References

  1. M. Couderc, L. Poirier, A. Zalouk-Vergnoux, A. Kamari, I. Blanchet-Letrouvé, P. Marchand, A. Vénisseau, B. Veyrand, C. Mouneyrac, B. Le Bizec, Occurrence of POPs and other persistent organic contaminants in the European eel (Anguilla anguilla) from the Loire estuary, France, Sci. Total Environ., 505 (2015) 199–215.
  2. D. Barceló, Emerging pollutants in water analysis, TrAC, Trends Anal. Chem., 22 (2003) 14–16.
  3. X.R. Xu, X.Y. Li, Sorption and desorption of antibiotic tetracycline on marine sediments, Chemosphere, 78 (2010) 430–436.
  4. O. Herrero, J.M. Pérez Martín, P. Fernández Freire, L. Carvajal López, A. Peropadre, M.J. Hazen, Toxicological evaluation of three contaminants of emerging concern by use of the Allium cepa test, Mutat. Res., 743 (2012) 20–24.
  5. S. Kitamura, T. Suzuki, S. Sanoh, R. Kohta, N. Jinno, K. Sugihara, S. Yoshihara, N. Fujimoto, H. Watanabe, S. Ohta, Comparative study of the endocrine-disrupting activity of bisphenol A and 19 related compounds, Toxicol. Sci., 84 (2005) 249–259.
  6. J. Rivera-Utrilla, G. Prados-Joya, M. Sánchez-Polo, M.A. Ferro-García, I. Bautista-Toledo, Removal of nitroimidazole antibiotics from aqueous solution by adsorption/bioadsorption on activated carbon, J. Hazard. Mater., 170 (2009) 298–305.
  7. X. Xie, Q. Zhou, Z. He, Y. Bao, Physiological and potential genetic toxicity of chlortetracycline as an emerging pollutant in wheat (Triticum aestivum L.), Environ. Toxicol. Chem., 29 (2010) 922–928.
  8. A.J. Watkinson, E.J. Murby, D.W. Kolpin, S.D. Costanzo, The occurrence of antibiotics in an urban watershed: from wastewater to drinking water, Sci. Total Environ., 407 (2009) 2711–2723.
  9. B. Li, T. Zhang, Mass flows and removal of antibiotics in two municipal wastewater treatment plants, Chemosphere, 83 (2011) 1284–1289.
  10. H. Sun, X. Shi, J. Mao, D. Zhu, Tetracycline sorption to coal and soil humic acids: an examination of humic structural heterogeneity, Environ. Toxicol. Chem., 29 (2010) 1934–1942.
  11. K. Košutić, D. Dolar, D. Ašperger, B. Kunst, Removal of antibiotics from a model wastewater by RO/NF membranes, Sep. Purif. Technol., 53 (2007) 244–249.
  12. V. Homem, L. Santos, Degradation and removal methods of antibiotics from aqueous matrices: a review, J. Environ. Manage., 92 (2011) 2304–2347.
  13. R. Daghrir, P. Drogui, M.A. El Khakani, Photoelectrocatalytic oxidation of chlortetracycline using Ti/TiO2 photo-anode with simultaneous H2O2 production, Electrochim. Acta., 87 (2013) 18–31.
  14. E.K. Putra, R. Pranowo, J. Sunarso, N. Indraswati, S. Ismadji, Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: mechanisms, isotherms and kinetics, Water Res., 43 (2009) 2419–2430.
  15. G. Kyriakopoulos, D. Doulia, Adsorption of pesticides on carbonaceous and polymeric materials from aqueous solutions: a review, Sep. Purif. Rev., 35 (2006) 97–191.
  16. J. Torres-Perez, C. Gerente, Y. Andres, Conversion of agricultural residues into activated carbons for water purification: application to arsenate removal, J. Environ. Sci. Health., Part A, 47 (2012) 1173–1185.
  17. J. Torres-Pérez, L.A. Soria-Serna, M. Solache-Ríos, G. McKay, One step carbonization/activation process for carbonaceous material preparation from pecan shells for tartrazine removal and regeneration after saturation, Adsorpt. Sci. Technol., 33 (2015) 895–913.
  18. J.P. Chen, S. Wu, K.H. Chong, Surface modification of a granular activated carbon by citric acid for enhancement of copper adsorption, Carbon, 41 (2003) 1979–1986.
  19. American Society for Testing and Materials, Annual Book of the ASTM Standards, 1994.
  20. P. Faria, J. Orfao, M. Pereira, Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries, Water Res., 38 (2004) 2043–2052.
  21. Z.M. Wang, H. Kanoh, K. Kaneko, G.Q. Lu, D. Do, Structural and surface property changes of macadamia nut-shell char upon activation and high temperature treatment, Carbon, 40 (2002) 1231–1239.
  22. A.C. Martins, O. Pezoti, A.L. Cazetta, K.C. Bedin, D.A.S. Yamazaki, G.F.G. Bandoch, T. Asefa, J.V. Visentainer, V.C. Almeida, Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: kinetic and equilibrium studies, Chem. Eng. J., 260 (2015) 291–299.
  23. J. Rivera-Utrilla, I. Bautista-Toledo, M.A. Ferro-Garcia, C. Moreno-Castilla, Activated carbon surface modifications by adsorption of bacteria and their effect on aqueous lead adsorption, J. Chem. Technol. Biotechnol., 76 (2001) 1209–1215.
  24. K.Y. Foo, B.H. Hameed, Microwave-assisted preparation of oil palm fiber activated carbon for methylene blue adsorption, Chem. Eng. J., 166 (2011) 792–795.
  25. V.O. Njoku, K.Y. Foo, B.H. Hameed, Microwaveassisted preparation of pumpkin seed hull activated carbon and its application for the adsorptive removal of 2,4-dichlorophenoxyacetic acid, Chem. Eng. J., 215–216 (2013) 383–388.
  26. R.H. Hesas, A. Arami-Niya, W.M. Wan Daud, J.N. Sahu, Preparation of granular activated carbon from oil palm shell by microwave-induced chemical activation: optimisation using surface response methodology, Chem. Eng. Res. Des., 91 (2013) 2447–2456.
  27. J.M. Salman, V.O. Njoku, B.H. Hameed, Bentazon and carbofuran adsorption onto date seed activated carbon: kinetics and equilibrium, Chem. Eng. J., 173 (2011) 361–368.
  28. M. Olivares-Marín, C. Fernández-González, A. Macías-García, V. Gómez-Serrano, Preparation of activated carbon from cherry stones by physical activation in air. Influence of the chemical carbonisation with H2SO4, J. Anal. Appl. Pyrolysis, 94 (2012) 131–137.
  29. A.L. Cazetta, A.M.M. Vargas, E.M. Nogami, M.H. Kunita, M.R. Guilherme, A.C. Martins, T.L. Silva, J.C.G. Moraes, V.C. Almeida, NaOH-activated carbon of high surface area produced from coconut shell: kinetics and equilibrium studies from the methylene blue adsorption, Chem. Eng. J., 174 (2011) 117–125.
  30. S. Lagergren, To the theory of dissolved substances adsorption, K. Sven. Vetenskapsakademiens Handl., 24 (1898) 1–39.
  31. Y.S. Ho, G. McKay, Application of kinetic models to the sorption of copper(II) on to peat, Adsorpt. Sci. Technol., 20 (2002) 797–815.
  32. M.R. Samarghandi, M. Hadi, G. Mckay, Breakthrough curve analysis for fixed-bed adsorption of azo dyes using novel pine cone-derived active carbon, Adsorpt. Sci. Technol., 32 (2014) 791–806.
  33. R. Cortés-Martínez, V. Martínez-Miranda, M. Solache-Ríos, I. García-Sosa, Evaluation of natural and surfactant-modified zeolites in the removal of cadmium from aqueous solutions, Sep. Sci. Technol., 39 (2004) 2711–2730.
  34. B.H. Hameed, I.A.W. Tan, A.L. Ahmad, Adsorption isotherm, kinetic modeling and mechanism of 2,4,6-trichlorophenol on coconut husk-based activated carbon, Chem. Eng. J., 144 (2008) 235–244.
  35. S. Sen Gupta, K.G. Bhattacharyya, Kinetics of adsorption of metal ions on inorganic materials: a review, Adv. Colloid Interface Sci., 162 (2011) 39–58.
  36. M.A.M. Salleh, D.K. Mahmoud, W.A.W.A. Karim, A. Idris, Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review, Desalination, 280 (2011) 1–13.
  37. V. Vimonses, S. Lei, B. Jin, C.W.K. Chow, C. Saint, Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials, Chem. Eng. J., 148 (2009) 354–364.
  38. M. Akhtar, S.M. Hasany, M.I. Bhanger, S. Iqbal, Low cost sorbents for the removal of methyl parathion pesticide from aqueous solutions, Chemosphere, 66 (2007) 1829–1838.
  39. U.R. Malik, S.M. Hasany, M.S. Subhani, Sorptive potential of sunflower stem for Cr(III) ions from aqueous solutions and its kinetic and thermodynamic profile, Talanta, 66 (2005) 166–173.
  40. B. Sellergren, Imprinted chiral stationary phases in highperformance liquid chromatography, J. Chromatogr., A, 906 (2001) 227–252.
  41. Y.L. Ma, Z.R. Xu, T. Guo, P. You, Adsorption of methylene blue on Cu(II)-exchanged montmorillonite, J. Colloid Interface Sci., 280 (2004) 283–288.
  42. H. Faghihian, M.K. Amini, A.R. Nezamzadeh, Cerium uptake by zeolite a synthesized from natural clinoptilolite tuffs, J. Radioanal. Nucl. Chem., 264 (2005) 577–582.
  43. M. Al-Ghouti, M.A.M. Khraisheh, M.N.M. Ahmad, S. Allen, Thermodynamic behaviour and the effect of temperature on the removal of dyes from aqueous solution using modified diatomite: a kinetic study, J. Colloid Interface Sci., 287 (2005) 6–13.
  44. H.R. Pouretedal, N. Sadegh, Effective removal of Amoxicillin, Cephalexin, Tetracycline and Penicillin G from aqueous solutions using activated carbon nanoparticles prepared from vine wood, J. Water Process Eng., 1 (2014) 64–73.
  45. I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. Solids, J. Am. Chem. Soc., 38 (1916) 2221–2295.
  46. R. Acosta, V. Fierro, A. Martinez de Yuso, D. Nabarlatz, A. Celzard, Tetracycline adsorption onto activated carbons produced by KOH activation of tyre pyrolysis char, Chemosphere, 149 (2016) 168–176.
  47. H. Sayğılı, F. Güzel, Effective removal of tetracycline from aqueous solution using activated carbon prepared from tomato (Lycopersicon esculentum Mill.) industrial processing waste, Ecotoxicol. Environ. Saf., 131 (2016) 22–29.
  48. J. Torres-Pérez, C. Gérente, Y. Andrès, Sustainable activated carbons from agricultural residues dedicated to antibiotic removal by adsorption, Chin. J. Chem. Eng., 20 (2012) 524–529.
  49. P. Liu, W.J. Liu, H. Jiang, J.J. Chen, W.W. Li, H.Q. Yu, Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution, Bioresour. Technol., 121 (2012) 235–240.
  50. Y. Gao, Y. Li, L. Zhang, H. Huang, J. Hu, S.M. Shah, X. Su, Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide, J. Colloid Interface Sci., 368 (2012) 540–546.
  51. D. Zhang, J. Yin, J. Zhao, H. Zhu, C. Wang, Adsorption and removal of tetracycline from water by petroleum coke-derived highly porous activated carbon, J. Environ. Chem. Eng., 3 (2015) 1504–1512.
  52. X. Zhu, Y. Liu, F. Qian, C. Zhou, S. Zhang, J. Chen, Preparation of magnetic porous carbon from waste hydrochar by simultaneous activation and magnetization for tetracycline removal, Bioresour. Technol., 154 (2014) 209–214.
  53. H.M.F. Freundlich, Over the adsorption in solution, J. Phys. Chem., 57 (1906) 385–471.
  54. M. Temkin, V. Pyzhev, Kinetics of ammonia synthesis on promoted iron catalysts, Acta Physiocochim. U.R.S.S., 12 (1940) 217–222.
  55. Z. Li, L. Schulz, C. Ackley, N. Fenske, Adsorption of tetracycline on kaolinite with pH-dependent surface charges, J. Colloid Interface Sci., 351 (2010) 254–260.
  56. A.M.M. Vargas, A.L. Cazetta, M.H. Kunita, T.L. Silva, V.C. Almeida, Adsorption of methylene blue on activated carbon produced from flamboyant pods (Delonix regia): study of adsorption isotherms and kinetic models, Chem. Eng. J., 168 (2011) 722–730.
  57. T.L. Ter Laak, P. Mayer, F.J.M. Busser, H.J.C. Klamer, J.L.M. Hermens, Sediment dilution method to determine sorption coefficients of hydrophobic organic chemicals, Environ. Sci. Technol., 39 (2005) 4220–4225.