References

  1. M. Saghi, K. Mahanpoor, Photocatalytic degradation of tetracycline aqueous solutions by nanospherical α-Fe2O3 supported on 12-tungstosilcis acid as catalyst: using full factorial experimental design, Int. J. Ind. Chem., 8 (2017) 297–313.
  2. Y. Yang, Y.S. Ok, K.H. Kim, E.E. Kwon, Y.F. Tsang, Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review, Sci. Total Environ., 596–597 (2017) 303–320.
  3. S.I. Natali, D. Fumagalli, Fast photocatalytic degradation of pharmaceutical micropollutants and ecotoxicological effects, Environ. Sci. Pollut. Res., 24 (2016) 1–6.
  4. B. Czech, W. Cwikla-Bundyra, Advanced oxidation processes in Triton X-100 and wash-up liquid removal from wastewater using modified TiO2/Al2O3 photocatalysts, Water Air Pollut., 223 (2012) 4813–4822.
  5. M. Farzadkia, E. Bazrafshan, A. Esrafili, J.K. Yang, M. Shirzadsiboni, Photocatalytic degradation of metronidazole with illuminated TiO2 nanoparticles, J. Environ. Health Sci. Eng., 13 (2015)1–8.
  6. L.L. Bo, K.B. He, N. Tan, B. Gao, Q.Q. Feng, J.D. Liu, L. Wang, Photocatalytic oxidation of trace carbamazepine in aqueous solution by visible-light-driven ZnIn2S4: Performance and mechanism, J. Environ Manage., 190 (2017) 259–265.
  7. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238 (1972) 37–38.
  8. C.Y.P. Ayekoehia, D. Robert, D.G. Lanciné, Combination of coagulation-flocculation and heterogeneous photocatalysis for improving the removal of humic substances in real treated water from Agbô River (lvory-Coast), Catal. Today, 281 (2017) 2–13.
  9. S.K. Alharbi, W.E. Price, J.G. Kang, T. Fujioka, L.D. Nghiem, Ozonation of carbamazepine, diclofenac, sulfamethoxazole and trimethoprim and formation of major oxidation products, Desal. Water Treat., 57 (2016) 29340–29351.
  10. J.F. Guo, Y.Y Li, D. Hu, H. Liu, Preparation of transition-metal-doped ZnO nanophotocatalysts and their performance on photocatalytic degradation of antibiotic wastewater, Desal. Water Treat., (2014) 1–8.
  11. A.T. Kuvarega, B.B. Mamba, TiO2-based photocatalysis: toward visible light-responsive photocatalysts through doping and fabrication of carbon-based nanocomposites, Crit. Rev. Solid State Mater. Sci., 42 (2017) 295–346.
  12. S. Dominguez, M. Huebra, C. Han, P. Campo, M.N. Nadaqouda, M.J. Rivero, I. Oritiz, D.D. Dionysiou, Magnetically recoverable TiO2-WO3 photocatalyst oxidize bisphenol A from model wastewater under simulated solar light, Environ. Sci. Pollut. Res., 24 (2017) 12589–12598.
  13. S.K. Maeng, K. Cho, B. Jeong, J. Lee, Y. Lee, C. Lee, K.J. Choi, S.W. Hong, Substrate-immobilized electrospun TiO2 nanofibers for photocatalytic degradation of pharmaceuticals: The effects of pH and dissolved organic matter characteristics, Water Res., 86 (2015) 25–34.
  14. A. Bojanowska-Czajka, G. Kciuk, M. Gumiela, B. Borowiecka G. Nateczjawecki, A. Koc, J.F. Garcia-Reyes, D. Solpan Ozbay, M. Trojanowicz, Analytical, toxicological and kinetic investigation of decomposition of the drug diclofenac in waters and wastes using gamma radiation, Environ. Sci. Pollut. Res., 22 (2015) 20255–20270.
  15. L.L. Bo, T. Urase, X.C. Wang, Biodegradation of trace pharmaceutical substances in wastewater by a membrane bioreactor, Front Environ. Sci. Eng. in China, 3 (2009) 236–240.
  16. Y. Xia, Q. Li, K.L. Lv, M. Li, Heterojunction construction between TiO2 hollowsphere and Znln2S4 flower for photocatalysis application, Appl. Surf. Sci., 398 (2017) 81–88.
  17. S. González Alonson, M. Catalá, R. Romo Maroto, J.L. Rodíguez Gil, D.M.Á. Gil, Y. Valcárcel, Pollution by psychoactive pharmaceuticals in the rivers of Madrid metropolitan area (Spain), Environ. Int., 36 (2010) 195–201.
  18. O. Rojviroon, T. Rojviroon, S. Sirivithayapakorn, Removal of color and chemical oxygen demand from landfill leachate by photocatalytic process with AC/TiO2, Energy Procedia., 79 (2015) 536–541.
  19. Y.X. Li, J.X. Wang, S.Q. Peng, G.X. Lu, S.B. Li, Photocatalytic hydrogen generation in the presence of glucose over ZnS-coated ZnIn2S4 under visible light irradiation, Int. J. Hydrogen Energy, 35 (2010) 7116–7126.
  20. W.P. Chen, Y. Wang, Z.S. Jin, C.X. Feng, Z.S. Wu, Z.J. Zhang, Influence of NH3-treating temperature on visible light photocatalytic activity of N-doped P25-TiO2, Sci. China Ser B-Chem., 52 (2009) 1164–1170.
  21. A. Jrad, T.B. Nasr, N. Turki-kamoun, Study of structural,optical and photoluminescence properties of indium-doped zinc sulfide thin films for photoelectronic applications, Opt. Mater., 50 (2015) 128–133.
  22. B. Chai, T.Y. Peng, P. Zeng, X.H. Zhang, X.J. Liu, Template-free hydrothermal synthesis of ZnIn2S4 floriated microsphere as an efficient photocatalyst for H2 production under visible-light irradiation, J. Phys. Chem. C., 115 (2011) 6149–6155.
  23. H. Yin, Y. Wada, T. Kitamura, S. Kambe, S. Murasawa, Hydrothermal synthesis of nanosized anatase and rutile TiO2 using amorphous phase TiO2, J. Mater. Chem., 11 (2001) 1694–1703.
  24. W. Chen, L. Zhao, H. Xu, J. Yang, Photocatalytic degradation characteristics of carbamazepine over activated carbon supported TiO2, J. Civ. Archit. Environ. Eng., 34 (2012) 126–131.
  25. B.F. Abramović, V.N. Despotović, D.V. Šojić, D.Z. Orčić, J.J. Csanádi, D.D. Četojević-Simin, Photocatalytic degradation of the herbicide clomazone in natural water using TiO2: Kinetics, mechanism, and toxicity of degradation products, Chemosphere, 93 (2013) 166–171.
  26. H. Woo, J. Park, J. Kim, S. Park, H.P. Kang, Hierarchical hybrid MnO/Pd-Fe3O4 and CoO/Pd-Fe3O4 nancomposites as efficient catalysts for hydroboration of styrene, Catal. Commun., 100 (2017) 52–56.
  27. E. Regulska, D.M. Brus, P. Rodziewicz, S. Sawicka, J. Karpinska, Photocatalytic degradation of hazardous Food Yellow 13 in TiO2 and ZnO aqueous and river water suspensions, Catal. Today, 266 (2016) 72–81.
  28. C.J. Escudero, O. Iglesias, S. Dominguez, M.J. Rivero, I. Ortiz, Performance of electrochemical oxidation and photocatalysis in terms of kinetics and energy consumption, New insights into the p-cresol degradation, J. Environ. Manage., 195 (2017) 117–124.
  29. A.M. Dugandžić, A.V. Tomašević, M.M. Radišić, N.Ž. Šekuljica, D.Ž. Mijin, S.D. Petrović, Effect of inorganic ions, photosensitisers and scavengers on the photocatalytic degradation of nicosulfuron, J. photochem. photobiol. A: Chem., 336 (2017) 146–155.
  30. J. Park, H.L. Nam, J.W. Choi, J. Ha, S.H. Lee, Oxidation of geosmin and 2-methylisoborneol by the photo-fenton process: kinetics, degradation intermediates, and the removal of microcystin- LR and trihalomethane from Nak-Dong River Water, South Korea, Chem. Eng. J., 313 (2017) 345–354.
  31. Q.Q. Zhao, J. Sun, J.B. Li, J.X. He, Kinetics and mechanism of Horner-Wadsworth-Emmons reaction of weakly acidic phosphonate in solid-liquid phase-transfer catalysis system, Catal. Commun., 36 (2013) 98–103.
  32. Y.Y. Sun, Y. Wang, N. Xue, C. Yu, Y.J. Meng, B.Y. Gao, Q.L. Li, The effect of DOM on floc formation and membrane fouling in coagulation/ultrafiltration process for treating TiO2 nanopartiicles in various aquatic media, Chem. Eng. J., 316 (2017) 429–437.