References

  1. D. Gong, G. Qin, Treatment of oilfield wastewater using a microbial fuel cell integrated with an up-flow anaerobic sludge blanket reactor, Desal. Wat. Treat., 49 (2012) 272–280.
  2. A. Fogg, V. Gadhamshetty, D. Franco, J. Wilder, S. Agapi, S. Komisar, Can a microbial fuel cell resist the oxidation of tomato pomace?, J. Power Sour., 279 (2015) 781–790.
  3. D. Pant, G. Van Bogaert, L. Diels, K. Vanbroekhoven, A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production, Bioresour. Technol., 101 (2010) 1533–1543.
  4. P. Pushkar, A.K. Mungray, Real textile and domestic wastewater treatment by novel cross-linked microbial fuel cell (CMFC) reactor, Desal. Wat. Treat., 57 (2016) 6747–6760.
  5. Z. Ye, B. Zhang, Y. Liu, Z. Wang, C. Tian, Continuous electricity generation with piggery wastewater treatment using an anaerobic baffled stacking microbial fuel cell, Desal. Wat. Treat., 55 (2015) 2079–2087.
  6. J. Philips, K. Verbeeck, K. Rabaey, J. Arends, Electron tranasfer mechanisms in biofilms. Microbial Electrochemical and Fuel Cells: Fundamentals and Applications, Woodhead Publishing Series in Energy, 2015, pp. 67–113.
  7. C. Rojas, I.T. Vargas, M.A. Bruns, J.M. Regan, Electrochemically active microorganisms from an acid mine drainage-affected site promote cathode oxidation in microbial fuel cells, Bioelectrochemistry, 118 (2017) 139–146.
  8. G. Reguera, K.D. McCarthy, T. Mehta, J.S. Nicoll, M.T. Tuominen, D.R. Lovley, Extracellular electron transfer via microbial nanowires, Nature, 435 (2005) 1098–1101.
  9. N.S. Malvankar, M. Vargas, K.P. Nevin, A.E. Franks, C. Leang, B.C. Kim, K. Inoue, Tunable metallic-like conductivity in microbial nanowire networks, Nat. Nanotechnol., 6 (2011) 573–579.
  10. S.A. Patil, C. Hägerhäll, L. Gorton, Electron transfer mechanisms between microorganisms and electrodes in bioelectrochemical systems, Bioanal. Rev., 4 (2012) 159–192.
  11. A. Sikora, R. Sikora, Mikrobiologiczne ogniwa paliwowe, Biotechnologia, 2 (2005) 68–77 (in Polish).
  12. D. Permana, D. Rosdianti, S. Ishmayana, S.D. Rachman, H.E. Putra, D. Rahayuningwulan, H. Hariyadi, Preliminary investigation of electricity production using dual chamber microbial fuel cell (DCMFC) with Saccharomyces cerevisiae as biocatalyst and methylene blue as an electron mediator, Procedia Chem., 17 (2015) 36–43.
  13. G. Najafpour, M. Rahimnejad, N. Mokhtarian, A.A. Ghoreyshi, Bioconversion of whey to electrical energy in a biofuel cell using Saccharomyces cerevisiae, World Appl. Sci. J., 8 (2010) 1–5.
  14. R. Arbianti, H. Hermansyah, T.T. Utami, N.C. Zahara, I. Trisnawati, E. Kristin, The usage of Saccharomyces cerevisiae in microbial fuel cell system for electricity energy production, Chem. Chem. Eng., 6 (2012) 814–819.
  15. M. Rahimnejad, G. Najafpour, A.A. Ghoreyshi, H. Zare, Methylene blue as electron promoters in microbial fuel cell, Inter. J. Hydrogen Energy, 36 (2011) 13335–13341.
  16. A.L. Popov, J.R. Kim, R.M. Dinsdale, S.R. Esteves, A.J. Guwy, G.C. Premier, The effect of physico-chemically immobilized methylene blue and neutral red on the anode of microbial fuel cell, Biotechnol. Bioprocess Eng., 17 (2012) 361–370.
  17. C.N. Miller, Use of dinitrosalicyle acid reagent for determination of reducing sugar, Anal. Chem., 81 (1959) 426–428.
  18. E. Li, R.M. de Orduna, A rapid method for the determination of microbial biomass by dry weight using a moisture analyser with an infrared heating source and an analytical balance, Lett. App. Microbiol., 50 (2010) 283–288.