References

  1. J. Jiao, J. Wang, M. Li, J. Li, Q. Li, Q. Quan, J. Chen, Simultaneous determination of three azo dyes in food product by ion mobility spectrometry, J. Chromatogr., B, 1205 (2016) 105–109.
  2. R. Shiralipour, A. Larki, Pre-concentration and determination of tartrazine dye from aqueous solutions using modified cellulose nanosponges, Ecotoxicol. Environ. Saf., 135 (2017) 123–129.
  3. C. Tsai, C. Kuo, D.Y. Shih, Determination of 20 synthetic dyes in chili powders and syrup-preserved fruits by liquid chromatography/tandem mass spectrometry, J. Food Drug Anal., 23 (2015) 453–462.
  4. G.L. Dotto, E.C. Lima, L.A.A. Pinto, Biosorption of food dyes onto Spirulina platensis nanoparticles: equilibrium isotherm and thermodynamic analysis, Bioresour. Technol. 103 (2012) 123–130.
  5. S.K. Sen, S. Raut, P. Bandyopadhyay, S. Raut, Fungal decolouration and degradation of azo dyes: a review, Fungal Biol. Rev., 30 (2016) 112–133.
  6. L. Ji, Q. Cheng, K. Wu, X. Yang, Cu-BTC frameworks-based electrochemical sensing platform for rapid and simple determination of Sunset yellow and tartrazine, Sens. Actuators, B, 231 (2016) 12–17.
  7. K. Yamjala, M.S. Kainar, N.R. Ramisetti, Methods for the analysis of azo dyes employed in food industry – a review, Food Chem., 192 (2016) 813–824.
  8. H. Sun, F. Wang, L. Ai, Determination of banned 10 azo-dyes in hot chili products by gel permeation chromatography– liquid chromatography-electrospray ionization-tandem mass spectrometry, J. Chromatogr., A, 1164 (2007) 120–128.
  9. M.J. Scotter, Overview of EU Regulation and Safety Assessment for Food Colours, Chapter 3, Colour Additives for Foods and Beverages, Woodhead Publishing, Kidlington (OX), 2015, pp. 61–74.
  10. M.O. Dawodu, K.G. Akpomie, Evaluating the potential of a Nigerian soil as an adsorbent for tartrazine dye: isotherm, kinetic and thermodynamic studies, Alexandria Eng. J., 55 (2016) 3211–3218.
  11. J. Goscianska, R. Pietrzak, Removal of tartrazine from aqueous solution by carbon nanotubes decorated with silver nanoparticles, Catal. Today, 249 (2015) 259–264.
  12. A. Mohamed, A. Galal, Y. Elewa, Comparative protective effects of royal jelly and cod liver oil against neurotoxic impact of tartrazine on male rat pups brain, Acta Histochrm., 117 (2015) 649–658.
  13. X. Qiu, L. Lu, J. Leng, Y. Yu, W. Wang, M. Jiang, L. Bai, An enhanced electrochemical platform based on graphene oxide and multi-walled carbon nanotubes nanocomposite for sensitive determination of Sunset Yellow and tartrazine, Food Chem., 190 (2016) 889–895.
  14. C. Morris, S.J. Mooney, S.D. Young, Sorption and desorption characteristics of the dye tracer, Brilliant Blue FCF, in sandy and clay soils, Geoderma, 146 (2008) 434–438.
  15. Y. Chen, C. Tsen, S. How, C. Lo, W. Chou, S. Wang, Amyloid fibrillogenesis of lysozyme is suppressed by a food additive brilliant blue FCF, Colloids Surf., B, 142 (2016) 351–359.
  16. V.K. Gupta, A. Mitall, L. Krishnan, J. Mittal, Adsorption treatment and recovery of the hazardous dye, Brilliant Blue FCF, over bottom ash and de-oiled soya, J. Colloid Interface Sci., 293 (2006) 16–26.
  17. S. Antakli, L. Nejen, S. Katran, Simultaneous determination of tartrazine and brilliant blue in foodstuffs by spectrophotometric method, Int. J. Pharm. Pharm. Sci., 7 (2015) 214–218.
  18. Z. Shu, H. Wu, H. Lin, T. Li, Y. Liu, F. Ye, X. Mu, X. Li, X. Jiang, J. Huang, Decolourization of Remazol Brilliant Blue R using a novel acyltransferase-ISCO (in situ chemical oxidation) coupled system, Biochem. Eng. J., 115 (2016) 56–63.
  19. R.K. Gautam, P.K. Gautam, S. Banerjee, V. Rawat, S. Soni, S.K. Sharma, M.C. Chattopadhyaya, Removal of tartrazine by activated carbon biosorbents of Lantana camara: kinetics, equilibrium modeling and spectroscopic analysis, J. Environ. Chem. Eng., 3 (2015) 79–88.
  20. O. Rozas, C. Vidal, C. Baeza, W.F. Jardim, A. Rossner, H.D. Mansilla, Organic micropollutants (OMPs) in natural waters: oxidation by UV/H2O2 treatment and toxicity assessment, Water Res., 98 (2016) 109–118.
  21. M.P. Rayaroth, U.K. Aravind, C.T. Aravindakumar, Sonochemical degradation of Coomassie Brilliant Blue: effect of frequency, power density, pH and various additives, Chemosphere, 119 (2015) 848–855.
  22. A. Adak, K.P. Mangalgiri, J. Lee, L. Blaney, UV irradiation and UV-H2O2 advanced oxidation of the roxarsone and nitarsone organoarsenicals, Water Res., 70 (2015) 74–85.
  23. P. Raiazada, P. Shandilya, P. Singh, P. Thakur, Solar lightfacilitated oxytetracycline removal from the aqueous phase utilizing a H2O2/ZnWO4/CaO catalytic system, J. Taibah Univ. Sci., 11 (2016) 689–699.
  24. M. Brienza, M.M. Ahmed, A. Escande, G. Plantard, L. Scrano, S. Chiron, S.A. Bufo, V. Goetz, Use of solar advanced oxidation processes for wastewater treatment: follow-up on degradation products, acute toxicity, genotoxicity and estrogenicity, Chemosphere, 148 (2016) 473–480.
  25. H. Gong, W. Chu, Determination and toxicity evaluation of the generated products in sulfamethoxazole degradation by UV/CoFe2O4/TiO2, J. Hazard. Mater., 314 (2016) 197–203.
  26. D. Rede, L.H. Santos, S. Ramos, F. Oliva-Teles, C. Antao, S.R. Sousa, C. Delerue-Matos, Ecotoxicological impact of two soil remediation treatments in Lactuca sativa seeds, Chemosphere, 159 (2016) 193–198.
  27. Q. Zhang, F. Wang, C. Xue, C. Wang, S. Chi, J. Zhang, Comparative toxicity of nonylphenol, nonylphenol-4-ethoxylate and nonylphenol-10-ethoxylate to wheat seedlings (Triticum aestivum L.), Ecotoxicol. Environ. Saf., 131 (2016) 7–13.
  28. W. Shen, N. Zhu, J. Cui, H. Wang, Z. Dang, P. Wu, Y. Luo, C. Shi, Ecotoxicity monitoring and bioindicator screening of oilcontaminated soil during bioremediation, Ecotoxicol. Environ. Saf., 124 (2016) 120–128.
  29. L.C. Rodrigues, S. Barbosa, M. Pazin, B.S. Maselli, L.A. Beijo, F. Kummrow, Phytotoxicity and cytogenotoxicity of water and urban stream sediment in bioassay with Lactuca sativa, Rev. Bras. Eng. Agríc. Ambient., 17 (2013) 1099–1108.
  30. A.R. Khataee, O. Mirzajani, UV/peroxydisulfate oxidation of C. I. Basic Blue 3: modeling of key factors by artificial neural network, Desalination, 251 (2010) 64–69.
  31. A.R. Soleymani, J. Saien, H. Bayat, Artificial neural networks developed for prediction of dye decolorization efficiency with UV/K2S2O8 process, Chem. Eng. J., 170 (2011) 29–35.
  32. N. Dhiman, Markandeya, A. Singh, N.K. Verma, N. Ajaria, S. Patnaik, Statistical optimization and artificial neural network modeling for acridine orange dye degradation using in-situ synthesized polymer capped ZnO nanoparticles, J. Colloid Interface Sci., 493 (2017) 295–306.
  33. S. Haykin, Redes neurais, princípios e prática, Artmed, São Paulo, 2001, pp. 28–45.
  34. M.E. Borges, M. Sierra, E. Cuevas, R.D. García, P. Esparza, Photocatalysis with solar energy: sunlight-responsive photocatalyst based on TiO2 loaded on a natural material for wastewater treatment, Sol. Energy, 135 (2016) 527–535.
  35. B. Dutka, Short-Term Root Elongation Toxicity Bioassay: Methods for Toxicological Analysis of Waters, Wastewaters and Sediments, National Water Research Institute (NWRI), Burlington, ON, 1989.
  36. J.C. Greene, C.L. Bartels, W.J. Warren-Hicks, B.R. Parkhurst, G. Linder, S.A. Peterson, W.E. Miller, Protocols for Short-Term Toxicity Screening of Hazardous Waste Sites, U.S. EPA 600/3-88/029, Corvallis, OR, 1988.
  37. R. Giovannetti, C.A.D. Amato, M. Zannotti, E. Rommozzi, R. Gunnella, M. Minicucci, A. Di Cicco, Visible light photoactivity of polypropylene coated nano-TiO2 for dyes degradation in water, Sci. Rep., 5 (2015) 17801–17813.
  38. C.P. Teixeira, W.F. Jardim, Advanced Oxidative Processes: Theoretical Foundations, Caderno Temático, Campinas, SP, Brazilian, 2004.
  39. C. Lin, H. Lin, L. Hsu, Degradation of ofloxacin using UV/H2O2 process in a large photoreactor, Sep. Purif. Technol., 168 (2016) 57–61.
  40. D. Rubio, E. Nebot, J.F. Casanueva, C. Pulgarin, Comparative effect of simulated solar light, UV, UV/H2O2 and photo-Fenton treatment (UV–Vis/H2O2/Fe2+,3+) in the Escherichia coli inactivation in artificial seawater, Water Res., 47 (2013) 6367–6379.
  41. M.J. Abeledo-Lameiro, A. Reboredo-Fernández, M.I. Polo-López, P.F. Fernández-Ibâñez, E. Ares-Mazás, H. Gómez-Couso, Photocatalytic inactivation of the waterborne protozoan parasite Cryptosporidium parvum using TiO2/H2O2 under simulated and natural solar conditions, Catal. Today, 280 (2017) 132–138.
  42. S. Li, R.J. Erickson, L.K. Wallis, S.A. Diamond, D.J. Hoff, Modelling TiO2 nanoparticle phototoxicity: the importance of chemical concentration, ultraviolet radiation intensity, and time, Environ. Pollut., 205 (2015) 327–332.
  43. G. Gallina, P. Biasi, J. García-Serna, T. Salmi, J. Mikkola, Optimized H2O2 production in a trickled bed reactor, using water and methanol enriched with selectivity promoters, Chem. Eng. Sci., 123 (2015) 334–340.
  44. R.K. Chava, W. Lee, S. Oh, K. Jeong, Y. Yu, Improvement in light harvesting and device performance of dye sensitized solar cells using electrophoretic deposited hollow TiO2 NPs scattering layer, Sol. Energy Mater. Sol. Cells, 161 (2017) 255–262.
  45. D. Fabbri, M. Minella, V. Maurino, C. Minero, D. Vione, A model assessment of the importance of direct photolysis in the photofate of cephalosporins in surface waters: possible formation of toxic intermediates, Chemosphere, 134 (2015) 452–458.
  46. O. Bibak, M. Aliaabadi, Photocatalytic degradation of malachite green in aqueous solution using TiO2 nanocatalyst, J. Biodivers. Environ. Sci., 5 (2014) 301–310.
  47. V.B. Vianna, A.R. Tôrres, Degradation of acid dyes for advanced oxidation processes with a low-speed round disc reactor, Quim. Nova, 31 (2008) 1353–1358.