References

  1. M.A. Zazouli, R. Sadeghnezhad, L.R. Kalankesh, Calculating fluoride concentrations data using ambient temperatures in drinking water distribution networks in select provinces of Iran, Data Brief, 15 (2017) 127–132.
  2. N. Khanjani, L. Ranadeh Kalankesh, F. Mansouri, Air pollution and respiratory deaths in Kerman, Iran (from 2006 till 2010), Iran. J. Epidemiol., 8 (2012) 58–65.
  3. Y. Dadban Shahamat, H. Asgharnia, L.R. Kalankesh, M. Hosanpour, Data on wastewater treatment plant by using wetland method, Babol, Iran, Data Brief, 16 (2018) 1056–1061.
  4. J. Lin, A. Ganesh, Water quality indicators: bacteria, coliphages, enteric viruses, Int. J. Environ. Health Res., 23 (2013) 484–506.
  5. M.A. Zazouli, L.R. Kalankesh, Removal of precursors and disinfection by-products (DBPs) by membrane filtration from water; a review, J. Environ. Health Sci. Eng., 15 (2017) 25.
  6. F. Mansouri, R. Kalankesh, H. Hasankhani, The comparison of photo catalytic degradation of dissolved organic carbon (DOC) from water by UV/TiO2 in the presence and absence of iron ion, Global Nest J., 18 (2016) 392–401.
  7. E. Mintz, J. Bartram, P. Lochery, M. Wegelin, Not just a drop in the bucket: expanding access to point-of-use water treatment systems, Am. J. Public Health, 91 (2001) 1565–1570.
  8. M. Figueras, J.J. Borrego, New perspectives in monitoring drinking water microbial quality, Int. J. Environ. Res. Public Health, 7 (2010) 4179–4202.
  9. L. Rizzo, C. Manaia, C. Merlin, T. Schwartz, C. Dagot, M.C. Ploy, I. Michael, D. Fatta-Kassinos, Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review, Sci. Total Environ., 447 (2013) 345–360.
  10. E.C. Sanders, Y.P. Yuan, A. Pitchford, Fecal coliform and E. coli concentrations in effluent-dominated streams of the Upper Santa Cruz Watershed, Water, 5 (2013) 243–261.
  11. M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marinas, A.M. Mayes, Science and technology for water purification in the coming decades, Nature, 452 (2008) 301–310.
  12. K.A. Genov, Oxidation of Organic Compounds on TS-1 and Ti-Beta Zeolites Synthesized According to the “Wetness Impregnation Method”, Dissertation, University of Bremen, Bremen, 2004 (Oxidation of organic compounds-Thesis-Genov2004.pdf).
  13. A. Nezamzadeh-Ejhieh, M. Amiri, CuO supported clinoptilolite towards solar photocatalytic degradation of p-aminophenol, Powder Technol., 235 (2013) 279–288.
  14. J.D. Sherman, Synthetic zeolites and other microporous oxide molecular sieves, Proc. Natl. Acad. Sci. USA, 96 (1999) 3471–3478.
  15. S. Wang, Y. Peng, Natural zeolites as effective adsorbents in water and wastewater treatment, Chem. Eng. J., 156 (2010) 11–24.
  16. M. Malakootian, L. Ranandeh Kalankesh, M. Loloi, Efficiency of hybrid nano particles of Tio2/Sio2 in removal of lead from paint industry effluents, J. Mazandaran Univ. Med. Sci., 23 (2013) 244–254.
  17. A. Nezamzadeh-Ejhieh, Z. Nematollahi, Surfactant modified zeolite carbon paste electrode (SMZ-CPE) as a nitrate selective electrode, Electrochim. Acta, 56 (2011) 8334–8341.
  18. A. Nezamzadeh-Ejhieh, A. Badri, Surfactant modified ZSM-5 zeolite as an active component of membrane electrode towards thiocyanate, Desalination, 281 (2011) 248–256.
  19. A. Nezamzadeh-Ejhieh, M. Shahanshahi, Modification of clinoptilolite nano-particles with hexadecylpyridynium bromide surfactant as an active component of Cr(VI) selective electrode, J. Ind. Eng. Chem., 19 (2013) 2026–2033.
  20. P. Gupta, W.A. Khanday, S.A. Majid, V. Kushwa, S. Tomar, R. Tomar, Study of sorption of metal oxoanions from waste water on surfactant modified analog of laumontite, J. Environ. Chem. Eng., 1 (2013) 510–515.
  21. J.-Q. Jiang, S. Ashekuzzaman, Development of novel inorganic adsorbent for water treatment, Curr. Opin. Chem. Eng., 1 (2012) 191–199.
  22. A. Nezamzadeh-Ejhieh, S. Tavakoli-Ghinani, Effect of a nanosized natural clinoptilolite modified by the hexadecyltrimethyl ammonium surfactant on cephalexin drug delivery, C.R. Chim., 17 (2014) 49–61.
  23. M. Danesh-Khorasgani, A. Nezamzadeh-Ejhieh, PVCzeolite nanoparticle-surfactant anion exchanger membrane: preparation, characterization, and its application in development of ion-selective electrode for detection of sulfate, J. Solid State Electrochem., 20 (2016) 2827–2833.
  24. D.K.F. Santos, R.D. Rufino, J.M. Luna, V.A. Santos, L.A. Sarubbo, Biosurfactants: multifunctional biomolecules of the 21st century, Int. J. Mol. Sci., 17 (2016) 401.
  25. Q.H. Tran, A.-T. Le, Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives, Adv. Nat. Sci.: Nanosci. Nanotechnol., 4 (2013) 033001.
  26. Q.L. Feng, J. Wu, G. Chen, F. Cui, T. Kim, J. Kim, A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus, J. Biomed. Mater. Res., 52 (2000) 662–668.
  27. J. Milenković, J. Hrenović, I. Goić-Barišić, N. Rajić, Antibacterial Activity of Metal-Loaded Natural Zeolite Against Clinical Isolates of Acinetobacter baumannii, Proc. 5th Serbian–Croatian–Slovenian Symposium on Zeolites, Zlatibor, 2013.
  28. W.K. Jung, H.C. Koo, K.W. Kim, S. Shin, S.H. Kim, Y.H. Park, Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli, Appl. Environ. Microbiol., 74 (2008) 2171–2178.
  29. K.R. Raghupathi, R.T. Koodali, A.C. Manna, Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles, Langmuir, 27 (2011) 4020–4028.
  30. R. Hong, T.Y. Kang, C.A. Michels, N. Gadura, Membrane lipid peroxidation in copper alloy-mediated contact killing of Escherichia coli, Appl. Environ. Microbiol., 78 (2012) 1776–1784.
  31. J. Hrenovic, J. Milenkovic, T. Ivankovic, N. Rajic, Antibacterial activity of heavy metal-loaded natural zeolite, J. Hazard. Mater., 201 (2012) 260–264.
  32. A. Top, S. Ülkü, Silver, zinc, and copper exchange in a Na-clinoptilolite and resulting effect on antibacterial activity, Appl. Clay Sci., 27 (2004) 13–19.
  33. M.M. Salim, N.A.N.N. Malek, N.I.A. Ramli, S.A.M. Hanim, S. Hamdan, Antibacterial activity of CTAB-modified zeolite NaY with different CTAB loading, J. Fundam. Appl. Sci., 10 (2014) 129–133.
  34. S. Khamkure, E. Peña Cervantes, P. Gamero Melo, A. Zermeño González, Enhanced removal of fecal bacteria by zinc-modified zeolite in an intermittent media infiltration system, Environ. Eng. Manage. J., 12 (2013) 2149–2156.
  35. D.H. Bergey, R.E. Buchanan, N.E. Gibbons, Bergey’s Manual of Determinative Bacteriology, Williams & Wilkins, Baltimore, 1974.
  36. American Public Health Association (APHA), Standard Methods for the Examination of Water and Wastewater, 22th ed., American Public Health Association, Washington, D.C., USA, 2012.
  37. R.B. Viana, A.B.F. Da Silva, A.S. Pimentel, Infrared spectroscopy of anionic, cationic, and zwitterionic surfactants, Adv. Phys. Chem., 2012 (2012) 1–14.
  38. P. Tille, et al., Bailey and Scott’s Diagnostic Microbiology, 13th ed., Mosby Company, St. Louis, MO, 2014.
  39. NCfCL Standards(NCCLS), Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard, Vol. 20, Approved Standard, National Committee for Clinical Laboratory Standards, Pennsylvania, USA, 2002.
  40. M. Cacace, E. Landau, J. Ramsden, The Hofmeister series: salt and solvent effects on interfacial phenomena, Q. Rev. Biophys., 30 (1997) 241–277.
  41. S. Hashemi, A. Nezamzadeh-Ejhieh, A novel chromium selective electrode based on surfactant-modified Iranian clinoptilolite nanoparticles, Desal. Wat. Treat., 57 (2016) 3304–3314.
  42. A. Naghash, A. Nezamzadeh-Ejhieh, Comparison of the efficiency of modified clinoptilolite with HDTMA and HDP surfactants for the removal of phosphate in aqueous solutions, J. Ind. Eng. Chem., 31 (2015) 185–191.
  43. A. Niknezhadi, A. Nezamzadeh-Ejhieh, A novel and sensitive carbon paste electrode with clinoptilolite nano-particles containing hexadecyltrimethyl ammonium surfactant and dithizone for the voltammetric determination of Sn(II), J. Colloid Interface Sci., 501 (2017) 321–329.
  44. N.A.N.N. Malek, N.S. Malek, Modification of synthetic zeolites by quaternary ammonium compounds and its antibacterial activity against Bacillus subtilis, APCBEE Proc., 3 (2012) 134–139.
  45. S. Sharafzadeh, A. Nezamzadeh-Ejhieh, Using of anionic adsorption property of a surfactant modified clinoptilolite nano-particles in modification of carbon paste electrode as effective ingredient for determination of anionic ascorbic acid species in presence of cationic dopamine species, Electrochim. Acta, 184 (2015) 371–380.
  46. M. Hasheminejad, A. Nezamzadeh-Ejhieh, A novel citrate selective electrode based on surfactant modified nanoclinoptilolite, Food Chem., 172 (2015) 794–801.
  47. T. Kawai, Y. Yamada, T. Kondo, Adsorbed monolayers of mixed surfactant solutions of sodium dodecylsulfate and cetylpyridinium chloride studied by infrared external reflection spectroscopy, J. Phys. Chem. C, 112 (2008) 2040–2044.
  48. K. Kawahara, K. Tsuruda, M. Morishita, M. Uchida, Antibacterial effect of silver-zeolite on oral bacteria under anaerobic conditions, Dent. Mater., 16 (2000) 452–455.
  49. M. Matsumoto, J.A. De Bont, S. Isken, Isolation and characterization of the solvent-tolerant Bacillus cereus strain R1, J. Biosci. Bioeng., 94 (2002) 45–51.
  50. L.E. Nielsen, D.R. Kadavy, S. Rajagopal, R. Drijber, K.W. Nickerson, Survey of extreme solvent tolerance in grampositive cocci: membrane fatty acid changes in Staphylococcus haemolyticus grown in toluene, Appl. Environ. Microbiol., 71 (2005) 5171–5176.
  51. M.L.F. Paje, B.A. Neilan, I. Couperwhite, A Rhodococcus species that thrives on medium saturated with liquid benzene, Microbiology, 143 (1997) 2975–2981.
  52. S. Uttatree, J. Charoenpanich, Isolation and characterization of a broad pH-and temperature-active, solvent and surfactant stable protease from a new strain of Bacillus subtilis, Biocatal. Agric. Biotechnol., 8 (2016) 32–38.
  53. P. Lambert, Cellular impermeability and uptake of biocides and antibiotics in Gram-positive bacteria and mycobacteria, J. Appl. Microbiol., 92 (2002) 46S–54S.
  54. J.J. Merianos, Quarternary Ammonium Antimicrobial Compounds, in Disinfection, Sterilization and Preservation, Lea & Febiger, Philadelphia, 1991, pp. 225–255.
  55. P. Herrera, R. Burghardt, T. Phillips, Adsorption of Salmonella enteritidis by cetylpyridinium-exchanged montmorillonite clays, Vet. Microbiol., 74 (2000) 259–272.
  56. A. Mai-Prochnow, M. Clauson, J. Hong, A.B. Murphy, Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma, Sci. Rep., 6 (2016) 38610.
  57. S.W. Chook, C.H. Chia, S. Zakaria, M.K. Ayob, K.L. Chee, N.M. Huang, H.M. Neoh, H.N. Lim, R. Jamal, R. Rahman, Antibacterial performance of Ag nanoparticles and AgGO nanocomposites prepared via rapid microwave-assisted synthesis method, Nanoscale Res. Lett., 7 (2012) 541.
  58. S. Kumar-Krishnan, E. Prokhorov, M. Hernández-Iturriaga, J.D. Mota-Morales, M. Vázquez-Lepe, Y. Kovalenko, I.C. Sanchez, G. Luna-Bárcenas, Chitosan/silver nanocomposites: synergistic antibacterial action of silver nanoparticles and silver ions, Eur. Polym. J., 67 (2015) 242–251.
  59. D. Schulze-Makuch, R.S. Bowman, S. Pillai, Removal of Biological Pathogens Using Surfactant-Modified Zeolite, Google Patents, 2007.
  60. S.A. Matar, W.H. Talib, M.S. Mustafa, M.S. Mubarak, M.A. Aldamen, Synthesis, characterization, and antimicrobial activity of Schiff bases derived from benzaldehydes and 3,3'-diaminodipropylamine, Arabian J. Chem., 8 (2015) 850–857.
  61. I. Wiegand, K. Hilpert, R.E. Hancock, Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances, Nat. Protoc., 3 (2008) 163–75.
  62. T.C. Dakal, A. Kumar, R.S. Majumdar, V. Yadav, Mechanistic basis of antimicrobial actions of silver nanoparticles, Front. Microbiol., 7 (2016) 1831.