References

  1. X. Li, J. Song, J. Guo, Z. Wang, Q. Feng, Landfill leachate treatment using electrocoagulation, Procedia Environ. Sci., 10 (2011) 1159–1164.
  2. S. Renou, J.G. Givaudan, S. Poulain, F. Dirassouyan, P. Moulin, Landfill leachate treatment: review and opportunity, J. Hazard. Mater., 150 (2008) 468–493.
  3. I.A. Talalaj, P. Biedka, Impact of concentrated leachate recirculation on effectiveness of leachate treatment by reverse osmosis, Ecol. Eng., 85 (2015) 185–192.
  4. R. He, X. Wei, B. Tian, Y. Su, Y. Lu, Characterization of a joint recirculation of concentrated leachate and leachate to landfills with a microaerobic bioreactor for leachate treatment, Waste Manage., 46 (2015) 380–388.
  5. F. Isabel, S. Rui, A.R.B. Enric, Electrochemical advanced oxidation processes for sanitary landfill leachate remediation: evaluation of operational variables, Appl. Catal., B, 182 (2015) 161–171.
  6. L. Xian, L. Xiao-Ming, Y. Qi, Y. Xiu, S. Ting-Ting, Z. Wei, L. Kun, S. Yi-Hu, Z. Guang-Ming, Landfill leachate pretreatment by coagulation – flocculation process using iron-based coagulants: optimization by response surface methodology, Chem. Eng. J., 200–202 (2012) 39–51.
  7. R.R. Babu, N.S. Bhadrinarayana, K.M.M.S. Begum, N. Anantharaman, Treatment of tannery wastewater by electrocoagulation, J. Univ. Chem. Technol. Metall., 42 (2007) 201–206.
  8. F. Ilhan, U. Kurt, O. Apaydin, M.T. Gonullu, Treatment of leachate by electrocoagulation using aluminum and iron electrodes, J. Hazard. Mater., 154 (2008) 381–389.
  9. F. Bouhezila, M. Hariti, H. Lounici, N. Mameri, Treatment of the OUED SMAR town land fill leachate by an electrochemical reactor, Desalination, 280 (2011) 347–353.
  10. N.K. Shammas, M.-F. Pouet, A. Grasmick, Flotation Technology, L.K. Wang, N.K. Shammas, W.A. ASelke, D.B. Aulenbach, Eds., Flotation Technology, New York, 2010, pp. 199–220.
  11. E. Bazrafshan, H. Biglari, A.H. Mahvi, Humic acid removal from aqueous environments by electrocoagulation process using iron electrodes, E-J. Chem., 9 (2012) 2453–2461.
  12. A.K. Golder, A.N. Samanta, S. Ray, Removal of Cr3+ by electrocoagulation with multiple electrodes: bipolar and monopolar configurations, J. Hazard. Mater., 141 (2007) 653–661.
  13. O.T. Can, M. Bayramoglu, M. Kobya, Decolorization of reactive dye solutions by electrocoagulation using aluminum electrodes, Ind. Eng. Chem. Res., 2 (2003) 3391–3396.
  14. M.Y.A. Mollah, R. Schennach, J.R. Parga, D.L. Cocke, Electrocoagulation (EC) – science and applications, J. Hazard. Mater., 84 (2001) 29–41.
  15. O. Dia, P. Drogui, R. Dubé, Le traitement des lixiviats de sites d'enfouissement sanitaires – revue de littérature, Rev. des Sci. l’eau, 2017.
  16. V. Khandegar, A.K. Saroha, Electrocoagulation for the treatment of textile industry effluent – a review, J. Environ. Manage., 128 (2013) 949–963.
  17. J. Rosie, I. Shaharin, H. Normala, Electrocoagulation for removal of chemical oxygen demand in sanitary landfill leachate, Int. J. Environ. Sci., 3 (2012) 921–930.
  18. K. Ravikumar, S. Ramalingam, S. Krishnan, K. Balu, Application of response surface methodology to optimize the process variables for Reactive Red and Acid Brown dye removal using a novel adsorbent, Dyes Pigm., 70 (2006) 18–26.
  19. M. Elibol, Response surface methodological approach for inclusion of perfluorocarbon in actinorhodin fermentation medium, Process Biochem., 38 (2002) 667–673.
  20. K. Ravikumar, S. Krishnan, S. Ramalingam, K. Balu, Optimization of process variables by the application of response surface methodology for dye removal using a novel adsorbent, Dyes Pigm., 72 (2007) 66–74.
  21. A.R. Khataee, M. Fathinia, S. Aber, M. Zarei, Optimization of photocatalytic treatment of dye solution on supported TiO2 nanoparticles by central composite design: intermediates identification, J. Hazard. Mater., 181 (2010) 886–897.
  22. C. Il-hyoung, Z. Kyung-duk, Photocatalytic degradation of azo dye (Reactive Red 120) in TiO2/UV system: optimization and modeling using a response surface methodology (RSM) based on the central composite design, Dyes Pigm., 75 (2007) 533–543.
  23. M. Berkani, M. Bouhelassa, M.K. Bouchareb, Implementation of a venturi photocatalytic reactor: optimization of photodecolorization of an industrial azo dye, Arabian J. Chem., (in press).
  24. E. Rice, R. Baird, A. Eaton, Standard Methods for the Examination of Water and Wastewater, 22nd ed., American Public Health Association, Washington, 2012.
  25. C. Phalakornkule, S. Polgumhang, W. Tongdaung, Electrocoagulation of blue reactive, red disperse and mixed dyes, and application in treating textile effluent, J. Environ. Manage., 91 (2010) 918–926.
  26. M. Zarei, A. Niaei, D. Salari, A. Khataee, Application of response surface methodology for optimization of peroxi-coagulation of textile dye solution using carbon nanotube – PTFE cathode, J. Hazard. Mater., 173 (2010) 544–551.
  27. A. Aleboyeh, N. Daneshvar, M.B. Kasiri, Optimization of C.I. Acid Red 14 azo dye removal by electrocoagulation batch process with response surface methodology, Chem. Eng. Process., 47 (2008) 827–832.
  28. H. Liu, Y. Chiou, Optimal decolorization efficiency of Reactive Red 239 by UV/TiO2 photocatalytic process coupled with response surface methodology, Chem. Eng. J., 112 (2005) 173–179.
  29. A. Alinsafi, M. Khemis, M.N. Pons, J.P. Leclerc, A. Yaacoubi, A. Benhammou, A. Nejmeddine, Electro-coagulation of reactive textile dyes and textile wastewater, Chem. Eng. Process., 44 (2005) 461–470.
  30. A.I. Khuri, C. John, Response Surface: Design and Analysis, Dekker, New York, 1987.
  31. W. Jiang, J.A. Joens, D.D. Dionysiou, K.E.O. Shea, Optimization of photocatalytic performance of TiO2 coated glass microspheres using response surface methodology and the application for degradation of dimethyl phthalate, J. Photochem. Photobiol., A, 262 (2013) 7–13.
  32. A. Kesraoui, N. Oturan, N. Bellakhal, Experimental design methodology applied to electro-Fenton treatment for degradation of herbicide chlortoluron, Appl. Catal., B, 78 (2008) 334–341.
  33. H. Jafari, A. Hossein, A. Jonidi, Removal of lead and zinc from battery industry wastewater using electrocoagulation process: influence of direct and alternating current by using iron and stainless steel rod electrodes, Sep. Purif. Technol., 135 (2014) 165–175.
  34. S.E. Burns, S. Yiacoumi, C. Tsouris, Microbubble generation for environmental separations and industrial, Sep. Purif. Technol., 11 (2008) 221–232.
  35. P. Drogui, S.K. Brar, H. Benmoussa, Electrochemical removal of pollutants from agro-industry wastewaters, Sep. Purif. Technol., 61 (2008) 301–310.
  36. X. Chen, G. Chen, P.L. Yue, Separation of pollutants from restaurant wastewater by electrocoagulation, Sep. Purif. Technol., 19 (2000) 65–76.
  37. G. Chen, Electrochemical technologies in wastewater treatment, Sep. Purif. Technol., 38 (2004) 11–41.
  38. A.E. Yilmaz, R. Boncukcuo, M.M. Kocakerim, A quantitative comparison between electrocoagulation and chemical coagulation for boron removal from boron-containing solution, J. Hazard. Mater., 149 (2007) 475–481.