References

  1. Q. Bu, B. Wang, J. Huang, S. Deng, G. Yu, Pharmaceuticals and personal care products in the aquatic environment in China: a review, J. Hazard. Mater., 262 (2013) 189–211.
  2. M.B. Ahamed, J.L. Zhou, H.H. Ngo, W. Guo, Adsorptive removal of antibiotics from water and wastewater: progress and challenges, Sci. Total. Environ., 532 (2015) 112–126.
  3. A.K. Sarmah, M.T. Meyer, A.B.A. Boxall, A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment, Chemosphere, 65 (2006) 725–759.
  4. F. Liu, G. Ying, R. Tao, J. Zhao, J. Yang, L. Zhao, Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities, Environ. Pollut., 157 (2009) 1636–1642.
  5. J.C. Underwood, R.W. Harvey, D.W. Metge, D.A. Repert, L.K. Baumgartner, R.L. Smith, Effects of the antimicrobial sulfamethoxazole on groundwater bacterial enrichment, Environ. Sci. Technol., 45 (2011) 3096–3101.
  6. H. Su, G. Ying, R. Tao, R. Zhang, J. Zhao, Y. Liu, Class 1 and 2 integrons, sul resistance genes and antibiotic resistance in Escherichia coli isolated from Dongjiang River, South China, Environ. Pollut., 169 (2012) 42–49.
  7. R.M. Mohamed, I.A. Mkhalid, M. Abdel Salam, M.A. Barakat, Zeolite Y from rice husk ash encapsulated with Ag-TiO2: characterization and applications for photocatalytic degradation catalysts, Desal. Wat. Treat., 51 (2013) 7562–7569.
  8. C.L. Yu, W.Q. Zhou, L.H. Zhu, G. Li, K. Yang, R.C. Jin, Integrating plasmonic Au nanorods with dendritic like α-Bi2O3/Bi2O2CO3 heterostructures for superior visible-light-driven photocatalysis, Appl. Catal., B, 184 (2016) 1–11.
  9. C.L. Yu, Z. Wu, R.Y. Liu, D.D. Dionysiou, K. Yang, C.Y. Wang, H. Liu, Novel fluorinated Bi2MoO6 nanocrystals for efficient photocatalytic removal of water organic pollutants under different light source illumination, Appl. Catal., B, 209 (2017) 1–11.
  10. A.L. Giraldo, G.A. Penuela, R.A. Torres-Palma, N.J. Pino, R.A. Palominos, H.D. Mansilla, Degradation of the antibiotic oxolinic acid by photocatalysis with TiO2 in suspension, Water Res., 44 (2010) 5158–5167.
  11. A. Chatzitakis, C. Berberidou, I. Paspaltsis, G. Kyriakou, T. Sklaviadis, I. Poulios, Photocatalytic degradation and drug activity reduction of chloramphenicol, Water Res., 42 (2008) 386–394.
  12. C.L.Yu, W.Q. Zhou, H. Liu, Y. Liu, D.D. Dionysiou, Design and fabrication of microsphere photocatalysts for environmental purification and energy conversion, Chem. Eng. J., 287 (2016) 117–129.
  13. N. Boujelben, F. Bouhamed, Z. Elouear, J. Bouzid, M. Feki, Removal of phosphorus ions from aqueous solutions using manganese-oxide-coated sand and brick, Desal. Wat. Treat., 52 (2014) 2282–2292.
  14. A.R. Lim, K.H. Lee, S.H. Choh, Domain wall of ferroelastic BiVO4 studied by transmission electron microscopy, Solid State Commun., 83 (1992) 185–186.
  15. K. Hirota, G. Komatsu, M. Yamashita, H. Takemura, O. Yamaguchi, Formation, characterization and sintering of alkoxy-derived bismuth vanadate, Mater. Res. Bull., 27 (1992) 823–830.
  16. D. Ke, T. Peng, L. Ma, P. Cai, Photocatalytic water splitting for O2 production under visible-light irradiation on BiVO4 nanoparticles in different sacrificial reagent solutions, Appl. Catal., A, 350 (2008) 111–117.
  17. S.M. Thalluri, C.M. Suarez, S. Hernandez, S. Bensaid, G. Saracco, N. Russo, Elucidation of important parameters of BiVO4 responsible for photo-catalytic O2 evolution and insights about the rate of the catalytic process, Chem. Eng. J., 245 (2014) 124–132.
  18. Y. Zhou, W. Li, W. Wan, R. Zhang, Y. Lin, W/Mo co-doped BiVO4 for photocatalytic treatment of polymer-containing wastewater in oilfield, Superlattices Microstruct., 82 (2015) 67–74.
  19. W. Ma, Z. Li, W. Liu, Hydrothermal preparation of BiVO4 photocatalyst with perforated hollow morphology and its performance on methylene blue degradation, Ceram. Int., 41 (2015) 4340–4347.
  20. S.S. Xue, H.B. He, Z. Wu, C.L. Yu, Q.Z. Fan, G.M. Peng, K. Yang, An interesting Eu, F-codoped BiVO4 microsphere with enhanced photocatalytic performance, J. Alloys Compd., 694 (2017) 989–997.
  21. Y. Lu, H. Shang, F. Shi, C. Chao, X. Zhang, B. Zhang, Preparation and efficient visible light-induced photocatalytic activity of m-BiVO4 with different morphologies, J. Phys. Chem. Solids, 85 (2015) 44–50.
  22. W. Yin, W. Wang, M. Shang, L. Zhang, J. Ren, Preparation of monoclinic scheelite BiVO4 photocatalyst by an ultrasound-assisted solvent substitution method, Chem. Lett., 38 (2009) 422–423.
  23. U.M. García-Pérez, S. Sepúlveda-Guzmán, A. Martínez-de la Cruz, J. Peral, Selective synthesis of monoclinic bismuth vanadate powders by surfactant-assisted co-precipitation method: study of their electrochemical and photocatalytic properties, Int. J. Electrochem. Sci., 7 (2012) 9622–9632.
  24. Q. Yu, Z. Tang, Y. Xu, Synthesis of BiVO4 nanosheets-graphene composites toward improved visible light photoactivity, J. Nat. Gas. Chem., 23 (2014) 564–574.
  25. X. Wang, G. Li, J. Ding, H. Peng, K. Chen, Facile synthesis and photocatalytic activity of monoclinic BiVO4 micro/nanostructures with controllable morphologies, Mater. Res. Bull., 47 (2012) 3814–3818.
  26. Z. Zhu, J. Du, J. Li, Y. Zhang, D. Liu, An EDTA-assisted hydrothermal synthesis of BiVO4 hollow microspheres and their evolution into nanocages, Ceram. Int., 38 (2012) 4827–4834.
  27. Z. Zhu, L. Zhang, J. Li, J. Du, Y. Zhang, J. Zhou, Synthesis and photocatalytic behavior of BiVO4 with decahedral structure, Ceram. Int., 39 (2013) 7461–7465.
  28. Y. Lu, Y. Luo, D. Kong, D. Zhang, Y. Jia, X. Zhang, Large-scale controllable synthesis of dumbbell-like BiVO4 photocatalysts with enhanced visible-light photocatalytic activity, J. Solid State Chem., 186 (2012) 255–260.
  29. U.M. García-Pérez, S. Sepúlveda-Guzmán, A. Martínez-de la Cruz, Nanostructured BiVO4 photocatalysts synthesized via a polymer-assisted coprecipitation method and their photocatalytic properties under visible-light irradiation, Solid State Sci., 14 (2012) 293–298.
  30. U.M. García Pérez, S. Sepúlveda-Guzmán, A. Martínez-de la Cruz, U. Ortiz Méndez, Photocatalytic activity of BiVO4 nanospheres obtained by solution combustion synthesis using sodium carboxymethylcellulose, J. Mol. Catal. A: Chem., 335 (2011) 169–175.
  31. S. Dong, C. Yu, Y. Li, Y. Li, J. Sun, X. Geng, Controlled synthesis of T-shaped BiVO4 and enhanced visible light responsive photocatalytic activity, J. Solid State Chem., 211 (2014) 176–183.
  32. U.M. García Pérez, A. Martínez-de la Cruz, S. Sepúlveda-Guzmán, J. Peral, Low-temperature synthesis of BiVO4 powders by pluronic-assisted hydrothermal method: effect of the surfactant and temperature on the morphology and structural control, Ceram. Int., 40 (2014) 4631–4638.
  33. L. Ren, L. Jin, J. Wang, F. Yang, M. Qiu, Y. Yu, Templatefree synthesis of BiVO4 nanostructures: I. Nanotubes with hexagonal cross sections by oriented attachment and their photocatalytic property for water splitting under visible light, Nanotechnology, 20 (2009) 115603–115611.
  34. L. Zhou, W. Wang, S. Liu, L. Zhang, H. Xu, W. Zhu, A sonochemical route to visible-light-driven high-activity BiVO4 photocatalyst, J. Mol. Catal. A: Chem., 252 (2006) 120–124.
  35. H. Jiang, X. Meng, H. Dai, J. Deng, Y. Liu, L. Zhang, Highperformance porous spherical or octapod-like single-crystalline BiVO4 photocatalysts for the removal of phenol and methylene blue under visible-light illumination, J. Hazard. Mater., 217–218 (2012) 92–99.
  36. A.A. Borghi, M.F. Silva, S.A. Arni, A. Converti, M.S.A. Palma, Doxycycline degradation by the oxidative Fenton process, J. Chem., 2015 (2015) 1–9.
  37. J. Rivas, A. Encinas, F. Beltran, N. Graham, Application of advanced oxidation processes to doxycycline and norfloxacin removal from water, J. Environ. Sci. Health, Part A, 46 (2011) 944–951.
  38. S.M. Sunaric, S.S. Mitic, G.Z. Miletic, A.N. Pavlovic, D. Naskovicdjokic, Determination of doxycycline in pharmaceuticals based on its degradation by Cu(II)/H2O2 reagent in aqueous solution, J. Anal. Chem., 64 (2009) 231–237.