References

  1. R.L. McGinnis, M. Elimelech, Global challenges in energy and water supply: the promise of engineered osmosis, Environ. Sci. Technol., 42 (2008) 8625–8629.
  2. M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Mariňas, A.M. Mayes, Science and technology for water purification in the coming decades, Nature, 452 (2008) 301–310.
  3. D.L. Shaffer, J.R. Werber, H. Jaramillo, S. Lin, M. Elimelech, Forward osmosis: Where are we now?, Desalination, 356 (2015) 271–284.
  4. T.-S. Chung, S. Zhang, K.Y. Wang, J. Su, M.M. Ling, Forward osmosis processes: Yesterday, today and tomorrow, Desalination, 287 (2012) 78–81.
  5. B. Mi, M. Elimelech, Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents, J. Membr. Sci., 348 (2010) 337–345.
  6. T.-S. Chung, X. Li, R.C. Ong, Q. Ge, H. Wang, G. Han, Emerging forward osmosis (FO) technologies and challenges ahead for clean water and clean energy applications, Curr. Opin. Chem. Eng., 1 (2012) 246–257.
  7. L.A. Hoover, W.A. Phillip, A. Tiraferri, N.Y. Yip, M. Elimelech, Forward with osmosis: emerging applications for greater sustainability, Environ. Sci. Technol., 45 (2011) 9824–9830.
  8. T.Y. Cath, A.E. Childress, M. Elimelech, Forward osmosis: Principles, applications, and recent developments: review, J. Membr. Sci., 281 (2006) 70–87.
  9. R.W. Holloway, A.E. Childress, K.E. Dennett, T.Y. Cath, Forward osmosis for concentration of anaerobic digester centrate, Water Res., 41 (2007) 4005–4014.
  10. E.M. Garcia-Castello, J.R. McCutcheon, Dewatering press liquor derived from orange production by forward osmosis, J. Membr. Sci., 372 (2011) 97–101.
  11. Q. She, X. Jin, C.Y. Tang, Osmotic power production from salinity gradient resource by pressure retarded osmosis: Effects of operating conditions and reverse solute diffusion, J. Membr. Sci., 401–402 (2012) 262–273.
  12. O.A. Bamaga, A. Yokochi, E.G. Beaudry, Application of forward osmosis in pretreatment of seawater for small reverse osmosis desalination units, Desalination and Water Treat., 5 (2009) 183–191.
  13. J.R. McCutcheon, R.L. McGinnis, M. Elimelech, A novel ammonia- carbon dioxide forward (direct) osmosis desalination process, Desalination, 174 (2005) 1–11.
  14. A. Achilli, T.Y. Cath, A.E. Childress, Selection of inorganic- based draw solutions for forward osmosis applications, J. Membr. Sci., 364 (2010) 233–241.
  15. J.O. Kessler, C.D. Moody, Drinking water from sea water by forward osmosis. Desalination, 18 (1976) 297–306.
  16. N.T. Hau, S.S. Chen, N.C. Nguyen, K.Z. Huang, H.H. Ngo, W.S. Guo, Exploration of EDTA sodium salt as novel draw solution in forward osmosis process for dewatering of high nutrient sludge, J. Membr. Sci., 455 (2014) 305–311.
  17. D. Li, X. Zhang, J. Yao, G.P. Simon, H. Wang, Stimuli-responsive polymer hydrogels as a new class of draw agent for forward osmosis desalination, Chem. Commun., 47 (2011) 1710–1712.
  18. Q. Ge, J. Su, G.L. Amy, T.-S. Chung, Exploration of polyelectrolytes as draw solutes in forward osmosis processes, Water Res., 46 (2012) 1318–1326.
  19. M.L. Stone, C. Rae, F.F. Stewart, A.D. Wilson, Switchable polarity solvents as draw solutes for forward osmosis, Desalination, 312 (2013) 124–129.
  20. A.D. Wilson, F.F. Stewart, Structure-function study of tertiary amines as switchable polarity solvents, RSC Adv., 4 (2014) 11039–11049.
  21. C. Klaysom, T.Y. Cath, T. Depuydt, I.F.J. Vankelecom, Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply, Chem. Soc. Rev., 42 (2013) 6959–6989.
  22. P. Christian, F. Von der Kammer, M. Baalousha, T.h. Hofmann, Nanoparticles: structure, properties, preparation and behavior in environmental media, Ecotoxicology, 17 (2008) 326–343.
  23. M.M. Ling, K.Y. Wang, T.-S. Chung, Highly water soluble magnetic nanoparticles as novel draw solutes in forward osmosis for water reuse, Ind. Eng. Chem. Res., 49 (2010) 5869–5876.
  24. Q.C. Ge, J.C. Su, T.S. Chung, G. Amy, Hydrophilic super paramagnetic nanoparticles: synthesis, characterization, and performance in forward osmosis processes, Ind. Eng. Chem. Res., 50 (2011) 382–388.
  25. M.M. Ling, T.-S. Chung, Desalination process using super hydrophilic nanoparticles via forward osmosis integrated with ultrafiltration regeneration, Desalination, 278 (2011) 194–202.
  26. T. Alejo, M. Arruebo, V. Carcelen, V.M. Monsalvo, V. Sebastian, Advances in draw solutes for forward osmosis: Hybrid organic- inorganic nanoparticles and conventional solutes, Chem. Eng. J., 309 (2017) 738–752.
  27. L. Vayssie`res, C. Chane´ac, E. Tronc, J.-P. Jolivet, Size tailoring of magnetite particles formed by aqueous precipitation: An example of thermodynamic stability of nano metric oxide particles, J. Colloid Interface Sci., 205 (1998) 205–212.
  28. W. Jiang, H.C. Yang, S.Y. Yang, H.E. Horng, J.C. Hung, Y.C. Chen, C.Y. Hong, Preparation and properties of super paramagnetic nanoparticles with narrow size distribution and biocompatible, J. Magn. Magn. Mater., 283 (2004) 210–214.
  29. L. Babes, B. Denizot, G. Tanguy, J.J. Le Jeune, P. Jallet, Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study, J. Colloid Interface Sci., 212 (1999) 474–482.
  30. M. Mahdavi, M.B. Ahmad, M.J. Haron, F. Namvar, B. Nadi, M.Z. Ab Rahman, J. Amin, Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications, Molecules, 18 (2013) 7533–7548.
  31. D.K. Kim, Y. Zhang, W. Voit, K.V. Rao, M.J. Muhammed, Synthesis and characterization of surfactant-coated super paramagnetic mono dispersed iron oxide nanoparticles, J. Magn. Magn. Mater., 225 (2001) 30–36.
  32. A.K. Gupta, S. Wells, Surface-modified super paramagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies, IEEE Trans. Nano Biosci., 3 (2004) 66–73.
  33. A. Khan, Preparation and characterization of magnetic nanoparticles embedded in micro gels, Mater. Lett., 62 (2008) 898–902.
  34. J. Sun , S. Zhou, P. Hou, Y. Yang, J. Weng, X. Li, M. Li, Synthesis and characterization of biocompatible Fe3O4 nanoparticles, J. Biomed. Mater. Res. Part. A, 10 (2006) 333–341.
  35. T. Mishra, S. Ramola, A.K. Shankhwar, R.K. Srivastava, Use of synthesized hydrophilic magnetic nanoparticles (HMNPs) in forward osmosis for water reuse, Water Sci. Technol. Water Supply, 16 (2016) 229–236.
  36. B.M. Teo, F. Chen, T.A. Hatton, F. Grieser, M. Ashok kumar, Novel one-pot synthesis of magnetite latex nanoparticles by ultrasound irradiation, Langmuir, 25 (2009) 2593–2595.
  37. A.S. Teja, P.-Y. Koh, Synthesis, properties, and applications of magnetic iron oxide nanoparticles, Prog. Cryst. Growth Charact. Mater., 55 (2009) 22–45.
  38. J.M. Vargas, R.D. Zysler, Tailoring the size in colloidal iron oxide magnetic nanoparticles, Nanotechnology, 16 (2005) 1474–1476.
  39. S. Qu, H. Yang, D. Ren, S. Kan, G. Zou, D. Li, M. Li, Magnetite nanoparticles prepared by precipitation from partially reduced ferric chloride aqueous solutions, J. Colloid Interf. Sci., 215 (1999) 190–192.
  40. I. Nedkov, T. Merodiiska, L. Slavov, R.E. Vandenberghe, Y. Kusano, J. Takada, Surface oxidation, size and shape of nanosized magnetite obtained by coprecipitation, J. Magn. Magn. Mater., 300 (2006) 358–367.
  41. S. Chen, J. Feng, X. Guo, J. Hong, W. Ding, One-step wet chemistry for preparation of magnetite nano rods, Mater. Lett., 59 (2005) 985–988.
  42. I. Ostolska, M. Wiśniewska, Application of the zeta potential measurements to explanation of colloidal Cr2O3 stability mechanism in the presence of the ionic polyamino acids, Colloid Polym. Sci., 292 (2014) 2453–2464.
  43. S. Honary, F. Zahir, Effect of zeta potential on the properties of nano-drug, J. Pharm. Res., 12 (2013) 265–273.
  44. C. Jacobs, O. Kayser, R.H. Müller, Nano suspensions as a new approach for the formulation for the poorly soluble drug tarazepide, Int. J. Pharm., 196 (2000) 161–164.
  45. S.A. Wissing, O. Kayser, R.H. Müller, Solid lipid nanoparticles for parenteral drug delivery, Adv. Drug Delivery Rev., 56 (2004) 1257–1272.
  46. N. Kallay, E. Matijevic, Adsorption at solid/solution interfaces. 1. Interpretation of surface complexation of oxalic and citric acids with hematite, Langmuir, 1 (1985) 195–201.
  47. M. Răcuciu, Synthesis protocol influence on aqueous magnetic fluid properties, Curr. Appl. Phys., 9 (2009) 1062–1066.
  48. Y. Na, S. Yang, S. Lee, Evaluation of citrate-coated magnetic nanoparticles as draw solute for forward osmosis, Desalination, 347 (2014) 34–42.
  49. Y.S. Kang, S. Risbud, J.F. Rabolt, P. Stroeve, Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3 particles, Chem. Mater., 8 (1996) 2209–2211.
  50. H.K. Al-Hakeim, F.F.M. Al-Kazaz, H.K.A. Alobaid, Adsorption of LH, FSH, and TSH on magnetic nanoparticles, J. Bionano Sci., 9 (2015) 1–9.
  51. W. Cai, J.Q. Wan, Facile synthesis of super paramagnetic magnetite nanoparticles in liquid polyols, J. Colloid Interface Sci., 305 (2007) 366–370.
  52. A. Goodarzi, Y. Sahoo, M.T. Swihart, P.N. Prasad, Aqueous ferrofluid of citric acid coated magnetite particles, Mater. Res. Soc. Symp. Proc., 789 (2004) 129–134.
  53. Y. Sahoo, A. Goodarzi, M.T. Swihart, T.Y. Ohulchanskyy, N. Kaur, E.P. Furlani, P.N. Prasad, Aqueous ferrofluid of magnetite nanoparticles: fluorescence labeling and magnetophoretic control, J. Phys. Chem. B, 109 (2005) 3879–3885.