References

  1. N. Negash, H. Alemu, M. Tessema, Determination of phenol and chlorophenols at single-wall carbon nanotubes/poly (3,4-ethylenedioxythiophene) modified glassy carbon electrode using flow injection amperometry, Int. Sch. Res. Notices, 4 (2014) 59246–459257.
  2. F.C. Vicentini, L.L.C. Garcia, L.C.S. Figueiredo-Filho, B.C. Janegitz, O. Fatibello-Filho, A biosensor based on gold nanoparticles, dihexadecylphosphate, and tyrosinase for the determination of catechol in natural waters, Enzyme Microb. Technol., 84 (2016) 17–23.
  3. R.S. Freire, N. Dur, Electrochemical biosensor-based devices for continuous phenols monitoring in environmental matrices. J. Braz. Chem. Soc., 13 (2002) 456–462.
  4. H.B. Yildiz, J. Castillo, D.A. Guschin, L. Toppare, W. Schuhmann, Phenol biosensor based on electrochemically controlled integration of tyrosinase in a redox polymer, Microchim. Acta, 159 (2007) 27–34.
  5. B. Wang, J. Zheng, Y. He, Q. Sheng, A sandwich-type phenolic biosensor based on tyrosinase embedding into single-wall carbon nanotubes and poly aniline nanocomposites, Sens. Actuators, B, 186 (2013) 417–422.
  6. A.C. Pereira, A. Kisner, C.T.T. Ricardo, N. Duran, L.T. Kubota, Determination of phenol compounds based on electrodes with HRP immobilized on an oxidized multiwall carbon nanotube, Dyn. Biochem. Process Biotechnol. Mol. Biol., Special Issue, 2 (2009) 75–79.
  7. J. Yang, D. Li, J. Fu., F. Huang, Q. Wei, TiO2-CuCNFs based laccase biosensor for enhanced electrocatalysis in hydroquinone detection, J. Electroanal. Chem., 766 (2016) 16–23.
  8. S.V. Dzyadevych, V.N. Arkhypova, A.P. Soldatkin, A.V. El’skaya, C. Martelet, N. Jaffrezic-Renault, Amperometric enzyme biosensors: past, present and future, IRBM, 29 (2008) 171–180.
  9. I. Gul, M.S. Ahmad, S.M.S. Naqvi, A. Hussain, R. Wali, A.A. Farooqi, I. Ahmed, Polyphenol oxidase (PPO) based biosensors for detection of phenolic compounds: a review, J. Appl. Biol. Biotechnol., 5 (2017) 72–85.
  10. M.M. Rodríguez-Delgado, M. Melissa, G.S. Alemán-Nava, M. José, D. Graciano, S.O. Martínez-Chapa, B. Damià, P. Roberto, Laccase-based biosensors for detection of phenolic compounds, Trends Anal. Chem., 74 (2015) 21–4.
  11. F.C. Vicentini, B.C. Janegitz, C.M.A. Brett, O. Fatibello-Filho, Tyrosinase biosensor based on a glassy carbon electrode modified with multi-walled carbon nanotubes and1-butyl-3- methylimidazolium chloride within a dihexadecylphosphate film, Sens. Actuators, B, 188 (2013) 1101–1108.
  12. L. Tang, Y. Zhou, G. Zeng, Z. Li, Y. Liu, Y. Zhang, G. Chen, G. Yang, X. Lei, M. Wu, A tyrosinase biosensor based on ordered mesoporous-carbon–Au/L-lysine/Au nanoparticles for simultaneous determination of hydroquinone and catechol, Analyst, 138 (2013) 3552–3560.
  13. Y. Haldorai, S.K. Hwang, A.I. Gopalan, Y.S. Huh, Y.K. Han, W. Voit, G. Sai-Anand, K.P. Lee, Direct electrochemistry of cytochrome c immobilized on titanium nitride/multi-walled carbon nano tube composite for amperometric nitrite biosensor, Biosens. Bioelectron., 79 (2016) 543–552.
  14. A. Mohammadi, A.B. Moghaddam, R. Dinarvand, S.R. Zarchi, Direct electron transfer of polyphenol oxidase on carbon nanotube surfaces: application in biosensing, Int. J. Electrochem. Sci., 4 (2009) 895–905.
  15. J. Wang, R.P. Deo, M. Musameh, Stable and sensitive electrochemical detection of phenolic compounds at carbon nanotube modified glassy carbon electrodes, Electroanalysis, 15 (2003) 1830–1834.
  16. E.R. Sartori, F.C. Vicentini, O. Fatibello-Filho, Indirect determination of sulfite using a polyphenol oxidase biosensor based on a glassy carbon electrode modified with multiwalled carbon nanotubes and gold nanoparticles within a poly(allylamine hydrochloride) film, Talanta, 87 (2011) 235–242.
  17. Q.L. Pham, Y. Haldorai, V.H. Nguyen, D. Tuma, J.J. Shim, Facil synthesis of poly(p-phenylendiamin)/MWCNT nanocomposite and characterization for investigation of structural effects of carbon nanotubes, Bull. Mater. Sci., 34 (2011) 37–43.
  18. Y. Haldorai, A. Rengaraj, J.-B. Lee, Y.S. Huh, Y.-K. Han, Highly efficient hydrogen production via water splitting using MWCNT/TiO2 ternary hybrid composite as a catalyst under UV-Visible light, Synth. Met., 199 (2015) 345–352.
  19. P. Velichkova, D. Marinkova, S. Yaneva, L. Yotova, Isolation and Purification of Tyrosinase from Different Plant Sources, First National Conference of Biotechnology, vol. 100, 2014, pp. 70–75.
  20. M. Alamelumangai, J. Dhanalakshmi, M. Mathumitha, R.S. Renganayaki, P. Muthukumaran, N. Rajalakshmi, Modulation of banana polyphenol oxidase (PPO) activity by naturally occurring bioactive compounds from plant extracts, Int. J. Pharm. Sci. Res., 6 (2015) 41–44.
  21. T. Ohnishi, J. Parr, Protein measurement with the folin reagent, J. Anal. Biochem., 86 (1978) 193–200.
  22. G. Perenlei, T. Wee Tee, N.Z. Yusof, G.J. Kheng, Voltammetric detection of potassium ferricyanide mediated by multi-walled carbon nanotube/titanium dioxide composite modified glassy carbon electrode, Int. J. Electrochem. Sci., 6 (2011) 520–531.
  23. D. Wojcieszyńska, K. Hupert-Kocurek, U. Guzik, Influence of the entrapment of catechol 2,3-dioxygenase in κ-Carrageenan on its properties, Pol. J. Environ. Stud., 22 (2013) 1219–1225.
  24. L. Donato, C. Algieri, A. Rizzi, L. Giorno, Kinetic study of tyrosinase immobilized on polymeric membrane, J. Membr. Sci., 454 (2014) 346–350.
  25. R. Rawal, S. Chawla, C.S. Pundir, Polyphenol biosensor based on laccase immobilized onto silver nanoparticles/multiwall carbon nanotube/polyaniline gold electrode, Anal. Biochem., 419 (2011) 196–204.
  26. V.K. Gupta, T.A. Saleh, Synthesis of Carbon Nanotube-Metal Oxides Composites; Adsorption and Photo-Degradation, Chapter 17 of Carbon Nanotubes - From Research to Applications, In Tech Publisher, 2011, pp. 295–312.
  27. E.T. Mombeshoraa, R. Simoyia, V.O. Nyamoria, P.G. Ndungu, Multiwalled carbon nanotube-titania nanocomposites: understanding nano-structural parameters and functionality in dye-sensitized solar cells, S. Afr. J. Chem., 68 (2015) 153–164.
  28. F.A. Abd Manan, J. Abdullah, N.N. Nazri, I.N. Abd Malik, N.A. Yusof, I. Ahmad, Immobilization of tyrosinase in nanocrystalline cellulose/chitosan composite film for amperometric detection of phenol, Malaysian J. Anal. Sci., 20 (2016) 978 – 985.
  29. F.M. Fartas, J. Abdullah, N.A. Yusof, Y. Sulaiman, M.I. Saiman, Biosensor based on tyrosinase immobilized on graphenedecorated gold nanoparticle/chitosan for phenolic detection in aqueous, Sensors, 17 (2017) 1132–1146.
  30. G. Wang, J.-J. Xu, L.H. Ye, J.J. Zhu, H.Y. Chen, Highly sensitive sensors based on the immobilization of tyrosinase in chitosan, Bioelectrochemistry, 57 (2002) 33– 38.
  31. N.M. Ahmad, J. Abdullah, N.Z. Yusof, A.H. Ab Rashid, S. Abd Rahman, M.R. Hassan, Amperometric biosensor based on zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds, Biosensors, 6 (2016) 31–45.
  32. M. Romero-Arcos, M.G. Garnica-Romo, H.E. Martínez-Flores, Electrochemical study and characterization of an amperometric biosensor based on the immobilization of laccase in a nanostructure of TiO2 synthesized by the sol-gel method, Materials, 9 (2016) 543–555.
  33. B.C. Janegitz, R.A. Medeiros, R.C. Rocha-filho, O. Fatibellofilho, Diamond and related materials direct electrochemistry of tyrosinase and biosensing for phenol based on gold nanoparticles electrodeposited on a boron-doped diamond electrode, Diamond Relat. Mater., 25 (2012) 128–133.
  34. Y. Lee, Y.K. Lyu, H.N. Choi, W.Y. Lee, Amperometric tyrosinase biosensor based on carbon nanotube-titania–nafion composite film, Electroanalysis, 19 (2007) 1048–1054.
  35. Rajesh, W. Takashima, K. Kaneto, Amperometric phenol biosensor based on covalent immobilization of tyrosinase onto an electrochemically prepared novel copolymer poly(N-3- aminopropyl pyrrole-co-pyrrole) film, Sens. Actuators, B, 102 (2004) 271–277.
  36. S. Tembe, S. Inamdar, S. Harama, M. Karve, Electrochemical biosensor for catechol using agarose–guar gum entrapped tyrosinase, J. Biotechnol., 128 (2007) 80–85.
  37. B. Perez-Lopez, A. Merkoci, Magnetic nanoparticles modified with carbon nanotubes for electrocatalytic magneto switchable biosensing applications, Adv. Funct. Mater., 21 (2011) 255–260.
  38. A. Lorena, A. Gámez, M. Alonso-Lomillo, O. Domínguez-Renedo, M. Arcos-Martínez, A chronoamperometric screen printed carbon biosensor based on alkaline phosphatase inhibition for W(VI) determination in water, using 2-phospho-L-ascorbic acid trisodium salt as a substrate, Sensors, 15 (2015) 2232–2243.
  39. Q. Chen, S. Ai, X. Zhu, H. Yin, Q. Ma, Y. Qiu, A nitrite biosensor based on the immobilization of cytochrome C on multiwalled carbon nanotubes PAMAM-chitosan nanocomposite modified glass carbon electrode, Biosens. Bioelectron., 24 (2009) 2991–2996.