References

  1. K. Yoshizuka, K. Fukui, A. Inouek, Selective recovery of lithium from seawater using a novel MnO2 type adsorbent, Ars Separatoria Acta, 1 (2002) 79–86.
  2. R. Chitrakar, H. Kanoh, Y. Miyai, K. Ooi, Recovery of lithium from seawater using manganese oxide adsorbent (H1.6Mn1.6O4) derived from Li1.6Mn1.6O4, Ind. Eng. Chem. Res., 41 (2001) 2054– 2058.
  3. S.R. Krainov, B.N. Ryzhenko, V.M. Shvets, The Geochemistry of Underground Waters. Nauka, Moscow, 2004, pp. 677–681.
  4. R. Chitrakar, Y. Makita, K. Ooi, A. Sonoda, Lithium recovery from salt lake brine by H2TiO3, Dalton Trans., 43 (2014) 8933– 8939.
  5. T. Ryu, Y. Haldorai, A. Rengaraj, J. Shin, H.J. Hong, G.W. Lee, Y.K. Han, Y.S. Huh, K.S. Chung, Recovery of lithium ions from seawater using a continuous flow adsorption column packed with granulated chitosan–lithium manganese oxide, Indust. Eng. Chem. Res., 55 (2016) 7218–7225.
  6. L. Noerochim, G.A. Satriawangsa, D. Susanti, A. Widodo, Synthesis and characterization of lithium manganese oxide with different ratio of mole on lithium recovery process from ge-othermal fluid of Lumpur Sidoarjo, J. Mater. Sci. Chem. Eng., 3 (2015) 56–62.
  7. S. Moore, Between rock and salt lake, Ind. Miner., 6 (2007) 58–69.
  8. S.T. Anderson, The mineral insutry of Chile. U.S. Geological Survey Minerals Yearbook 7, (2004) pp. 1–7.
  9. S. Nishihama, K. Onishi, K. Yoshizuka, Selective recovery process of lithium from seawater using integrated ion exchange methods, Solv. Extract. Ion Exch., 29 (2011) 421–431.
  10. J. Darul, W. Nowicki, P. Piszora, Unusual compressional behavior of lithium–manganese oxides: a case study of Li4Mn5O12, J. Phys. Chem., 116 (2012) 17872–17879.
  11. H. Park, N. Singhal, E.H. Jho, Lithium sorption properties of HMnO in seawater and wastewater, Water Res., 87 (2015) 320–327.
  12. S. Kim, J. Lee, J.S. Kang, K. Jo, S. Kim, Y.E. Sung, J. Yoon, Lithium recovery from brine using a λ-MnO2/activated carbon hybrid super capacitor system, Chemosphere, 125 (2015) 50–56.
  13. A. Subramania, N. Angayarkanni, T. Vasudevan, Effect of PVA with various combustion fuels in sol-gel thermolysis process for the synthesis of LiMn2O4 nano particles for Li-ion batteries, Mater. Chem. Phys., 102 (2007) 19–23.
  14. X. Shi, D. Zhou, Z. Zhang, L. Yu, H. Xu, B. Chen, X. Yang, Synthesis and properties of Li>1.6Mn1.6O4 and its adsorption application, Hydrometallurgy, 110 (2011) 99–106.
  15. L. Wang, C.G. Meng, W. Ma, Study on Li+ uptake by lithium ion-sieve via the pH technique, Colloids Surf. A: Physicochem. Eng. Asp., 334 (2009) 34–39.
  16. Y.S. Han, H.J. Kim, J.K. Park, Millimeter-sized spherical ionsieve foams with hierarchical pore structure for recovery of lithium from seawater, Chem. Eng. J., 210 (2012) 482–489.
  17. A. Umeno, Y. Miyai, N. Takagi, R. Chitrakar, K. Sakane, K. Ooi, Preparation and adsorptive properties of membrane-type adsorbents for lithium recovery from seawater, Ind. Eng. Chem. Res., 41 (2002) 4281–4287.
  18. L.W. Ma, N.Z. Chen, Y. Chen, X.C. Shi, Preparation, characterization and adsorptive properties of foam-type lithium adsorbent, Micropor. Mesopor. Mater., 142 (2011) 147–153.
  19. S.J. Oh, N. Kim, Y.T. Lee, Preparation and characterization of PVDF/TiO2 organic–inorganic composite membranes for fouling resistance improvement, J. Membr. Sci., 345 (2009) 13–20.
  20. J.K. Moon, K.W. Kim, C.H. Jung, Y.G. Shul, E.H. Lee, Preparation of organic-inorganic composite adsorbent beads for removal of radio nuclides and heavy metal ions, J. Radioanal. Nucl. Chem., 246 (2000) 299–307.
  21. M.E. Mesquita, J.M. Vieira e Silva, Preliminary study of pH effect in the application of Langmuir and Freundlich isotherms to Cu– Zn competitive adsorption, Geoderma., 106 (2002) 219–234.
  22. M.S. Rahman, M.R. Islam, Effects of pH on isotherms modeling for Cu2+ ions adsorption using maple wood sawdust, Chem. Eng. J., 149 (2009) 273–280.