References

  1. Guidelines for Drinking-water Quality, First Addendum to the 3rd edition, Vol. 1 Recommendations, WHO Press, Geneva, Switzerland, 2006.
  2. L.F. Greenlee, D.F. Lawler, B.D. Freeman, B. Marrot, P. Moulien, Reverse osmosis desalination: water resources, technology and today’s challenges, Water Res., 43 (2009) 2317–2348.
  3. H. Annapoorna, M.R. Janardhana, Assessment of groundwater for drinking purposes in rural areas surrounding a defunct copper mine, Aquatic Procedia, 4 (2015) 685–692.
  4. N. Misdan, W.J. Lau, A.F. Ismail, Sea water reverse osmosis (SWRO) desalination by thin-film composite membrane - Current development, challenges and future prospects, Advance Membrane Technology Research Center, UTM, Malaysia, 2011.
  5. T. Teh, N. Abdul Rahman, N.N. Rulaini, M. Shahadat, Y. Wong, A.K. Omar, Risk assessment of metal contamination in soil groundwater in Asia: a review of recent trends as well as existing environmental laws and regulations, Pedoshpere, 26 (2016) 431–450.
  6. E. Maloney, North American climate in CMIPS experiments: part III: assessment of 21st century projections, J. Climatol., 27 (2014) 2230–2270.
  7. R. Rusu, R. Vaduwa, G. Cretu, Hydrologic effect of urbanization. International Multidisciplinary Science Geoconference: SGEM. Survey Geo. Manage., 3 (2012) 721–728.
  8. USEPA Guidelines for Drinking Water Quality, Volume 1, WHO Press, Geneva, Switzerland, 2006.
  9. M. Chandramowleeswaran, K. Palanivelu, Treatability studies on textile effluent for total dissolved solids reduction using electrodialysis, Desalination, 210 (2006) 164–174.
  10. RM.O. Mendoza, Optimization and Modelling of Arsenic Removal from Groundwater by Recirculated Batch Electrodialysis, PhD Dissertation, University of the Philippines, Diliman, 2013.
  11. H. Strathman, Electrodialysis, a mature technology with a multitude of new applications, Desalination, 264 (2010) 268–288.
  12. R.M.O. Mendoza, C.-C. Kan, M.L.P. Dalida, M.-W. Wan, Feasibility studies on arsenic removal from aqueous solutions by electrodialysis, J. Environ. Sci. Health, Part A, 49 (2014) 545–554.
  13. T. Scarazzato, Z. Panossian, J.A.S. Tenorio, V. Perez-Hernandez, D.C.R. Espinosa, A review of cleaner production in electroplating industries using electrodialysis, J. Cleaner Prod., 168 (2017) 1590–1602.
  14. A. Valero, A. Valero, G. Calvo, A. Ortega, Material bottleneck in the future of green technologies. Renew. Sustain. Energy Rev., 93 (2018) 178–200.
  15. A.J. Bednar, J.R. Garbaino, M.R. Bwikhardt, J.F. Rainville, T.R. Wildeman, Field laboratory arsenic separation methods and their application to natural water analysis, Water Res., 38 (2004) 355–364.
  16. M. Erickson, R. Barnes, Well characteristics influencing arsenic concentrations in groundwater, Water Res., 39 (2005) 4029–4039.
  17. M.A. Rahman, H. Hasegawa, High levels of inorganic arsenic in high areas where arsenic contaminated water is used for irrigation and cooking, Sci. Total Environ., 409 (2011) 4645–4655.
  18. Y. Tanaka, Water dissociation in ion-exchange membrane electrodialysis, J. Membr. Sci., 350 (2010) 347–360.
  19. Characteristics of Water, Pro-Analitika KFT, Hungary, Retrieved December 2, 2016, www.pro-analitika.uh.
  20. Z. Bian, S. Chen, J. Wang, H. Xiao, H. Qin, Developing new drugs from annals of Chinese medicine, Acta Pharm. Sinica B., 2 (2012) 1–7.