References

  1. S.-H. Lin, R.-S. Juang, Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: a review, J. Environ. Manage., 90 (2009) 1336–1349.
  2. A. Dąbrowski, P. Podkościelny, Z. Hubicki, M. Barczak, Adsorption of phenolic compounds by activated carbon – a critical review, Chemosphere, 58 (2005) 1049–1070.
  3. L. Kovalova, H. Siegrist, U. von Gunten, J. Eugster, M. Hagenbuch, A. Wittmer, R. Moser, C.S. McArdell, Elimination of micropollutants during post-treatment of hospital wastewater with powdered activated carbon, ozone, and UV, Environ. Sci. Technol., 47 (2013) 7899–7908.
  4. J. Hoigné, H. Bader, Rate constants of reactions of ozone with organic and inorganic compounds in water – I, Water Res., 17 (1983) 173–183.
  5. U. Jans, J. Hoigné, Atmospheric water: transformation of ozone into OH-radicals by sensitized photoreactions or black carbon, Atmos. Environ., 34 (2000) 1069–1085.
  6. R. Andreozzi, V. Caprio, A. Insola, R. Marotta, Advanced oxidation processes (AOP) for water purification and recovery, Catal. Today, 53 (1999) 51–59.
  7. B. Legube, N. Karpel Vel Leitner, Catalytic ozonation: a promising advanced oxidation technology for water treatment, Catal. Today, 53 (1999) 61–72.
  8. Y.-H. Chen, N.-C. Shang, D.-C. Hsieh, Decomposition of dimethyl phthalate in an aqueous solution by ozonation with high silica zeolites and UV radiation, J. Hazard. Mater., 157 (2008) 260–268.
  9. B. Kasprzyk-Hordern, U. Raczyk-Stanisławiak, J. Świetlik, J. Nawrocki, Catalytic ozonation of natural organic matter on alumina, Appl. Catal., B, 62 (2006) 345–358.
  10. W. Szeto, J. Li, H. Huang, D.Y.C. Leung, VUV/TiO2 photocatalytic oxidation process of methyl orange and simultaneous utilization of the lamp-generated ozone, Chem. Eng. Sci., 177 (2018) 380–390.
  11. A. Ikhlaq, D.R. Brown, B. Kasprzyk-Hordern, Mechanisms of catalytic ozonation: an investigation into superoxide ion radical and hydrogen peroxide formation during catalytic ozonation on alumina and zeolites in water, Appl. Catal., B, 129 (2013) 437–449.
  12. F.J. Beltrán, F.J. Rivas, R. Montero-de-Espinosa, Catalytic ozonation of oxalic acid in an aqueous TiO2 slurry reactor, Appl. Catal., B, 39 (2002) 221–231.
  13. L.R. Radovic, Chemistry & Physics of Carbon, CRC Press, Boca Raton, Florida, United States, 2007.
  14. J. Wang, Y. Zhou, W. Zhu, X. He, Catalytic ozonation of dimethyl phthalate and chlorination disinfection by-product precursors over Ru/AC, J. Hazard. Mater., 166 (2009) 502–507.
  15. L. Li, W. Ye, Q. Zhang, F. Sun, P. Lu, X. Li, Catalytic ozonation of dimethyl phthalate over cerium supported on activated carbon, J. Hazard. Mater., 170 (2009) 411–416.
  16. P.R. Shukla, S. Wang, H. Sun, H.M. Ang, M. Tadé, Activated carbon supported cobalt catalysts for advanced oxidation of organic contaminants in aqueous solution, Appl. Catal., B, 100 (2010) 529–534.
  17. X. Li, Q. Zhang, L. Tang, P. Lu, F. Sun, L. Li, Catalytic ozonation of p-chlorobenzoic acid by activated carbon and nickel supported activated carbon prepared from petroleum coke, J. Hazard. Mater., 163 (2009) 115–120.
  18. E. Díaz, A.F. Mohedano, L. Calvo, M.A. Gilarranz, J.A. Casas, J.J. Rodríguez, Hydrogenation of phenol in aqueous phase with palladium on activated carbon catalysts, Chem. Eng. J., 131 (2007) 65–71.
  19. A. Di Paola, V. Augugliaro, L. Palmisano, G. Pantaleo, E. Savinov, Heterogeneous photocatalytic degradation of nitrophenols, J. Photochem. Photobiol., A, 155 (2003) 207–214.
  20. G.M.S. ElShafei, A.M. Al-Sabagh, F.Z. Yehia, C.A. Philip, N.A. Moussa, G. Eshaq, A.E. ElMetwally, Metal oxychlorides as robust heterogeneous Fenton catalysts for the sonophotocatalytic degradation of 2-nitrophenol, Appl. Catal., B, 224 (2018) 681–691.
  21. C.S.D. Rodrigues, O.S.G.P. Soares, M.T. Pinho, M.F.R. Pereira, L.M. Madeira, p-Nitrophenol degradation by heterogeneous Fenton’s oxidation over activated carbon-based catalysts, Appl. Catal., B, 219 (2017) 109–122.
  22. I. Ghouma, M. Jeguirim, S. Dorge, L. Limousy, C. Matei Ghimbeu, A. Ouederni, Activated carbon prepared by physical activation of olive stones for the removal of NO2 at ambient temperature, C. R. Chim., 18 (2015) 63–74.
  23. S. Brunauer, L.S. Deming, W.E. Deming, E. Teller, On a theory of the van der Waals adsorption of gases, J. Am. Chem. Soc., 62 (1940) 1723–1732.
  24. M. Haro, B. Ruiz, M. Andrade, A.S. Mestre, J.B. Parra, A.P. Carvalho, C.O. Ania, Dual role of copper on the reactivity of activated carbons from coal and lignocellulosic precursors, Microporous Mesoporous Mater., 154 (2012) 68–73.
  25. J.L. Figueiredo, M.F.R. Pereira, M.M.A. Freitas, J.J.M. Órfão, Modification of the surface chemistry of activated carbons, Carbon, 37 (1999) 1379–1389.
  26. H.P. Boehm, Surface oxides on carbon and their analysis: a critical assessment, Carbon, 40 (2002) 145–149.
  27. C.M. Ghimbeu, R. Gadiou, J. Dentzer, L. Vidal, C. Vix-Guterl, A TPD-MS study of the adsorption of ethanol/cyclohexane mixture on activated carbons, Adsorption, 17 (2011) 227–233.
  28. U. Jans, J. Hoigné, Activated carbon and carbon black catalyzed transformation of aqueous ozone into OH-radicals, Ozone Sci. Eng., 20 (1998) 67–90.
  29. P.C.C. Faria, J.J.M. Órfão, M.F.R. Pereira, Activated carbon catalytic ozonation of oxamic and oxalic acids, Appl. Catal., B, 79 (2008) 237–243.