dialysis of carboxylic acids, permeability of Neosepta-AMH membrane, Desalination, 216 (2007) 345–355.
  10. Z. Palaty´, J. Kaláb, H. Bendová, Transport properties of propionic acid in anion-exchange membrane Neosepta-AFN, J. Membr. Sci., 349 (2010) 90–96.
  11. R. Wódzki, J. Nowaczyk, Membrane transport of organics. II. Permeation of some carboxylic acids through strongly basic polymer membrane, J. Appl. Polym. Sci., 71 (1999) 2179–2190.
  12. H. Takahashi, K. Ohba, K. Kenichi, Sorption of di- and tricarboxylic acids by an anion-exchange membrane, J. Membr. Sci., 222 (2003) 103–111.
  13. K. Wang, Y. Zhang, J. Huang, T. Liu, J. Wang, Recovery of sulfuric acid from a stone coal acid leaching solution by diffusion dialysis, Hydrometallurgy, 173 (2017) 9–14.
  14. Z. Palatý, H. Bendová, Continuous dialysis of sulphuric acid and sodium sulphate mixture, J. Membr. Sci., 497 (2016) 36–46.
  15. C. Xu, S. Xue, P. Wang, C. Wu, Y. Wu, Diffusion dialysis for NaCl and NaAc recovery using polyelectrolyte complexes/PVA membranes, Sep. Purif. Technol., 172 (2017) 140–146.
  16. X. Lin, E. Shamsaei, B. Kong, J.Z. Liu, Y. Hu, T. Xu, H. Wang, Porous diffusion dialysis membranes for rapid acid recovery, J. Membr. Sci., 502 (2016) 76–83.
  17. J. Xu, S. Lu, D. Fu, Recovery of hydrochloric acid from the waste acid solution by diffusion dialysis, J. Hazard. Mater., 165 (2009) 832–837.
  18. Z. Palatý, H. Bendová, Numerical error analysis of mass transfer measurements in batch dialyzer, Desal. Wat. Treat., 26 (2011) 215–225.
  19. Z. Palatý, A. Žáková, P. Petřík, A simple treatment of mass transfer data in continuous dialyzer, Chem. Eng. Process., 45 (2006) 806–811.
  20. H.M. Yeh, Y.H. Chang, Mass transfer for dialysis through parallel-flow double-pass rectangular membrane modules, J. Membr. Sci., 260 (2005) 1–9.
  21. N. Van Phuong, S.C. Kwon, J.Y. Lee, J.H. Lee, K.H. Lee, The effects of pH and polyethylene glycol on the Cr(III) solution chemistry and electrodeposition of chromium, Surf. Coat. Technol., 206 (2012) 4349–4355.
  22. Z. Zeng, Y. Zhang, W. Zhao, J. Zhang, Role of complexing ligands in trivalent chromium electrodeposition, Surf. Coat. Technol., 205 (2011) 4771–4775.