References
- T. Thompson, M. Sobsey, J. Bartram, Providing clean water,
keeping water clean, an integrated approach, Int. J. Environ.
Health. Res., 13 (2003) 89–94.
- I. Ali, V.K. Gupta, Advances in water treatment by adsorption
technology, Nat. Protoc., 1 (2006) 2661–2667.
- S.D. Faust, O.M. Aly, Adsorption processes for water treatment,
first ed., Butterworth, Stoneham MA, 1987.
- M. Sanchez-Polo, J. Rivera-Utrilla, Adsorbent-adsorbate interactions
in the adsorption of Cd (II) and Hg (II) on ozonized
activated carbons, Environ. Sci. Technol., 36 (2002) 3850–3854.
- R. Radhika, T. Ayalatha, S. Acob, R. Rajeev, B.K. George, B.R.
Anjali, Removal of perchlorate from drinking water using
granular activated carbon modified by acidic functional
group: Adsorption kinetics and equilibrium studies, Process
Safety Environ. Protect., 109 (2017) 158–171.
- C.Y. Yin, M.K. Aroua, W.M.A.W. Daud, Review of modifications
of activated carbon for enhancing contaminant uptakes
from aqueous solutions, Sep. Purif. Technol., 52 (2007) 403–415.
- H. Marsh, F. Rodríguez Reinoso, Activated Carbon, 1st ed.,
Elsevier, Oxford, 2006.
- A.M. Puziy, O.I. Poddubnayaa, A. Martınez-Alonso, F. Suarez-
Garcıa, J.M.D. Tascon, Synthetic carbons activated with phosphoric
acid I. Surface chemistry and ion binding properties,
Carbon, 40 (2002) 1493–1505.
- M.A.A. Zaini, Y. Amano, M. Machida, Adsorption of heavy
metals onto activated carbons derived from polyacrylonitrile
fiber, J. Hazard. Mater., 180 (2010) 552–560.
- X. Zhao, S. Lai, H. Liu, L. Gao, Preparation and characterization
of activated carbon foam from phenolic resin, J. Environ.
Sci., 21 (2009) 121–123.
- J. Wang, T.L. Liu, Q.X. Huang, Z.Y. Ma, Y. Chi, J.H. Yan, Production
and characterization of high quality activated carbon
from oily sludge, Fuel. Process. Technol., 162 (2017) 13–19.
- M.A.P. Cechinel, A.A.U. Ulson de Souza, A.A. Ulson de Souza,
Study of lead (II) adsorption onto activated carbon originating
from cow bone, J. Clean. Prod., 65 (2014) 342–349.
- H. Benaddi, T.J. Bandosz, J.A. Jagiello, J.A. Schwarz, J.N. Rouzaud,
D. Legras, F. Béguin, Surface functionality and porosity
of activated carbons obtained from chemical activation of
wood, Carbon, 38 (2000) 669–674.
- H. Deng, G. Zhang, X. Xu, G. Tao, J. Dai, Optimization of
preparation of activated carbon from cotton stalk by microwave
assisted phosphoric acid-chemical activation, J. Hazard.
Mater., 182 (2010) 217–224.
- V. Gomez-Serrano, E.M. Cuerda-Correa, M.C. Fernandez-Gonzalez,
M.F. Alexandre-Franco, A. Macıas-Garcıa, Preparation
of activated carbons from chestnut wood by phosphoric
acid-chemical activation, Study of microporosity and fractal
dimension, Mater. Lett., 59 (2005) 846–853.
- V. Fierro, V. Torne-Fernandez, A. Celzard, Kraft lignin as a
precursor for microporous activated carbons prepared by
impregnation with ortho-phosphoric acid: Synthesis and textural
characterization, Micropor. Mesopor. Mater., 92 (2006)
243–250.
- I.A.W. Tan, J.C. Chan, B.H. Hameed, L.L.P. Lim, Adsorption
behavior of cadmium ions onto phosphoric acid-impregnated
microwave-induced mesoporous activated carbon, J. Water
Process. Eng., 14 (2016) 60–70.
- M. Molina-Sabio, F. Rodrıguez-Reinoso, Role of chemical activation
in the development of carbon porosity, Colloids Surf. A
Physicochem. Eng. Asp., 241 (2004) 15–25.
- A. Reffas, V. Bernardet, B. David, L. Reinert, M.B. Lehocine, L.
Duclaux, Carbons prepared from coffee grounds by H3PO4 activation:
Characterization and adsorption of methylene blue and
Nylosan Red N-2RBL, J. Hazard. Mater., 175 (2010) 779–788.
- M. Kwiatkowski, D. Kalderis, E. Diamadopoulos, Numerical
analysis of the influence of the impregnation ratio on the
microporous structure formation of activated carbons, prepared
by chemical activation of waste biomass with phosphoric
(V) acid, J. Phys. Chem. Solids, 105 (2017) 81–85.
- B. Tiryaki, E. Yagmur, A. Banford, Z. Aktas, Comparison of
activated carbon produced from natural biomass and equivalent
chemical compositions, J. Anal. Appl. Pyrolysis, 105 (2014)
276–283.
- J. Deng, T. Xiong, H. Wang, A. Zheng, Y. Wang, Effects of cellulose,
hemicellulose, and lignin on the structure and morphology
of porous carbons, ACS Sustain. Chem. Eng., 4 (2016)
3750–3756.
- C. Rodriguez, C. Thomas Otto, A. Kruse, Influence of the biomass
components on the pore formation of activated carbon,
Biomass Bioenergy, 97 (2017) 53–64.
- M. Jagtoyen, F. Derbyshire, Activated carbons from yellow
poplar and white oak by H3PO4 activation, Carbon, 36 (1998)
1085–1097.
- Y. Guo, D.A. Rockstraw, Physical and chemical properties of
carbons synthesized from xylan, cellulose and Kraft lignin by
H3PO4 activation, Carbon, 44 (2006) 1464–1475.
- O. Ioannidou, A. Zabaniotou, Agricultural residues as precursors
for activated carbon production, Renew. Sustain. Energy
Rev., 11 (2007) 1966–2005.
- J.M. Dias, M.C. Alvim-Ferraz, M.F. Almeida, J. Rivera-Utrilla,
M. Sánchez-Polo,Waste materials for activated carbon preparation
and its use in aqueous-phase treatment, J. Environ. Manage.,
85 (2007) 833–846.
- L. Mouni, D. Merabet, A. Bouzaza, L. Belkhiri, Adsorption of
Pb(II) from aqueous solutions using activated carbon developed
from apricot stone, Desalination, 276 (2011) 148–153.
- M.H. Marzbali, M. Esmaieli, H. Abolghasemi, M.H. Marzbali,
Tetracycline adsorption by H3PO4 activated carbon produced
from apricot nut shells: A batch study, Process Safety Environ.
Protect., 102 (2016) 700–709.
- Ç. Şentorun-Shalaby, M.G. Uçak-Astarlıoglu, L. Artok, Ç.
Sarıcı, Preparation and characterization of activated carbons
by one-step steam pyrolysis/activation from apricot stones,
Micropor. Mesopor. Mater., 88 (2006) 126–134.
- M.L. Sekirifa, M. Hadj-Mahammed, S. Pallier, L. Baameur, D.
Richard, A.H. Al-Dujaili, Preparation and characterization of
an activated carbon from a date stones variety by physical activation
with carbon dioxide, J. Anal. Appl. Pyrolysis, 99 (2013)
155–160.
- H. Sütcü, H. Demiral, Production of granular activated carbons
from loquat stones by chemical activation, J. Anal. Appl.
Pyrolysis, 84 (2009) 47–52.
- M. Plaza-Recobert, G. Trautwein, M. Pérez-Cadenas, J. Alcañiz-Monge, Superactivated carbons by CO2 activation of loquat
stones, Fuel Process. Technol., 159 (2017) 345–352.
- V.V. Do Thi, Matériaux composites fibres naturelles/polymère
biodégradable, Ph. D Thesis, University of Grenoble, France,
2011.
- M.V. Lopez-Ramon, F. Stoeckli, C. Moreno-Castilla, F. Carrasco-Marin, On the characterization of acidic and basic surface
sites on carbons by various techniques, Carbon, 37 (1999) 1215–
1221.
- H.P. Boehm, Surface oxides on carbon and their analysis, a critical
assessment, Carbon, 40 (2002) 145–149.
- M. Benadjemia, L. Millière, L. Reinert, N. Benderdouche, L.
Duclaux, Preparation, characterization and Methylene Blue
adsorption of phosphoric acid activated carbons from globe
artichoke leaves, Fuel. Process. Tech., 92 (2011) 1203–1212.
- K. Kaneko, C. Ishii, Super high surface area determination of
microporous solids, Colloids Surf., 67 (1992) 203–212.
- J. Jagiello, M. Thommes, Comparison of DFT characterization
methods based on N2, Ar, CO2, and H2 adsorption applied to
carbons with various pore size distributions, Carbon, 42 (2004)
1227–1232.
- J. Jagiello, J.P. Olivier, A simple two dimensional NLDFT model
of gas adsorption in finite carbon pores, Application to pore
structure analysis, J. Phys. Chem. C., 113 (2009) 19382–19385.
- J. Yu, N. Paterson, J. Blamey, M. Millan, Cellulose, xylan and
lignin interactions during pyrolysis of lignocellulosic biomass,
Fuel, 191 (2017) 140–149.
- H. Zhou, Y. Long, A. Meng, Q. Li, Y. Zhang, The pyrolysis
simulation of five biomass species by hemi-cellulose, cellulose
and lignin based on thermogravimetric curves, Thermochim.
Acta, 566 (2013) 36–43.
- S.J. Park, B.J. Park, S.K. Ryu, Electrochemical treatment on activated
carbon fibers for increasing the amount and rate of Cr
(VI) adsorption, Carbon, 37 (1999) 1223–1226.
- S. Bourbigot, M. Le Bras, R. Delobel, Carbonization mechanisms
resulting from intumescence. II. Association with an
ethylene terpolymer and the ammonium polyphosphate-pentaerythritol
fire retardant system, Carbon, 33 (1995) 283–294.
- E. Sabio, E. Gonzalez, J.F. Gonzalez, C.M. Gonzalez-Garcia, A.
Ramiro, J. Ganan, Thermal regeneration of activated carbon
saturated with p-nitrophenol, Carbon, 42 (2004) 2285–2293.
- M. Olivares-Marín, C. Fernández-González, A. Macías-García,
V. Gómez-Serrano, Porous structure of activated carbon prepared
from cherry stones by chemical activation with phosphoric
acid, Energy Fuels, 21 (2007) 2942–2949.
- J. Rouquerol, F. Rouquerol, P. Llewellyn, G. Maurin, K.S.W.
Sing, Adsorption by powders and porous solids: principles,
methodology and applications, second ed., Academic Press,
Oxford, 2014.
- A.M. Youssef, N.R.E. Radwan, I. Abdel-Gawad, G.A.A. Singer,
Textural properties of activated carbons from apricot stones,
Colloids Surf. A Physicochem. Eng. Asp., 252 (2005) 143–151.
- S. Agarwal, I. Tyagi, V.K. Gupta, N. Ghasemi, M. Shahivand,
M. Ghasemi, Kinetics, equilibrium studies and thermodynamics
of methylene blue adsorption on Ephedra strobilacea saw
dust and modified using phosphoric acid and zinc chloride, J.
Mol. Liq., 218 (2016) 208–218.
- D. Graham, Characterization of physical adsorption systems
III, The separate effects of pore size and surface acidity upon
the adsorbent capacities of activated carbons, J. Phys. Chem.,
59 (1955) 896–900.
- E. Altintig, H. Altundag, M. Tuzen, M. Sari, Effective removal
of methylene blue from aqueous solutions using magnetic
loaded activated carbon as novel adsorbent, Chem. Eng. Res.
Design, 122 (2017) 151–163.