References

  1. J. Jeong, M.S. Kim, B.S. Kim, S.K. Kim, W.B. Kim, J.C. Lee, Recovery of H2SO4 from waste acid solution by a diffusion dialysis method, J. Hazard. Mater., 124 (2005) 230–235.
  2. A. Agrawal, K.K. Sahu, An overview of the recovery of acid from spent acidic solutions from steel and electroplating industries, J. Hazard. Mater., 171 (2009) 61–75.
  3. P. Rudnicki, Z. Hubicki, D. Kołodyńska, Evaluation of heavy metal ions removal from acidic waste water streams, Chem. Eng. J., 252 (2014) 362–373.
  4. X. Feng, L.Y. Jiang, Y. Song, Titanium white sulfuric acid concentration by direct contact membrane distillation, Chem. Eng. J., 285 (2016) 101–111.
  5. C.X. Tian, Effects of hydrolysis parameters on TiO2 white pigment from low concentration industrial TiOSO4 solution via sulfate process, Adv. Mater. Res., 602–604 (2013) 1243–1249.
  6. C.X. Tian, S.H. Huang, Y. Yang, Anatase TiO2 white pigment production from unenriched industrial titanyl sulfate solution via short sulfate process, Dyes Pigm., 96 (2013) 609–613.
  7. A. Salvador, M.C. Pascual-Martí, J.R. Adell, A. Requeni, J.G. March, Analytical methodologies for atomic spectrometric determination of metallic oxides in UV sunscreen creams, J. Pharm. Biomed. Anal., 22 (2000) 301–306.
  8. C.Y. Su, H.Z. Tang, K. Chu, C.K. Lin, Cosmetic properties of TiO2/mica-BN composite powder prepared by spray drying, Ceram. Int., 40 (2014) 6903–6911.
  9. P.S. Croce, A. Mousavi, A sustainable sulfate process to produce TiO2 pigments, Environ. Chem. Lett., 11 (2013) 325–328.
  10. Q.F. Wei, X.L. Ren, J.J. Guo, Y.X. Chen, Recovery and separation of sulfuric acid and iron from dilute acidic sulfate effluent and waste sulfuric acid by solvent extraction and stripping, J. Hazard. Mater., 304 (2016) 1–9.
  11. C.H. Huang, T.W. Xu, Y.P. Zhang, Y.H. Xue, G.W. Chen, Application of electrodialysis to the production of organic acids: state-of-the-art and recent developments, J. Membr. Sci., 288 (2007) 1–12.
  12. H. Takahashi, K. Ohba, K.I. Kikuchi, Sorption of monocarboxylic acids by an anion-exchange membrane, Biochem. Eng. J., 16 (2003) 311–315.
  13. M. Bailly, Production of organic acids by bipolar electrodialysis: realizations and perspectives, Desalination, 144 (2002) 157–162.
  14. M. Bailly, H.R.D. Balmann, P. Aimar, F. Lutin, M. Cheryan, Production processes of fermented organic acids targeted around membrane operations: design of the concentration step by conventional electrodialysis, J. Membr. Sci., 191 (2001) 129–142.
  15. M. Tomaszewska, M. Gryta, A.W. Morawski, Recovery of hydrochloric acid from metal pickling solutions by membrane distillation, Sep. Purif. Technol., 22–23 (2001) 591–600.
  16. S.C. Wu, Z.M. Cheng, S.D. Wang, X.L. Shan, Recovery of terephthalic acid from alkali reduction wastewater by cooling crystallization, Chem. Eng. Technol., 34 (2011) 1614–1618.
  17. V. Nenov, N. Dimitrova, I. Dobrevsky, Recovery of sulphuric acid from waste aqueous solutions containing arsenic by ion exchange, Hydrometallurgy, 44 (1997) 43–52.
  18. C.H. Shin, J.Y. Kim, J.Y. Kim, H.S. Kim, H.S. Lee, D. Mohapatra, J.W. Ahn, J.G. Ahn, W. Bae, A solvent extraction approach to recover acetic acid from mixed waste acids produced during semiconductor wafer process, J. Hazard. Mater., 162 (2009) 1278–1284.
  19. L. Cifuentes, I. García, P. Arriagada, J.M. Casas, The use of electrodialysis for metal separation and water recovery from CuSO4-H2SO4-Fe solutions, Sep. Purif. Technol., 68 (2009) 105–108.
  20. J. Xu, S.G. Lu, D. Fu, Recovery of hydrochloric acid from the waste acid solution by diffusion dialysis, J. Hazard. Mater., 165 (2009) 832–837.
  21. X. Zhang, X.L. Wang, C.R. Li, H.Y. Feng, Y.M. Wang, J.Y. Luo, T.W. Xu, A quantification of diffusion dialysis process: single electrolyte system (sodium chloride solution), Sep. Purif. Technol., 105 (2013) 48–54.
  22. J.Y. Luo, C.M. Wu, T.W. Xu, Y.H. Wu, Diffusion dialysisconcept, principle and applications, J. Membr. Sci., 366 (2011) 1–16.
  23. T.W. Xu, W.H. Yang, Sulfuric acid recovery from titanium white (pigment) waste liquor using diffusion dialysis with a new series of anion exchange membranes — static runs, J. Membr. Sci., 183 (2001) 193–200.
  24. Z. Palatý, H. Bendová, Separation of HCl+FeCl2 mixture by anion-exchange membrane, Sep. Purif. Technol., 66 (2009) 45–50.
  25. C.M. Wu, Y.H. Wu, J.Y. Luo, T.W. Xu, Y.X. Fu, Anion exchange hybrid membranes from PVA and multi-alkoxy silicon copolymer tailored for diffusion dialysis process, J. Membr. Sci., 356 (2010) 96–104.
  26. J.J. Tang, K.G. Zhou, Q.X. Zhang, Sulfuric acid recovery from rare earth sulphate solutions by diffusion dialysis, Trans. Nonferrous. Met. Soc. China, 16 (2006) 951–955.
  27. Y.H. Wu, J.Y. Luo, L.L. Yao, C.M. Wu, F.L. Mao, T.W. Xu, PVA/SiO2 anion exchange hybrid membranes from multisilicon copolymers with two types of molecular weights, J. Membr. Sci., 399–400 (2012) 16–27.
  28. F.J. Sun, C.M. Wu, Y.H. Wu, T.W. Xu, Porous BPPO-based membranes modified by multisilicon copolymer for application in diffusion dialysis, J. Membr. Sci., 450 (2014) 103–110.
  29. X.C. Lin, E. Shamsaei, B. Kong, J.Z. Liu, Y.X. Hu, T.W. Xu, H.T. Wang, Porous diffusion dialysis membranes for rapid acid recovery, J. Membr. Sci., 502 (2016) 76–83.
  30. X.C. Lin, S. Kim, D.M. Zhu, E. Shamsaei, T.W. Xu, X.Y. Fang, H.T. Wang, Preparation of porous diffusion dialysis membranes by functionalization of polysulfone for acid recovery, J. Membr. Sci., 524 (2017) 557–564.
  31. X.C. Lin, E. Shamsaei, B. Kong, J.Z. Liu, T.W. Xu, H.T. Wang, Fabrication of asymmetrical diffusion dialysis membranes for rapid acid recovery with high purity, J. Mater. Chem. A, 4 (2016) 8478–8478.
  32. S. Kim, K.S. Jang, H.D. Choi, S.H. Choi, S.J. Kwon, I.D. Kim, J.A. Lim, J.M. Hong, Porous polyimide membranes prepared by wet phase inversion for use in low dielectric applications, Int. J. Mol. Sci., 14 (2013) 8698.
  33. K. Vanherck, G. Koeckelberghs, I.F.J. Vankelecom, Crosslinking polyimides for membrane applications: a review, Prog. Polym. Sci., 38 (2013) 874–896.
  34. P.S. Tin, T.S. Chung, Y. Liu, R. Wang, S.L. Liu, K.P. Pramoda, Effects of cross-linking modification on gas separation performance of Matrimid membranes, J. Membr. Sci., 225 (2003) 77–90.
  35. W.Y. Xu, D.R. Paul, W.J. Koros, Carboxylic acid containing polyimides for pervaporation separations of toluene/iso-octane mixtures, J. Membr. Sci., 219 (2003) 89–102.
  36. N.L. Le, Y. Wang, T.S. Chung, Synthesis, cross-linking modifications of 6FDA-NDA/DABA polyimide membranes for ethanol dehydration via pervaporation, J. Membr. Sci., 415–416 (2012) 109–121.
  37. I.C. Kim, J.H. Kim, K.H. Lee, T.M. Tak, Phospholipids separation (degumming) from crude vegetable oil by polyimide ultrafiltration membrane, J. Membr. Sci., 205 (2002) 113–123.
  38. C.Y. Ba, J. Langer, J. Economy, Chemical modification of P84 copolyimide membranes by polyethylenimine for nanofiltration, J. Membr. Sci., 327 (2009) 49–58.
  39. J.H. Cheng, Y.C. Xiao, C.M. Wu, T.S. Chung, Chemical modification of P84 polyimide as anion-exchange membranes in a free-flow isoelectric focusing system for protein separation, Chem. Eng. J., 160 (2010) 340–350.
  40. Y.H. Wu, P.F. Wang, G.C. Zhang, C.M. Wu, Water osmosis in separating acidic HCl/glyphosate liquor by continuous diffusion dialysis, Sep. Purif. Technol., 179 (2017) 86–93.
  41. C.Y. Zhang, S. Xue, G.S. Wang, C.M. Wu, Y.H. Wu, Production of lactobionic acid by BMED process using porous P84 co-polyimide anion exchange membranes, Sep. Purif. Technol., 173 (2016) 174–182.
  42. W. Li, Y.M. Zhang, J. Huang, X.B. Zhu, Y. Wang, Separation and recovery of sulfuric acid from acidic vanadium leaching solution by diffusion dialysis, Sep. Purif. Technol., 96 (2012) 44–49.
  43. M.I. Khan, A.N. Mondal, C.L. Cheng, J.F. Pan, K. Emmanuel, L. Wu, T.W. Xu, Porous BPPO-based membranes modified by aromatic amine for acid recovery, Sep. Purif. Technol., 157 (2016) 27–34.
  44. L. Ge, A.N. Mondal, X.H. Liu, B. Wu, D.B. Yu, Q.H. Li, J.B. Miao, Q.Q. Ge, T.W. Xu, Advanced charged porous membranes with ultrahigh selectivity and permeability for acid recovery, J. Membr. Sci., 536 (2017) 1
  45. D.S. Kim, H.B. Park, Y.M. Lee, Y.H. Park, J.W. Rhim, Preparation and characterization of PVDF/silica hybrid membranes containing sulfonic acid groups, J. Appl. Polym. Sci., 93 (2004) 209–218.
  46. J.Y. Luo, C.M. Wu, Y.H. Wu, T.W. Xu, Diffusion dialysis of hydrochloride acid at different temperatures using PPO–SiO2 hybrid anion exchange membranes, J. Membr. Sci., 347 (2010) 240–249.
  47. A.N. Mondal, C.L. Zheng, C.L. Cheng, M.M. Hossain, M.I. Khan, Z.L. Yao, L. Wu, T.W. Xu, Effect of novel polysiloxane functionalized poly(AMPS-co-CEA) membranes for base recovery from alkaline waste solutions via diffusion dialysis, RSC Adv., 5 (2015) 95256–95267.
  48. M. Irfan, N.U. Afsar, E. Bakangura, A.N. Mondal, M.I. Khan, K. Emmanuel, Z.J. Yang, L. Wu, T.W. Xu, Development of novel PVA-QUDAP based anion exchange membranes for diffusion dialysis and theoretical analysis therein, Sep. Purif. Technol., 178 (2017) 269–278.
  49. A. Narěbska, M. Staniszewski, Separation of fermentation products by membrane techniques. I. Separation of lactic acid/lactates by diffusion dialysis, Sep. Sci. Technol., 32 (1997) 1669–1682.
  50. Y.B. He, J.F. Pan, L. Wu, L. Ge, T.W. Xu, Facile preparation of 1,8-diazabicyclo[5.4.0] undec-7-ene based high performance anion exchange membranes for diffusion dialysis applications, J. Membr. Sci., 491 (2015) 45–52.
  51. Y.Y. Zhao, M.R. Li, Z.Z. Yuan, X.F. Li, H.M. Zhang, I.F.J. Vankelecom, Advanced charged sponge‐like membrane with ultrahigh stability and selectivity for vanadium flow batteries, Adv. Funct. Mater., 26 (2016) 210–218.
  52. H.Z. Zhang, H.M. Zhang, F.X. Zhang, X.F. Li, Y. Li, I. Vankelecom, Advanced charged membranes with highly symmetric spongy structures for vanadium flow battery application, Energy Environ. Sci., 6 (2013) 776–781.
  53. L.R. Valladares, Z. Li, S. Sarp, S.S. Bucs, G. Amy, J.S. Vrouwenvelder, Forward osmosis niches in seawater desalination and wastewater reuse, Water Res., 66 (2014) 122–139.