References

  1. B. Song, G. Zeng, J. Gong, J. Liang, P. Xu, Z. Liu, Y. Zhang, C. Zhang, M. Cheng, Y. Liu, S. Ye, H. Yi, X. Ren, Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals, Environ. Int., 105 (2017) 43–55.
  2. K. Vijayalakshmi, B.M. Devi, S. Latha, T. Gomathi, P.N. Sudha, J. Venkatesan, S. Anil, Batch adsorption and desorption studies on the removal of lead (II) from aqueous solution using nanochitosan/sodium alginate/microcrystalline cellulose beads, Int. J. Biol. Macromol., 104 (2016) 1483–1494.
  3. D.W. O’Connell, C. Birkinshaw, T.F. O’Dwyer, Heavy metal adsorbents prepared from the modification of cellulose: a review, Bioresour. Technol., 99 (2008) 6709–6724.
  4. L. Li, J. Dong, T.M. Nenoff, Transport of water and alkali metal ions through MFI zeolite membranes during reverse osmosis, Sep. Purif. Technol., 53 (2007) 42–48.
  5. F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage., 92 (2011) 407–418.
  6. S.K. Ramamoorthy, M. Skrifvars, A. Persson, A review of natural fibers used in biocomposites: plant, animal and regenerated cellulose fibers, Polym. Rev., 55 (2015) 107–162.
  7. W. Yang, B. Fang, Y.Y. Tang, Fast and accurate vanishing point detection and its application in inverse perspective mapping of structured road, IEEE Trans. Syst. Man Cybern. Syst., (2016) 1–12.
  8. F. Wendler, F. Meister, D. Wawro, E. Wesolowska, D. Ciechańska, B. Saake, J. Puls, N. le Moigne, P. Navard, Polysaccharide blend fibres formed from NaOH, N-methylmorpholine-N-oxide and 1-Ethyl-3-methylimidazolium acetate, Fibres Text. East. Eur., 79 (2010) 21–30.
  9. A. Pinkert, K.N. Marsh, S. Pang, M.P. Staiger, Ionic liquids and their interaction with cellulose, Chem. Rev., 109 (2009) 6712–6728.
  10. B. Lindman, G. Karlström, L. Stigsson, On the mechanism of dissolution of cellulose, J. Mol. Liq., 156 (2010) 76–81.
  11. H.P. Fink, P. Weigel, H.J. Purz, J. Ganster, Structure formation of regenerated cellulose materials from NMMO-solutions, Prog. Polym. Sci., 26 (2001) 1473–1524.
  12. S. Wang, A. Lu, L. Zhang, Recent advances in regenerated cellulose materials, Prog. Polym. Sci., 53 (2016) 169–206.
  13. R.P. Swatloski, J.D. Holbrey, R.D. Rogers, Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate, Green Chem., 5 (2003) 361.
  14. N. Gathergood, M.T. Garcia, P.J. Scammells, Biodegradable ionic liquids: Part I. Concept, preliminary targets and evaluation, Green Chem., 6 (2004) 166.
  15. N.P. Novoselov, E.S. Sashina, O.G. Kuz’mina, S.V. Troshenkova, Ionic liquids and their use for the dissolution of natural polymers, Russ. J. Gen. Chem., 77 (2007) 1395–1405.
  16. S. Zhu, Y. Wu, Q. Chen, Z. Yu, C. Wang, S. Jin, Y. Ding, G. Wu, Dissolution of cellulose with ionic liquids and its application: a mini-review, Green Chem., 8 (2006) 325–327.
  17. C.R. Rambo, D.O.S. Recouvreux, C.A. Carminatti, A.K. Pitlovanciv, R.V. Antônio, L.M. Porto, Template assisted synthesis of porous nanofibrous cellulose membranes for tissue engineering, Mater. Sci. Eng. C, 28 (2008) 549–554.
  18. Y.N. Kuo, J. Hong, A new method for cellulose membrane fabrication and the determination of its characteristics, J. Colloid Interface Sci., 285 (2005) 232–238.
  19. W. Xiao, W. Yin, S. Xia, P. Ma, The study of factors affecting the enzymatic hydrolysis of cellulose after ionic liquid pretreatment, Carbohydr. Polym., 87 (2012) 2019–2023.
  20. H. Zhao, C.L. Jones, G.A. Baker, S. Xia, O. Olubajo, V.N. Person, Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis, J. Biotechnol., 139 (2009) 47–54.
  21. C. Ślusarczyk, B. Fryczkowska, M. Sieradzka, J. Janicki, Smallangle X-ray scattering studies of pore structure in cellulose membranes, Acta Phys. Pol. A, 129 (2016) 229–232.
  22. Å. Östlund, A. Idström, C. Olsson, P.T. Larsson, L. Nordstierna, Modification of crystallinity and pore size distribution in coagulated cellulose films, Cellulose, 20 (2013) 1657–1667.
  23. J. Guerrero-Contreras, F. Caballero-Briones, Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method, Mater. Chem. Phys., 153 (2015) 209–220.
  24. T. Ghosh, C. Biswas, J. Oh, G. Arabale, T. Hwang, N.D. Luong, M. Jin, Y.H. Lee, J. Do Nam, Solution-processed graphite membrane from reassembled graphene oxide, Chem. Mater., 24 (2012) 594–599.
  25. K.Y. Yoon, S.J. An, Y. Chen, J.H. Lee, S.L. Bryant, R.S. Ruoff, C. Huh, K.P. Johnston, Graphene oxide nanoplatelet dispersions in concentrated NaCl and stabilization of oil/water emulsions, J. Colloid Interface Sci., 403 (2013) 1–6.
  26. J. Texter, Graphene dispersions, Curr. Opin. Colloid Interface Sci., 19 (2014) 163–174.
  27. B. Konkena, S. Vasudevan, Understanding aqueous dispersibility of graphene oxide and reduced graphene oxide through p K a measurements, J. Phys. Chem. Lett., 3 (2012) 867–872.
  28. J.I. Parades, S. Villar-Rodil, A. Martínez-Alonso, J.M.D. Tascón, Graphene oxide dispersions in organic solvents, Langmuir, 24 (2008) 10560–10564.
  29. K. Goh, L. Setiawan, L. Wei, W. Jiang, R. Wang, Y. Chen, Fabrication of novel functionalized multi-walled carbon nanotube immobilized hollow fiber membranes for enhanced performance in forward osmosis process, J. Membr. Sci., 446 (2013) 244–254.
  30. R. Das, M.E. Ali, S.B.A. Hamid, S. Ramakrishna, Z.Z. Chowdhury, Carbon nanotube membranes for water purification: a bright future in water desalination, Desalination, 336 (2014) 97–109.
  31. B.J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, L.G. Bachas, Aligned multiwalled carbon nanotube membranes., Science, 303 (2004) 62–65.
  32. E. Celik, H. Park, H. Choi, H. Choi, Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment, Water Res., 45 (2011) 274–282.
  33. K.A. Mahmoud, B. Mansoor, A. Mansour, M. Khraisheh, Functional graphene nanosheets: the next generation membranes for water desalination, Desalination, 356 (2015) 208–225.
  34. Y. Han, Z. Xu, C. Gao, Ultrathin graphene nanofiltration membrane for water purification, Adv. Funct. Mater., 23 (2013) 3693–3700.
  35. R.K. Joshi, S. Alwarappan, M. Yoshimura, V. Sahajwalla, Y. Nishina, Graphene oxide: the new membrane material, Appl. Mater. Today, 1 (2015) 1–12.
  36. L. He, L.F. Dumée, C. Feng, L. Velleman, R. Reis, F. She, W. Gao, L. Kong, Promoted water transport across graphene oxide–poly(amide) thin film composite membranes and their antibacterial activity, Desalination, 365 (2015) 126–135.
  37. M.J. Park, S. Phuntsho, T. He, G.M. Nisola, L.D. Tijing, X.-M. Li, G. Chen, W.-J. Chung, H.K. Shon, Graphene oxide incorporated polysulfone substrate for the fabrication of flat-sheet thin-film composite forward osmosis membranes, J. Membr. Sci., 493 (2015) 496–507.
  38. S. Xia, M. Ni, T. Zhu, Y. Zhao, N. Li, Ultrathin graphene oxide nanosheet membranes with various d-spacing assembled using the pressure-assisted filtration method for removing natural organic matter, Desalination, 371 (2015) 78–87.
  39. A.F. Faria, C. Liu, M. Xie, F. Perreault, L.D. Nghiem, J. Ma, M. Elimelech, Thin-film composite forward osmosis membranes functionalized with graphene oxide–silver nanocomposites for biofouling control, J. Membr. Sci., 525 (2017) 146–156.
  40. P.S. Goh, A.F. Ismail, Graphene-based nanomaterial: the stateof- the-art material for cutting edge desalination technology, Desalination, 356 (2015) 115–128.
  41. R.R. Nair, H.A. Wu, P.N. Jayaram, I.V. Grigorieva, A.K. Geim, Unimpeded permeation of water through helium-leak-tight graphene-based membranes, Science, 335 (2012) 442–444.
  42. M. Bhadra, S. Roy, S. Mitra, Desalination across a graphene oxide membrane via direct contact membrane distillation, Desalination, 378 (2016) 37–43.
  43. T. Hwang, J.-S. Oh, W. Yim, J.-D. Nam, C. Bae, H.-I. Kim, K.J. Kim, Ultrafiltration using graphene oxide surface-embedded polysulfone membranes, Sep. Purif. Technol., 166 (2016) 41–47.
  44. G. Liu, H. Ye, A. Li, C. Zhu, H. Jiang, Y. Liu, K. Han, Y. Zhou, Graphene oxide for high-efficiency separation membranes: role of electrostatic interactions, Carbon N. Y., 110 (2016) 56–61.
  45. A. Kafy, A. Akther, M.I.R. Shishir, H.C. Kim, Y. Yun, J. Kim, Cellulose nanocrystal/graphene oxide composite film as humidity sensor, Sens. Actuators, A, 247 (2016) 221–226.
  46. C.J. Kim, W. Khan, D.H. Kim, K.S. Cho, S.Y. Park, Graphene oxide/cellulose composite using NMMO monohydrate, Carbohydr. Polym., 86 (2011) 903–909.
  47. C. Wan, J. Li, Graphene oxide/cellulose aerogels nanocomposite: preparation, pyrolysis, and application for electromagnetic interference shielding, Carbohydr. Polym., 150 (2016) 172–179.
  48. X. Zhang, H. Yu, H. Yang, Y. Wan, H. Hu, Z. Zhai, J. Qin, Graphene oxide caged in cellulose microbeads for removal of malachite green dye from aqueous solution, J. Colloid Interface Sci., 437 (2015) 277–282.
  49. W. Zhu, W. Li, Y. He, T. Duan, In-situ biopreparation of biocompatible bacterial cellulose/graphene oxide composites pellets, Appl. Surf. Sci, 338 (2015) 22–26.
  50. X.N. Yang, D.D. Xue, J.Y. Li, M. Liu, S.R. Jia, L.Q. Chu, F. Wahid, Y.M. Zhang, C. Zhong, Improvement of antimicrobial activity of graphene oxide/bacterial cellulose nanocomposites through the electrostatic modification, Carbohydr. Polym., 136 (2016) 1152–1160.
  51. X. Rui-Hong, R. Peng-Gang, H. Jian, R. Fang, R. Lian-Zhen, S. Zhen-Feng, Preparation and properties of graphene oxideregenerated cellulose/polyvinyl alcohol hydrogel with pH-sensitive behavior, Carbohydr. Polym., 138 (2016) 222–228.
  52. L. Tang, X. Li, D. Du, C. He, Fabrication of multilayer films from regenerated cellulose and graphene oxide through layer-by-layer assembly, Prog. Nat. Sci. Mater. Int., 22 (2012) 341–346.
  53. W.S. Hummers, R.E. Offeman, Preparation of Graphitic Oxide, J. Am. Chem. Soc., 80 (1958) 1339–1339.
  54. K.M. Gupta, Z. Hu, J. Jiang, Mechanistic understanding of interactions between cellulose and ionic liquids: a molecular simulation study, Polymer (Guildf), 52 (2011) 5904–5911.
  55. Y. Cao, J. Wu, J. Zhang, H. Li, Y. Zhang, J. He, Room temperature ionic liquids (RTILs): a new and versatile platform for cellulose processing and derivatization, Chem. Eng. J. 147 (2009) 13–21.
  56. B. Fryczkowska, M. Sieradzka, E. Sarna, R. Fryczkowski, J. Janicki, Influence of a graphene oxide additive and the conditions of membrane formation on the morphology and separative properties of poly(vinylidene fluoride) membranes, J. Appl. Polym. Sci., 132 (2015) 42789.
  57. B. Fryczkowska, K. Wiechniak, Preparation and properties of cellulose membranes with graphene oxide addition, Pol. J. Chem. Technol., 19 (2017) 41–49.
  58. Y. Chen, F. Liu, Y. Wang, H. Lin, L. Han, A tight nanofiltration membrane with multi-charged nanofilms for high rejection to concentrated salts, J. Membr. Sci., 537 (2017) 407–415.
  59. Y. Zhang, S. Zhang, T.-S. Chung, Nanometric graphene oxide framework membranes with enhanced heavy metal removal via nanofiltration, Environ. Sci. Technol., 49 (2015) 10235–10242.
  60. B. Song, C. Zhang, G. Zeng, J. Gong, Y. Chang, Y. Jiang, Antibacterial properties and mechanism of graphene oxidesilver nanocomposites as bactericidal agents for water disinfection, Arch. Biochem. Biophys., 604 (2016) 167–176.